第四种方法的应力分量表达式的推导

合集下载

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)

04、基本知识 怎样推导轴向拉压和扭转的应力公式、变形公式(供参考)同学们学习下面内容后,一定要向老师回信(****************),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。

回信请注明班级和学号的后面三位数。

1 * 问题的提出 ........................................................................................................................... 1 2 下面就用统一的步骤,研究轴向拉压和扭转的应力公式和变形公式。

........................... 2 3 1.1 轴向拉压杆的应力公式推导 ............................................................................................ 2 4 1.2 轴向拉压杆的变形公式推导 ............................................................................................ 4 5 1.3 轴向拉压杆应力公式和变形公式的简要推导 ................................................................ 4 6 1.4 轴向拉压杆的强度条件、刚度条件的建立 .................................................................... 4 7 2.1 扭转轴的应力公式推导 .................................................................................................... 5 8 2.2 扭转轴的变形公式推导 .................................................................................................... 7 9 2.3 扭转轴应力公式和变形公式的简要推导 ........................................................................ 7 10 2.4 扭转的强度条件、刚度条件的建立 ............................................................................ 8 11 3. 轴向拉压、扭转、梁的弯曲剪切,应力公式和变形公式推导汇总表 .. (9)1* 问题的提出在材料力学里,分析杆件的强度和刚度是十分重要的,它们是材料力学的核心内容。

描述空间一点的应力状态需要的应力分量

描述空间一点的应力状态需要的应力分量

描述空间一点的应力状态需要的应力分量应力是描述物体内部受力状态的物理量,空间一点的应力状态包括三个主要应力分量:正应力、剪应力和法向应力。

正应力是指作用于物体某一截面上的垂直于该截面的应力。

在空间中的一点,正应力可以沿着三个坐标轴方向产生,分别称为x方向正应力、y方向正应力和z方向正应力。

这三个应力分量分别用σx、σy和σz表示。

正应力由两部分组成:一部分来自于物体外部对其的作用力,称为外应力或受载应力;另一部分来自于物体内部的分子间作用力,称为内应力或静力应力。

正应力可以使物体沿着这个方向产生形变,例如拉伸、压缩等。

剪应力是指作用于物体某一截面上的平行于该截面的应力。

在空间中的一点,剪应力可以沿着三个坐标轴方向产生,分别称为xy方向剪应力、yz方向剪应力和xz方向剪应力。

这三个应力分量分别用τxy、τyz和τxz表示。

剪应力是由物体外部力矩对其产生的,表现为物体的旋转和扭转。

法向应力是指作用于物体某一截面上的垂直于该截面的应力。

在空间中的一点,法向应力可以沿着各个方向产生,由于其方向多变,没有显式的表示方式。

法向应力可以使物体在垂直于该截面上产生形变,例如变形、弯曲等。

在空间一点的应力状态可以用应力张量来描述。

应力张量是一个二阶对称张量,它包含了全部的应力分量信息。

在直角坐标系下,应力张量的表示形式为:σ = [σx τxyτxz][τxy σy τyz][τxz τyz σz]其中,σx、σy和σz分别表示x方向、y方向和z方向的正应力分量;τxy、τyz和τxz分别表示剪应力的分量。

应力张量可以通过力学分析或实验测量得到。

在工程领域中,了解空间一点的应力状态对于设计和分析结构的强度和稳定性至关重要。

通过合理选择材料和结构形式,可以使结构在应力状态下具有足够的强度和抗变形能力。

因此,研究应力分量及其变化规律对于工程实践具有重要意义。

综上所述,空间一点的应力状态需要考虑正应力、剪应力和法向应力三个应力分量。

弹性力学习题解答

弹性力学习题解答

习题解答 第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

解:(1)pi iq qj jkpq qj jk pj jk pk δδδδδδδδδδ===;(2)()pqi ijk jkpj qk pk qj jk pq qp e e A A A A δδδδ=-=-;(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

证:20ijk jkjk jk ikj kj ijk jk ijk kj ijk jk ijk jk i e a e a e a e a e a e a e a ==-=-=+。

2.3设a 、b 和c 是三个矢量,试证明:证:1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

2.4设a 、b 、c 和d 是四个矢量,证明:证:()()i j ijk k l m lmn n i j l m ijk lmk a b e c d e a b c d e e ⨯⋅⨯=⋅=a b c d e e ()()()()=⋅⋅-⋅⋅a c b d a d b c 。

2.5设有矢量i i u =u e 。

原坐标系绕z 轴转动θu 在新坐标系中的分量。

解:11cos βθ'=,12sin βθ'=,130β'=, 21sin βθ'=-,22cos βθ'=,230β'=, 310β'=,320β'=,331β'=。

弹性力学:平面问题02 应力函数解答

弹性力学:平面问题02 应力函数解答

总结:(多项式应力函数 的性质)
(1) 多项式次数 n < 4 时,则系数可以任意选取,总可满足4 0 。 多项式次数 n ≥ 4 时,则系数须满足一定条件,才能满足 4 0。
多项式次数 n 越高,则系数间需满足的条件越多。
(2) 一次多项式,对应于无体力和无应力状态;任意应力函数φ(x,y)上加
横截面保持平面 —— 材力中“平面保持平面”的假设成立。
(2) 将下式中的第二式对 x 求二阶导数:
u
M EI
xy y
u0
v
M
2EI
y2
M 2EI
x2
x v0
1 2v M 常数 说明:在微小位移下,梁纵向纤维的曲
x2 EI
率相同。即
1
2v x2
M EI
—— 材料力学中挠曲线微分方程
EI 2
(3-3)
v M (l x)x M y2
2EI
2EI
梁的挠曲线方程:
v M (l x)x y0 2EI
—— 与材力中结果相同
(2)悬臂梁
边界条件
u 0 xl
h y h
v 0 2
2
xl
由式(f)可知,此边界条件无法满足。
u
M EI
xy y
u0
(f)
v
M
2EI
y2
M 2EI
要使上式成立,须有
f1( y)
M EI
x
f 2( x)
(e)
式中:ω为常数。 积分上式,得
f1( y) y u0
f2 ( x)
M EI
x2
x
v0
将上式代入式(d),得
u
M EI

弹性力学简明教程-第四章-平面问题的极坐标解答习题详解

弹性力学简明教程-第四章-平面问题的极坐标解答习题详解

第四章 平面问题的极坐标解答典型例题讲解例4-1 如图所示,矩形薄板在四边受纯剪切力作用,切应力大小为q 。

如果离板边较远处有一小圆孔, 试求孔边的最大和最小正应力。

例4-1图【解】(1)根据材料力学公式,求极值应力和量大正应力的方位角max min 2x y σσσσ+⎫=⎬⎭ 其中0,,x y x q σστ===得max min ,q q σσ==-。

最大正应力 所在截面的方位角为max 0max 0tan 104yqq τασσπα=-=-=-→--=-qqx若在该纯剪切的矩形薄板中,沿与板边成方向截取矩形ABCD ,则在其边界上便承受集度为q 的拉力和压力,如图所示。

这样就把受纯剪切作用的板看作与一对边受拉,另一对边受压的板等效。

(2)取极坐标系如图。

由2222442222cos 2(1)(13),cos 2(13),(4-18)sin 2(1)(13).ρφρφr r σq φρρr σq φρr r τq φρρ⎫=--⎪⎪⎪⎪=-+⎬⎪⎪=--+⎪⎪⎭得矩形薄板ABCD 内的应力分量为()()()2222442222cos 2(1)(13)cos 2(13)sin 2(1)(13)ρφρφa a σq φa ρρa σq φb ρa a τq φc ρρ=--=-+=--+ 其中 为小孔的半径,而孔边最大与最小正应力由式(b ),在 处得到44cos 2(13)4cos 2,φa σq φaϕ=-+=-当 , 时,孔边最小正应力为,当时,孔边最大正应力为。

分析:矩形板ABCD 边界上各点的应力状态与板内无孔时的应力状态相同。

也可以应用叠加法,求解薄板的各种较复杂的平面应力(应变)问题。

习题全解4-1试比较极坐标和直角坐标中的平衡微分方程、几何方程和物理方程,指出哪些项是相似的,哪些项是极坐标中特有的?并说明产生这些项的原因。

【解】 (1)极坐标,直角坐标中的平衡微分方程10210f f ρρϕρϕρρϕϕρϕϕστσσρρϕρτστρρϕρ∂∂-⎧+++=⎪∂∂⎪⎨∂∂⎪+++=⎪∂∂⎩ 00yxx x y xy yf xy f y x τσστ∂⎧∂++=⎪∂∂⎪⎨∂⎪++=⎪∂∂⎩将极坐标中的平衡微分方程与直角坐标中的平衡微分方程相比较,第一式中,前两项与直角坐标相似;而项是由于正 面上的面积大于负 面上的面积而产生的,是由于正负 面上的正应力 在通过微分体中心的 方向有投影而引起的。

第七章_弹性力学平面问题的极坐标系解答讲解

第七章_弹性力学平面问题的极坐标系解答讲解
在r = b边界(外径):
r= -qb,r=0
本问题仍为轴对称问题,且体力为零,
可采用前述的应力函数求解方程,也可按位移法求解。
1.按应力函数法求解
按应力函数求解前面已导出应力分量和位移表达式:
, ,
平面应力问题的位移:
法求解:
由基本方程 得
代入应力与位移之间关系式,对于平面应力问题,有
其中Brsin=By可略去。
将( r,)代入应力分量表达式
A、C、D由力的边界条件来定。
力的边界条件:在主要边界上,
在r = a:r= 0,r= 0, 2Aa+C/a-2D/a3= 0
在r = b:r= 0,r= 0, 2Ab+C/b-2D/b3= 0
在次要边界上,
在=0,环向方向的面力为零, 满足。
在= 0: 由于主要边界满足,则此式自然满足;
在= 0:
(3)
主要边界满足时,由(1)、(2)、(3)求出A、B、C,应力求出后,依次可求出应变和位移表达式,详细推导在徐芝纶(上册)P.91-92。
在徐芝纶(4-13)中I、K、H为刚体位移,I = u0、K = v0, H =。
可利用约束确定,如令r0=(a+b)/2,= 0处
应力分量表达代入几何方程的第一式并积分,得
——(b)
考虑位移单值性比较(a)和(b)式:
4Br-F=0B=F=0
轴对称问题的应力和位移解为:
, ,

A、C由两个力的边界条件确定。
对于无体力圆盘(或圆柱)的轴对称问题,
则根据圆盘(或圆柱)中心应力和
位移有限值,得
A=0
图示圆盘受力情况,得应力为r==2C= -q
然后,利用r = a时, ,得

四个强度理论的相当应力表达式


aF
Fa
A
B
C
A
B

C
C
A
B

A
B 1
C1

1
3
3
B
C
对图示的纯剪切应力状态,试按强度理论建立纯剪切状
态下的强度条件,并导出剪切许用应力[τ]与拉伸许用
应力[σ]之间的关系。
1=, 2=0,3=
1 单元体纯剪切强度条件

KK
τ
第三强度理论 第四强度理论
第一强度理论 1
2
τ σ
3
[]为材料在单轴拉伸是的许用拉应力。
材料在纯剪切应力状态下的许用剪应力为
τ σ 0.577σ
3
(10-13)
已知铸铁构件上危险点处的应力状态,如图所示。若铸
铁拉伸许用应力为[σ]+=30MPa,试校核该点处的强度
是否安全。
第一强度理论
1 +
= 100MPa 。试按强度条件选择工字钢的号码。
(a)
200KN
200KN
A C
0.42
1.66
2.50
单位:m 例题 10-3 图
B D
0.42
解:作钢梁的内力图。 C , D 为危险截面
按正应力强度条件选择截面
200KN
A C
0.42
1.66 2.50
取 C 截面计算 Q c = Qmax = 200kN
( 2
3)2

( 3
1)2
rM

1

t
c


3
在大多数应力状态下,脆性材料将发生脆性断裂.因而应选用 第一强度理论;而在大多数应力状态下,塑性材料将发生屈服和剪 断.故应选用第三强度理论或第四强度理论.但材料的破坏形式不 仅取决于材料的力学行为,而且与所处的应力状态,温度和加载速 度有关.实验表明,塑性材料在一定的条件下低温和三向拉伸,会 表现为脆性断裂.脆性材料在三向受压表现为塑性屈服.

(整理)弹性力学第四章应力和应变关系

(整理)弹性⼒学第四章应⼒和应变关系第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。

由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。

应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。

对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。

这是材料的固有特性,因此称为物理⽅程或者本构关系。

对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。

分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。

本章的任务就是建⽴弹性变形阶段的应⼒应变关系。

⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。

§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。

同时,弹性体内部的能量也要相应的发⽣变化。

借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。

本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。

根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。

探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。

如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。

因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。

弹性力学100题

一、单项选择题1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。

A .相容方程B .近似方法C .边界条件D .附加假定2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。

A .几何上等效B .静力上等效C .平衡D .任意3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。

A .平衡方程、几何方程、物理方程完全相同B .平衡方程、几何方程相同,物理方程不同C .平衡方程、物理方程相同,几何方程不同D .平衡方程相同,物理方程、几何方程不同4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A )①区域内的相容方程;②边界上的应力边界条件;③满足变分方程;④如果为多连体,考虑多连体中的位移单值条件。

A. ①②④B. ②③④C. ①②③D. ①②③④5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162② II 单元的整体编码为426③ II 单元的整体编码为246④ III 单元的整体编码为243⑤ IV 单元的整体编码为564图1A. ①③B. ②④C. ①④D. ③⑤ 6.平面应变问题的微元体处于( C )A.单向应力状态B.双向应力状态C.三向应力状态,且z 是一主应力D.纯剪切应力状态7.圆弧曲梁纯弯时,( C )A.应力分量和位移分量都是轴对称的 463521I III II IVB.应力分量和位移分量都不是轴对称的C.应力分量是轴对称的,位移分量不是轴对称的D.位移分量是轴对称的,应力分量不是轴对称的8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C )A.A 相同,B 也相同B.A 不相同,B 也不相同C.A 相同,B 不相同D.A 不相同,B 相同图 2 图 39、上右图3示单元体剪应变γ应该表示为( B )10、设有平面应力状态x ay dx dy cx by ax xy y x γτσσ---=+=+=,,,其中,d c b a ,,,均为常数,γ为容重。

弹性力学简明教程(第四版)第四章课后习题答案


qr 1 2 E

2rR R2 r 2
圆环厚度的改变为
qr 1 2 R r u R ur E R r 1

4-15:设有一刚体,具有半径为 R 的圆柱形孔道,孔道内放置外半径为 R 而内 半径为 r 的圆筒,圆筒受内压力为 q,试求圆筒的应为。 解:本题为轴对称问题,故环向位移 件,有 (1)应力分量 引用轴对称应力解答,教材中式(4-11)。 A 2 B(1 2 ln ) 2C ,另外还要考虑位移的单值条
u 1 A [ (1 ) 2 B (1 ) (ln 1) B (1 3 ) 2C (1 ) ] I cos K sin , E 4 B 4 B u f ( ) d f1 ( ) H I sin K cos E E
qr 2 R2 u (1 1 ) (1 1 ) E 2 2 1 2 R r qr 2 1 2 2 2 (1 1 ) (1 1 ) R 2 2 E R r (1 q

1 1 2 E R 1 2 2 1 r
) 2 (1

)R2
此时内径改变为
(1 ur q


qr 1 2 (1 ) r 2 (1 ) R 2 E
1 1 2 Er R 1 2 2 1 r


r r
0, q,


R
0;
R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档