江苏省扬州市翠岗2018届中考第二次模拟考试数学试题及答案(Word版)

合集下载

扬州市中考数学试题及答案(word版)

扬州市中考数学试题及答案(word版)

扬州市2018年初中毕业、升学统一考试数学试卷一、选择题 1.-2的倒数是 A .-21 B .21 C .-2 D .22.下列运算中,结果是a 6的是A .a 2·a 3B .a 12÷a 2C .(a 3)3D .(一a)63.下列说法正确的是A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛两次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚均匀的正方体般子,朝上的点数是2的概率61”,表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在61附近4.某几何体的三视图如图所示,则这个几何体是A .三棱柱B .圆柱C .正方体D .三棱锥 5.下列图形中,由AB ∥CD 能得到∠1=∠2的是6.一个多边形的每个内角均为108º,则这个多边形是 A .七边形 B .六边形 C .五边形 D .四边形7.如图,在菱形ABCD 中,∠BAD=80º,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于 A .50º B .60º C .70º D .80º8.方程x 2+3x -1=0的根可视为函数y =x +3的图象与函数y =x 1的图象交点的横坐标,则方程x 3+2x -1=0的实根x 0所在的范围是 A .0<x<41 B .41<x<31 C .31<x<21D .21<x 0<1二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上........) 9.据了解,截止2018年5月8日,扬泰机场开通一年,客流量累计达到450000人次.数据450000用科学记数法可表示为▲. 10.因式分解:a 3一4ab 2=▲.11.在温度不变的条件下,一定质量的气体的压强p 与它的体积V 成反比例.当V=200时,p=50,则当p=25时,V=▲.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘.经过一段时间,等有标记的鱼完全混合于鱼中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有▲条鱼.13.在△ABC 中,AB=AC=5,sin ∠ABC =0.8,则BC =▲.14.如图,在梯形ABCD 中,AD ∥BC,AB=AD= CD, BC =12,∠ABC=60º,则梯形ABCD 的周长为▲.15.如图,在扇形OAB 中,∠AOB =110º,半径OA =18,将扇形OA 沿过点B 的直线折叠,点O 恰好落在⌒AB 上的点D 处,折痕交OA 于点C ,则⌒AD 的长为▲. 16.已知关子x 的方程123++x nx =2的解是负数,则n 的取值范围为▲.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为▲. 18.如图,已知⊙O 的直径AB =6,E 、F 为AB 的三等分点,从M 、N为⌒AB 上两点,且∠MEB =∠NFB= 60º,则EM +FN =▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:(21)2-一2sin60º+12;(2)先化简,再求值:(x +l)(2x -1)一(x -3)2,其中x =一2.20.(本题满分8分)已知关于x 、y 的方程组⎩⎨⎧-=-+=+81232181125a y x a y x的解满足x >0, y >0,求实数a 的取值范围.21.(本题满分8分)端午节期间,扬州一某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”和“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元,就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券.某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得▲元购物券,最多可得▲元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.(本题满分8知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是▲组的学生;(填“甲”或(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.(本题满分10分)如图,在△ABC中,∠ACB= 90º,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90ºCE至“位置,连接AE.(1) 求证:AB⊥AE;(2)若BC 2=AD ·AB ,求证:四边形ADCE 为正方形.24.(本题满分10分)某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.(本题满分10分)如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC .(1)求证:AB =AC ; (2)若AD =4, cos ∠ABF =54,求DE 的长.26.(本题满分10分)如图,抛物线y =x 2-2x -8交y 轴于点A ,交xC轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB和抛物线截得两线段MN、PQ.设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.(本题满分12分)如图1,在梯形ABCD中,AB∥CD,∠B=90º,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段..CD上,求m的取值范围.(3)如图2,若m =4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG= 90º,求BP 长.28.(本题满分12分)如果10b=n ,那么称b 为n 的劳格数,记为b =d(n),由定义可知:10b=n 与b =d (n)所表示的是b 、n 两个量之间的同一关系.29. (1)根据劳格数的定义,填空:d(10)=▲ ,d(102)=▲ ;(2)劳格数有如下运算性质:若m 、,n 为正数,则d(mn) =d(m)+d(n),d(n)=d(m )一d(n). 根据运算性质,填空)()(3a d a d =▲(a 为正数),若d(2) =0.3010,则d(4) =▲,d(5)=▲,d(0. 08) =▲;(3)下表中与数x对应的劳格数 d (x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.扬州市2018年初中毕业、升学统一考试数学试卷答案 一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.4.5×10510.a (a 十2b) (a 一2b) 11.400 12.1200 13.6 14.30 15.5π 16.n <2且n ≠23 17.6 18.33三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.解:(1)原式=4一3+23,………………………………………… 3分 =4+3. …………………………………………………………4分(2)原式=x 2+7x一10 …………………………………………… 3分 ∴当x =一2时,原式=一20. …………………………………4分20.解:解方程组得⎩⎨⎧-=+=a y a x 2423(每个解2分) (4)分 由题意得⎩⎨⎧-+0 24023a a…………………………………………5分解不等式组得一32<a <2(解一个不等式1分)…………………………7分∴a 的取值范围为一32<a <2 …………………………………………8分21.解:(1) 20 , 80 ;………………………………………………………… 2分次 >>………………………………………………………………………………………6分 ∴P(不低于50元)=1610=85.………………………………………………… 8分22.(1) 7.1 , 6 (每空2分)………………………………………………4分 (2) 甲 ……………………………………………………………………6分(3)乙组的平均分高于甲组;乙组成绩的方差低于甲组,乙组成绩的稳定性好于甲组.(答案不唯一只要合理即可)……………………………………………………8分23. (1)证明:∵∠BCA =∠DCE =90º,∴∠BCD =∠ACE∵CB =CA ,CD =CE ,∴△BCD ≌△ACE ,∴∠CAE =∠CBD ……3分 ∵AC =BC ,∠ACB =90º,∴∠ABC =∠BAC=45º,∴∠CAE=45º ∴∠BAE =90º,∴ AB ⊥AE ……………………………………… 5分(2)证明:∵BC2=AD ·AB ,BC =AC ,∴ AC2=AD ·AB ,∴ADAC =ACAB∴∠CAD =∠BAC ,∴△CAD ≌△BAC ,∴∠ADC =∠ACB=90º………………………………………………8分∴∠DCE =∠DAE =90º,∴四边形ADCE 是矩形 ………………9分∵CD =CE ,∴四边形ADCE 是正方形 …………………………10分24.解法一:设九(1)班有x 人,则九((2)班人数为((x -8)人,由题意,得x1200(1+20%)=81200-x ………………………………………………4分解得x =48 ………………………………………………………………7分 经检验,x=48是原程的解. ………………………………………… 8分 所以x -8=40.481200=25(元),401200=30(元) (9)分答:九((1)班人均捐款为25元,九(2)班人均捐款为30元.……10分 解法二:设九(1)班人均捐款y 元,则九(2)班人均捐款(1十20%)y 元, 由题意,y1200-8=y %)201(1200+ (4)分解得y =25 ……………………………………………………………… 7分 经检验,y=25是原程的解. ……………………………………………8分 当y =25时,(1+20%)y =30(元) ……………………………………9分 答:九(1)班人均捐款为25元,九(2)班人均捐款为30元. …… 10分25. (1)证明:连接BD ,由AD ⊥AB 可知BD 必过点O∴BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB …………3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB又∠ACB =∠ADB ,∴∠ABC ==∠ACB ,∴AB =AC ………………5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BDAD,∴BD =ADBAD ∠cos =ABFAD ∠cos =544=5 ……6分∴AB =3 ……………………………………………………………………7分 在Rt △ABE 中,∠BAE=90ºCos ∠ABE =BEAB ,∴BE =ABEAB ∠cos =543=415∴AE =223)415( =49 (9)分∴DE =AD -AE =4-49=47…………………………………………… 10分26.解:(1)点A 坐标((0,一8),点B 坐标(4,0)………………………………2分设直线AB 函数解读式为y =kx +b ,将A 、B 点坐标代人得k =2,b =一8 所以直线AB 的解读式为y =2x -8…………………………………………5分(2)由题意知M 点坐标为(m ,2m -8) ,N 点坐标为(m ,m2-2m -8),且0<m <3 所以MN =(2m -8)一(m 2-2m -8) =-m2+4m ……………………6分同理可得PQ =-(m +1)2十4(m +1) =-m2十2m +3 ………………7分①当PQ >MN 时,-m2十2m +3>-m 2+4m ,解得m <23∴0<m <23时,PQ >MN ………………………………………………8分②当PQ =MN 时,-m 2十2m +3=-m 2+4m ,解得m =23∴m =23时,PQ =MN ; (9)分③当PQ <MN 时,-m2十2m +3<-m2+4m ,解得m >23∴当23<m <3 时PQ <MN .…………………………………………10分注:写m 的取值范围时未考虑0<m <3条件的统一扣1分.27.解:(1) ∵AB ∥CD ,∠B.=90º,∴∠B =∠C =90º,∴∠APB +∠BAP =90º∵PE ⊥PA ,∴∠APE =90º,∴∠APB +∠CPE =90º,∴∠BAP =∠CPE 在△ABP 和△PCE 中,∠B =∠C =90º,∠BAP =∠CPE ,∴△ABP ∽△PCE …………………………………………………………2分∴PCAB =CEBP,∵BC =m ,BP =x ,∴PC =m 一x∴xm 2=yx ,∴y =21x2+2m x ……………………………………4分∴y 与x 的函数关系式为y =21x 2+2m x ,x 的取值范围为。

【真题】2018年江苏省扬州市中考数学试卷含答案解析Word版.docx

【真题】2018年江苏省扬州市中考数学试卷含答案解析Word版.docx

2018 年中考试题2018 年江苏省扬州市中考数学试卷一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣ 5 的倒数是()A.﹣B.C.5 D.﹣ 52.(3分)使有意义的 x 的取值范围是()A.x>3B.x<3 C. x≥ 3D.x≠33.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3 分)下列说法正确的是()A.一组数据 2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是131 分D.某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是5℃5.(3 分)已知点A(x1, 3),B(x2, 6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x 1<x2<0B.x1< 0< x2. 2<x1<0D.x2<0<x1C x6.(3 分)在平面直角坐标系的第二象限内有一点M,点 M 到 x 轴的距离为 3,到 y 轴的距离为 4,则点 M 的坐标是()A.(3,﹣ 4) B.(4,﹣ 3)C.(﹣ 4, 3)D.(﹣ 3,4)2018 年中考试题7.(3 分)在 Rt△ ABC中,∠ ACB=90°,CD⊥ AB 于 D,CE平分∠ ACD交 AB 于 E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.(3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt△ABC和等腰 Rt△ADE,CD与 BE、AE 分别交于点 P, M.对于下列结论:①△ BAE∽△ CAD;② MP?MD=MA?ME;③ 2CB2=CP?CM.其中正确的是()A.①②③B.①C.①②D.②③二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)在人体血液中,红细胞直径约为0.00077cm,数据 0.00077 用科学记数法表示为.10.( 3 分)因式分解: 18﹣2x2=.11.( 3 分)有 4 根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选 3 根,恰好能搭成一个三角形的概率是.(.分)若m 是方程2﹣ 3x﹣1=0 的一个根,则 6m2﹣9m+2015 的值为.12 32x13.( 3 分)用半径为 10cm,圆心角为 120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.14.( 3 分)不等式组的解集为.15.( 3 分)如图,已知⊙ O 的半径为2,△ ABC 内接于⊙ O,∠ ACB=135°,则AB=.2018 年中考试题16.( 3 分)关于 x 的方程 mx2﹣ 2x+3=0 有两个不相等的实数根,那么m 的取值范围是.17.( 3 分)如图,四边形OABC是矩形,点 A 的坐标为( 8,0),点 C 的坐标为( 0,4),把矩形 OABC沿 OB 折叠,点 C 落在点 D 处,则点 D 的坐标为.18.( 3 分)如图,在等腰 Rt△ ABO,∠A=90°,点 B 的坐标为( 0,2),若直线 l:y=mx+m(m≠0)把△ ABO分成面积相等的两部分,则m 的值为.三、解答题(本大题共有10 小题,共 96 分 .请在答题卡指定区域内作答,解答应写出文字说明、证明过程或演算步骤)19.( 8 分)计算或化简( 1)()﹣1+||+ tan60 °(2)(2x+3)2﹣( 2x+3)( 2x﹣3)20.( 8 分)对于任意实数 a,b,定义关于“?”的一种运算如下: a?b=2a+b.例如3?4=2×3+4=10.2018 年中考试题(1)求 2?(﹣ 5)的值;(2)若 x?(﹣ y)=2,且 2y?x=﹣ 1,求 x+y 的值.21.( 8 分)江苏省第十九届运动会将于 2018 年 9 月在扬州举行开幕式,某校为了了解学生“最喜爱的省运动会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表最喜爱的项目人数篮球20羽毛球9自行车10游泳a其他b合计根据以上信息,请回答下列问题:( 1)这次调查的样本容量是,a+b.( 2)扇形统计图中“自行车”对应的扇形的圆心角为.( 3)若该校有 1200 名学生,估计该校最喜爱的省运会项目是篮球的学生人数.22.( 8 分) 4 张相同的卡片分别写着数字﹣1、﹣ 3、 4、 6,将卡片的背面朝上,并洗匀.( 1)从中任意抽取1张,抽到的数字是奇数的概率是;( 2)从中任意抽取1张,并将所取卡片上的数字记作一次函数y=kx+b 中的 k;再从余下的卡片中任意抽取 1 张,并将所取卡片上的数字记作一次函数y=kx+b 中的 b.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四2018 年中考试题象限的概率.23.(10 分)京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一.如果从北京到上海的客车速度是货车速度的2倍,客车比货车少用6h,那么货车的速度是多少?(精确到0.1km/h )24.( 10 分)如图,在平行四边形 ABCD中, DB=DA,点 F 是 AB 的中点,连接DF并延长,交 CB的延长线于点 E,连接 AE.(1)求证:四边形 AEBD是菱形;(2)若 DC= ,tan∠DCB=3,求菱形 AEBD的面积.25.( 10 分)如图,在△ ABC中, AB=AC, AO⊥ BC于点 O, OE⊥AB 于点 E,以点O 为圆心, OE 为半径作半圆,交 AO 于点F.( 1)求证: AC是⊙ O 的切线;( 2)若点 F 是 A 的中点, OE=3,求图中阴影部分的面积;( 3)在( 2)的条件下,点 P 是 BC边上的动点,当 PE+PF 取最小值时,直接写出 BP 的长.26.( 10 分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30 元/ 件,每天销售 y(件)与销售单价 x(元)之间存在一次函数关系,如图所示.( 1)求 y 与 x 之间的函数关系式;( 2)如果规定每天漆器笔筒的销售量不低于 240 件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?( 3)该网店店主热心公益事业,决定从每天的销售利润中捐出150 元给希望工程,为了保证捐款后每天剩余利润不低于3600 元,试确定该漆器笔筒销售单价的范围.27.( 12 分)问题呈现如图 1,在边长为 1 的正方形网格中,连接格点D,N 和 E, C,DN 和 EC相交于点P,求 tan∠ CPN的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠ CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M , N,可得 MN ∥EC,则∠ DNM=∠CPN,连接 DM,那么∠ CPN就变换到 Rt△DMN 中.问题解决( 1)直接写出图 1 中 tan∠CPN的值为;( 2)如图 2,在边长为 1 的正方形网格中, AN 与 CM 相交于点 P,求 cos∠CPN 的值;思维拓展(3)如图 3, AB⊥BC,AB=4BC,点 M 在 AB 上,且 AM=BC,延长 CB到 N,使BN=2BC,连接 AN 交 CM 的延长线于点 P,用上述方法构造网格求∠CPN的度数.28.( 12 分)如图 1,四边形 OABC是矩形,点 A 的坐标为( 3,0),点 C 的坐标为( 0,6),点 P 从点 O 出发,沿 OA 以每秒 1 个单位长度的速度向点 A 出发,同时点 Q 从点 A 出发,沿 AB 以每秒 2 个单位长度的速度向点 B 运动,当点 P 与点A 重合时运动停止.设运动时间为 t 秒.( 1)当 t=2 时,线段 PQ 的中点坐标为;(2)当△ CBQ与△ PAQ相似时,求 t 的值;(3)当 t=1 时,抛物线 y=x2+bx+c 经过 P,Q 两点,与 y 轴交于点 M ,抛物线的顶点为 K,如图 2 所示,问该抛物线上是否存在点 D,使∠ MQD= ∠MKQ?若存在,求出所有满足条件的 D 的坐标;若不存在,说明理由.2018 年江苏省扬州市中考数学试卷参考答案与试题解析一、选择题(本大题共有8 小题,每小题 3 分,共 24 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3 分)﹣ 5 的倒数是()A.﹣B.C.5D.﹣ 5【分析】依据倒数的定义求解即可.【解答】解:﹣ 5 的倒数﹣.故选: A.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.(3 分)使有意义的x的取值范围是()A.x>3B.x<3 C. x≥ 3D.x≠3【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣3≥0,解得 x≥3,故选: C.【点评】本题考查了二次根式有意义的条件,利用得出不等式是解题关键.3.(3 分)如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选: B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3 分)下列说法正确的是()A.一组数据 2,2,3,4,这组数据的中位数是2B.了解一批灯泡的使用寿命的情况,适合抽样调查C.小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是131 分D.某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是5℃【分析】直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.【解答】解: A、一组数据 2,2,3,4,这组数据的中位数是 2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126 分,130 分,136 分,则小明这三次成绩的平均数是 130分,故此选项错误;D、某日最高气温是7℃,最低气温是﹣ 2℃,则改日气温的极差是7﹣(﹣ 2)=9℃,故此选项错误;故选: B.【点评】此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.2018 年中考试题5.(3 分)已知点A(x1, 3),B(x2, 6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1< x2<0 B.x1< 0< x2C. x2<x1<0D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内, y 随 x 的增大而增大,∵3< 6,∴x1<x2<0,故选: A.【点评】本题考查了反比例函数,利用反比例函数的性质是解题关键.6.(3 分)在平面直角坐标系的第二象限内有一点M,点 M 到 x 轴的距离为 3,到 y 轴的距离为 4,则点 M 的坐标是()A.(3,﹣ 4)B.(4,﹣ 3)C.(﹣ 4, 3)D.(﹣ 3,4)【分析】根据地二象限内点的坐标特征,可得答案.【解答】解:由题意,得x=﹣ 4, y=3,即M 点的坐标是(﹣4,3),故选: C.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.7.(3 分)在 Rt△ ABC中,∠ ACB=90°,CD⊥ AB 于 D,CE平分∠ ACD交 AB 于 E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠ A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠ BEC=∠A+∠ ACE、∠ BCE=∠BCD+∠ DCE即可得出∠ BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ ACB=90°, CD⊥AB,∴∠ ACD+∠BCD=90°,∠ ACD+∠ A=90°,∴∠ BCD=∠A.∵CE平分∠ ACD,∴∠ ACE=∠DCE.又∵∠ BEC=∠A+∠ACE,∠ BCE=∠BCD+∠DCE,∴∠ BEC=∠BCE,∴BC=BE.故选: C.【点评】本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠ BEC=∠BCE是解题的关键.8.(3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰 Rt△ABC和等腰 Rt△ADE,CD与 BE、AE 分别交于点 P, M.对于下列结论:①△ BAE∽△ CAD;② MP?MD=MA?ME;③ 2CB2=CP?CM.其中正确的是()A.①②③B.①C.①②D.②③【分析】(1)由等腰 Rt△ABC和等腰 Rt△ADE三边份数关系可证;( 2)通过等积式倒推可知,证明△PAM∽△ EMD 即可;2( 3) 2CB 转化为 AC2,证明△ ACP∽△ MCA,问题可证.【解答】解:由已知: AC= AB,AD=AE∴∵∠ BAC=∠EAD∴∠ BAE=∠CAD∴△ BAE∽△ CAD所以①正确∵△ BAE∽△ CAD∴∠ BEA=∠CDA∵∠ PME=∠AMD∴△ PME∽△ AMD∴∴MP?MD=MA?ME所以②正确∵∠ BEA=∠CDA∠PME=∠AMD∴P、 E、 D、 A 四点共圆∴∠ APD=∠EAD=90°∵∠ CAE=180°﹣∠ BAC﹣∠ EAD=90°∴△ CAP∽△ CMA2∴ AC=CP?CM∵AC= AB2∴ 2CB=CP?CM所以③正确故选: A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题(本大题共有10 小题,每小题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3 分)在人体血液中,红细胞直径约为 0.00077cm,数据 0.00077 用科学记数法表示为 7.7×10﹣4.【分析】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a× 10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.﹣4故答案为:﹣ 4 7.7× 10 .【点评】本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤| a| <10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.210.( 3 分)因式分解: 18﹣2x = 2(x+3)(3﹣x).【解答】解:原式 =2(9﹣x2) =2(x+3)(3﹣x),故答案为: 2(x+3)( 3﹣ x)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.( 3 分)有 4 根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选 3 根,恰好能搭成一个三角形的概率是.【分析】根据题意,使用列举法可得从有 4 根细木棒中任取 3 根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【解答】解:根据题意,从有4 根细木棒中任取3 根,有2、3、4;3、4、5;2、3、5;2、4、5,共 4 种取法,而能搭成一个三角形的有 2、3、4;3、4、5;2,4,5, 3 种;故其概率为:.【点评】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率 =所求情况数与总情况数之比.12.( 3 分)若 m 是方程2x2﹣3x﹣1=0 的一个根,则6m2﹣9m+2015 的值为2018.【分析】根据一元二次方程的解的定义即可求出答案.【解答】解:由题意可知: 2m2﹣3m﹣ 1=0,∴2m2﹣3m=1∴原式 =3(2m2﹣3m)+2015=2018【点评】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13.( 3 分)用半径为 10cm,圆心角为 120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2π r=,解得 r= cm.故选:.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化: 1、圆锥的母线长为扇形的半径, 2、圆锥的底面圆周长为扇形的弧长.14.( 3 分)不等式组的解集为﹣3<x≤.【分析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.【解答】解:解不等式 3x+1≥ 5x,得: x≤,解不等式>﹣ 2,得: x>﹣ 3,则不等式组的解集为﹣ 3<x≤,故答案为:﹣ 3<x≤.【点评】此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3 分)如图,已知⊙ O 的半径为 2,△ABC内接于⊙ O,∠ACB=135°,则 AB= 2.【分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠ AOB的度数,然后根据勾股定理即可求得 AB 的长.【解答】解:连接 AD、AE、 OA、 OB,∵⊙ O 的半径为 2,△ ABC内接于⊙ O,∠ ACB=135°,∴∠ ADB=45°,∴∠ AOB=90°,∵OA=OB=2,∴ AB=2 ,故答案为: 2 .【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.( 3 分)关于 x 的方程 mx2﹣ 2x+3=0 有两个不相等的实数根,那么m 的取值范围是m<且m≠0.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=4﹣ 12m>0 且m≠ 0,求出 m 的取值范围即可.【解答】解:∵一元二次方程mx2﹣2x+3=0 有两个不相等的实数根,∴4﹣ 12m>0 且 m≠0,。

(2021年整理)13江苏省扬州市2018年中考数学试题(Word版,含答案)

(2021年整理)13江苏省扬州市2018年中考数学试题(Word版,含答案)

(完整版)13江苏省扬州市2018年中考数学试题(Word版,含答案) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)13江苏省扬州市2018年中考数学试题(Word版,含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)13江苏省扬州市2018年中考数学试题(Word版,含答案)的全部内容。

(完整版)13江苏省扬州市2018年中考数学试题(Word版,含答案)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望 (完整版)13江苏省扬州市2018年中考数学试题(Word版,含答案) 这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)13江苏省扬州市2018年中考数学试题(Word 版,含答案)〉这篇文档的全部内容.江苏省扬州市2018年中考数学试题一、选择题:1.5-的倒数是( )A .51- B .51C .5D .5-2.使3-x 有意义的x 的取值范围是( )A .3>xB .3<xC .3≥xD .3≠x 3.如图所示的几何体的主视图是( )A .B .C .D . 4.下列说法正确的是( )A .一组数据2,2,3,4,这组数据的中位数是2B .了解一批灯泡的使用寿命的情况,适合抽样调查C .小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D .某日最高气温是7C ,最低气温是2C -,则该日气温的极差是5C5.已知点1(,3)A x 、2(,6)B x 都在反比例函数3y x=-的图象上,则下列关系式一定正确的是( )A .120x x << B .120x x << C .210x x << D .210x x << 6。

江苏省扬州市2018年中考数学试题(解析版)

江苏省扬州市2018年中考数学试题(解析版)

江苏省扬州市2018年中考数学试题一、选择题:1. 的倒数是()A. B. C. 5 D.【答案】A【解析】分析:根据倒数的定义进行解答即可.详解:∵(-5)×(-)=1,∴-5的倒数是-.故选A.点睛:本题考查的是倒数的定义,即乘积是1的两数互为倒数.2. 使有意义的的取值范围是()A. B. C. D.【答案】C【解析】分析:根据被开方数是非负数,可得答案.详解:由题意,得x-3≥0,解得x≥3,故选C.学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...3. 如图所示的几何体的主视图是()A. B. C. D.【答案】B【解析】根据主视图的定义,几何体的主视图由三层小正方形组成,下层有三个小正方形,二三层各有一个小正方形,故选B.4. 下列说法正确的是()A. 一组数据2,2,3,4,这组数据的中位数是2B. 了解一批灯泡的使用寿命的情况,适合抽样调查C. 小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是131分D. 某日最高气温是,最低气温是,则该日气温的极差是【答案】B【解析】分析:直接利用中位数的定义以及抽样调查的意义和平均数的求法、极差的定义分别分析得出答案.详解:A、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项错误;B、了解一批灯泡的使用寿命的情况,适合抽样调查,正确;C、小明的三次数学成绩是126分,130分,136分,则小明这三次成绩的平均数是130分,故此选项错误;D、某日最高气温是7℃,最低气温是-2℃,则改日气温的极差是7-(-2)=9℃,故此选项错误;故选B.点睛:此题主要考查了中位数、抽样调查的意义和平均数的求法、极差,正确把握相关定义是解题关键.5. 已知点、都在反比例函数的图象上,则下列关系式一定正确的是()A. B. C. D.【答案】A【解析】分析:根据反比例函数的性质,可得答案.详解:由题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选A.点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键.6. 在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是()A. B. C. D.【答案】C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M点的坐标是(-4,3),故选C.点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.7. 在中,,于,平分交于,则下列结论一定成立的是()A. B. C. D.【答案】C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.8. 如图,点在线段上,在的同侧作等腰和等腰,与、分别交于点、.对于下列结论:①;②;③.其中正确的是()A. ①②③B. ①C. ①②D. ②③【答案】A【解析】分析:(1)由等腰Rt△ABC和等腰Rt△ADE三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2转化为AC2,证明△ACP∽△MCA,问题可证.详解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°-∠BAC-∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选A.点睛:本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.二、填空题9. 在人体血液中,红细胞直径约为,数据0.00077用科学记数法表示为__________.【答案】【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-4,故答案为:7.7×10-4.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 因式分解:__________.【答案】【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11. 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】【解析】分析:根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.详解:根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,二种;故其概率为:.点睛:本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12. 若是方程的一个根,则的值为__________.【答案】2018【解析】分析:根据一元二次方程的解的定义即可求出答案.详解:由题意可知:2m2-3m-1=0,∴2m2-3m=1∴原式=3(2m2-3m)+2015=2018故答案为:2018点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.13. 用半径为,圆心角为的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为__________.【答案】【解析】分析:圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.详解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故答案为:.点睛:本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.14. 不等式组的解集为__________.【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15. 如图,已知的半径为2,内接于,,则__________.【答案】【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16. 关于的方程有两个不相等的实数根,那么的取值范围是__________.【答案】且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>0且m≠0,求出m 的取值范围即可.详解:∵一元二次方程mx2-2x+3=0有两个不相等的实数根,∴△>0且m≠0,∴4-12m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.17. 如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为__________.【答案】【解析】分析:由折叠的性质得到一对角相等,再由矩形对边平行得到一对内错角相等,等量代换及等角对等边得到BE=OE,利用AAS得到三角形OED与三角形BEA全等,由全等三角形对应边相等得到DE=AE,过D作DF垂直于OE,利用勾股定理及面积法求出DF与OF的长,即可确定出D坐标.详解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8-x,在Rt△ODE中,根据勾股定理得:42+(8-x)2=x2,解得:x=5,即OE=5,DE=3,过D作DF⊥OA,∵S△OED=OD•DE=OE•DF,∴DF=,OF=,则D(,-).故答案为:(,-).点睛:此题考查了翻折变化(折叠问题),坐标与图形变换,以及矩形的性质,熟练掌握折叠的性质是解本题的关键.18. 如图,在等腰中,,点的坐标为,若直线:把分成面积相等的两部分,则的值为__________.【答案】【解析】分析:根据题意作出合适的辅助线,然后根据题意即可列出相应的方程,从而可以求得m 的值.详解:∵y=mx+m=m(x+1),∴函数y=mx+m一定过点(-1,0),当x=0时,y=m,∴点C的坐标为(0,m),由题意可得,直线AB的解析式为y=-x+2,,得,∵直线l:y=mx+m(m≠0)把△ABO分成面积相等的两部分,∴,解得,m=或m=(舍去),故答案为:.点睛:本题考查一次函数图象上点的坐标特征、等腰直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题19. 计算或化简.(1);(2).【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.20. 对于任意实数、,定义关于“”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1);(2).【解析】分析:(1)根据新定义型运算法则即可求出答案.(2)列出方程组即可求出答案详解:(1)(2)由题意得∴.点睛:本题考查新定义型运算,解题的关键是正确利用运算法则,本题属于基础题型.21. 江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.最喜爱的省运会项目的人数调查统计表根据以上信息,请回答下列问题:(1)这次调查的样本容量是,;(2)扇形统计图中“自行车”对应的扇形的圆心角为度;(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.【答案】(1)50人,;(2);(3)该校最喜爱的省运动会项目是篮球的学生人数为480人.【解析】分析:(1)依据9÷18%,即可得到样本容量,进而得到a+b的值;(2)利用圆心角计算公式,即可得到“自行车”对应的扇形的圆心角;(3)依据最喜爱的省运会项目是篮球的学生所占的比例,即可估计该校最喜爱的省运会项目是篮球的学生人数.详解:(1)样本容量是9÷18%=50,a+b=50-20-9-10=11,故答案为:50,11;(2)“自行车”对应的扇形的圆心角=×360°=72°,故答案为:72°;(3)该校最喜爱的省运会项目是篮球的学生人数为:1200×=480(人).点睛:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22. 4张相同的卡片上分别写有数字-1、-3、4、6,将卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字是奇数的概率是;(2)从中任意抽取1张,并将所取卡片上的数字记作一次函数中的;再从余下的卡片中任意抽取1张,并将所取卡片上的数字记作一次函数中的.利用画树状图或列表的方法,求这个一次函数的图象经过第一、二、四象限的概率.【答案】(1);(2).【解析】解:(1)总共有四个,奇数有两个,所以概率就是(2)根据题意得:一次函数图形过第一、二、四象限,则∴图象经过第一、二、四象限的概率是.分析:(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次获胜的性质,找出k<0,b>0的结果数,然后根据概率公式求解.详解:(1)从中任意抽取1张,抽到的数字是奇数的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中k<0,b>0有4种结果,所以这个一次函数的图象经过第一、二、四象限的概率=.点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了一次函数的性质.【答案】货车的速度是千米/小时.【解析】分析:设货车的速度是x千米/小时,则客车的速度是2x千米/小时,根据时间=路程÷速度结合客车比货车少用6小时,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设货车的速度为由题意得经检验是该方程的解答:货车的速度是千米/小时.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24. 如图,在平行四边形中,,点是的中点,连接并延长,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求菱形的面积.【答案】(1)证明见解析;(2).【解析】分析:(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;(2)解直角三角形求出EF的长即可解决问题;详解:(1)∵四边形是平行四边形∴,∴∵是的中点,∴∴在与中,∵,∴四边形是平行四边形∵,∴四边形是菱形(2)∵四边形是菱形,∴,∴∵∴∴∵,∴,∴.点睛:本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25. 如图,在中,,于点,于点,以点为圆心,为半径作半圆,交于点.(1)求证:是的切线;(2)若点是的中点,,求图中阴影部分的面积;(3)在(2)的条件下,点是边上的动点,当取最小值时,直接写出的长.【答案】(1)证明见解析;(2);(3).【解析】分析:(1)过作垂线,垂足为,证明OM=OE即可;(2)根据“S△AEO-S扇形EOF=S阴影”进行计算即可;(3)作关于的对称点,交于,连接交于,此时最小.通过证明∽即可求解详解:(1)过作垂线,垂足为∵,∴平分∵∴∵为⊙的半径,∴为⊙的半径,∴是⊙的切线(2)∵且是的中点∴,,∴∵∴即,∴(3)作关于的对称点,交于,连接交于此时最小由(2)知,,∴∵∴,,∵,∴∽∴即∵,∴即,∴.点睛:本题是圆的综合题,主要考查了圆的切线的判定,不规则图形的面积计算以及最短路径问题.找出点E的对称点G是解决一题的关键.26. “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】分析:(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.详解:(1)由题意得:.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.点睛:此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.27. 问题呈现如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.问题解决(1)直接写出图1中的值为_________;(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;思维拓展(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.【答案】(1)见解析;(2);(3)【解析】分析:(1)根据方法归纳,运用勾股定理分别求出MN和DM的值,即可求出的值;(2)仿(1)的思路作图,即可求解;(3)方法同(2)详解:(1)如图进行构造由勾股定理得:DM=,MN=,DN=∵()2+()2=()2∴D M2+MN2=DN2∴△DMN是直角三角形.∵MN∥EC∴∠CPN=∠DNM,∵tan∠DNM=,∴=2.(2)∵,∴∴(3),证明同(2).点睛:本题考查了非直角三角形中锐角三角函数值的求法.求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形是解题的关键.28. 如图1,四边形是矩形,点的坐标为,点的坐标为.点从点出发,沿以每秒1个单位长度的速度向点运动,同时点从点出发,沿以每秒2个单位长度的速度向点运动,当点与点重合时运动停止.设运动时间为秒.(1)当时,线段的中点坐标为________;(2)当与相似时,求的值;(3)当时,抛物线经过、两点,与轴交于点,抛物线的顶点为,如图2所示.问该抛物线上是否存在点,使,若存在,求出所有满足条件的点坐标;若不存在,说明理由.【答案】(1)的中点坐标是;(2)或;(3),.【解析】分析:(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,②当△PAQ∽△CBQ时,,分别列方程可得t的值;(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.详解:(1)如图1,∵点A的坐标为(3,0),∴OA=3,当t=2时,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴线段PQ的中点坐标为:(,),即(,2);故答案为:(,2);(2)如图1,∵四边形OABC是矩形,∴∠B=∠PAQ=90°∴当△CBQ与△PAQ相似时,存在两种情况:①当△PAQ∽△QBC时,,∴,4t2-15t+9=0,(t-3)(t-)=0,t1=3(舍),t2=,②当△PAQ∽△CBQ时,,∴,t2-9t+9=0,t=,∵0≤t≤6,>7,∴x=不符合题意,舍去,综上所述,当△CBQ与△PAQ相似时,t的值是或;(3)当t=1时,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线:y=x2-3x+2=(x-)2-,∴顶点k(,-),∵Q(3,2),M(0,2),∴MQ∥x轴,作抛物线对称轴,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如图2,∠MQD=∠MKQ=∠QKE,设DQ交y轴于H,∵∠HMQ=∠QEK=90°,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式为:y=-x+4,则,x2-3x+2=-x+4,解得:x1=3(舍),x2=-,∴D(-,);同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,由对称性得:H(0,0),易得OQ的解析式:y=x,则,x2-3x+2=x,解得:x1=3(舍),x2=,∴D(,);综上所述,点D的坐标为:D(-,)或(,).点睛:本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.。

江苏省扬州市2018届九年级数学第二次模拟考试试题

江苏省扬州市2018届九年级数学第二次模拟考试试题

2018年中考模拟考试数学试题(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。

一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1. 下列运算中不正确的是A.325a a a +=B. 523a a a =⋅ C 。

32a a a ÷= D 。

326()a a = 2.如图,数轴的单位长度为1,若点A ,B 表示的数的绝对值相等,则点A 表示的数是 A 。

4 B. 0C. -2 D 。

—4 3.下列根式中,能与8合并的二次根式是A .12B .18C .20D .27 4.如图是某几何体的三视图,该几何体是A .三棱柱B 。

长方体 C. 圆锥 D. 圆柱 5.如图A ,D 是⊙O 上两点,BC 是直径.若∠D =35︒,则∠OAB 的度数是 ( ▲ )A .70︒B .65︒C .55︒D .35︒.6.如图,在△ABC 中,∠CAB =55°,将△ABC 在平面内绕点A 逆时针旋转到△AB ′C′的位置,使CC ′∥AB ,则旋转角的度数至少为 A .15°B .55°C .60°D .70°7.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中正确的是研发组 管理组 操作组(第6题)C ′ B ′ACB(第4题)D O CBA(第5题)xA(第2题)日工资(元/人) 300 280 260 人数(人)345A .团队平均日工资增大B. 日工资的方差不变C. 日工资的中位数变小 D 。

日工资的众数变大 8.如图,在平面直角坐标系xOy 中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,4), 反比例函数ky x =的图象与菱形对角线AO 交于D 点,连接BD , 当BD ⊥x 轴时,k 的值是 A .350- B .225-C .12-D .425-二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.据统计,2018年扬州春节黄金周共接待游客约806 000人次,数据“806 000"用科学记数法可表示为 ▲ 。

扬州市2018年中考数学试题解答(完整资料).doc

扬州市2018年中考数学试题解答(完整资料).doc
是 的切线.
(2)若点 是 的中点, ,求图中阴影部分的面积;
易证,在 中∠EOA=60°.OA=6.
.
= .
阴影部分面积是 .
(3)在(2)的条件下,点 是 边上的动点,当 取最小值时,直接写出 的长.
补充 作EE⊙ BC交⊙O于E’.连接E’F交BC于P’
于是PE=PE’. PE+PF=PE’+PF,当P移动到P’位置时,其和最小.
24.如图,在平行四边形 中, ,点 是 的中点,连接 并延长,交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
证: ABCD是平行四边形, AD//EC,于是 .
又 DB=DA,F是AB中点 .
.
于是AB垂直平分DE,

(2)若 , ,求菱形 的面积.
取CD中点F并连接BF,则BF垂直平分CD.
A. B. C. D.
7.在 中, , 于 , 平分 交 于 ,则下列结论一定成立的是(C)
A. B. C. D.
8.如图,点 在线段 上,在 的同侧作等腰 和等腰 , 与 、 分别交于点 、 .对于下列结论:
① ;② ;③ .其中正确的是(A)
A.①②③B.① C.①② D.②③
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
解:
=2
=-1
(2)若 ,且 ,求 的值.
解:根据题意得方程组:
相加得3x+3y=1
x+y=
21.江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.

2018年江苏省扬州市中考数学试卷(含答案)

江苏省扬州市2018年中考数学试卷参考答案与试卷解读一、选择题<共8小题,每小题3分,满分24分))3.<3分)<2018•扬州)若反比例函数y=<k≠0)的图象经过点P<﹣2,3),则该函数的图象的点是< )b5E2RGbCAPy=x的值是都相切,则阴影部分的面积与下列各数最接近的是< )p1EanqFDPw,点M,N在边OB上,PM=PN,若MN=2,则OM=< )DXDiTa9E3d中,cos60°==,∴MD=ND=MN=1,8.<3分)<2018•扬州)如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2,则tan ∠MCN=< )RTCrpUDGiTA .B .C .D .﹣2 考点: 全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析: 连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥ON 于E ,则△MNA 是等边三角形求得MN=2,设NF=x ,表示出CF ,根据勾股定理即可求得MF ,然后求得tan ∠MCN .解答: 解:∵AB=AD=6,AM :MB=AN :ND=1:2,∴AM=AN=2,BM=DN=4,连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60°在Rt △ABC 与Rt △ADC 中,,∴Rt △ABC ≌Rt △ADC<LH )∴∠BAC=∠DAC=∠BAD=30°,MC=NC ,∴BC=AC ,∴AC2=BC2+AB2,即<2BC )2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt △BMC 中,CM===2.∵AN=AM ,∠MAN=60°,∴△MAN 是等边三角形,∴MN=AM=AN=2,CE=2x2=<2x=EC=2﹣==,MCN==9.<3分)<2018•扬州)据统计,参加今年扬州市初中毕业、升学统一考试的学,则它的<单元:cm)可以得出该长方体的体积是18 cm3.xHAQX74J0X考点:由三视图判断几何体.分析:首先确定该几何体为立方体,并说出其尺寸,直接计算其体积即可.解答:解:观察其视图知:该几何体为立方体,且立方体的长为3,宽为2,高为3,故其体积为:3×3×2=18,故答案为:18.点评:本题考查了由三视图判断几何体,牢记立方体的体积计算方法是解答本题的关键.制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280 人.LDAYtRyKfE考点:用样本估计总体;扇形统计图.分析:先求出步行的学生所占的百分比,再用学生总数乘以步行学生所占的百分比即可估计全校步行上学的学生人数.解答:解:∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生700人,则据此估计步行的有700×40%=280<人).故答案为:280.点评:本题考查了扇形统计图及用样本估计总数的知识,解题的关键是从统计图中得出步行上学学生所占的百分比.中的∠1= 67.5°.Zzz6ZB2Ltk考点:等腰梯形的性质;多边形内角与外角分首先求得正八边形的内角的度数,则∠1的度数是正八边形的则∠1=×135°=67.5°.DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为40 cm3.dvzfvkwMI1∴S△ABC=BC×AF=×10×8=40cm2.AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE= 50°.rqyn14ZNXI析:倍,然后利用三角形的内角和求得∠BOD+∠EOC,然后利用平角的性质求得即可.解答:解:∵∠A=65°,∴∠B+∠C=180°﹣65°=115°,∴∠BDO=∠DBO,∠OEC=∠OCE,∴∠BDO+∠DBO+∠OEC+∠OCE=2×115°=230°,∴∠BOD+∠EOC=2×180°﹣230°=130°,∴∠DOE=180°﹣130°=50°,故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.<1,0)且平行于y轴的直线,若点P<4,0)在该抛物线上,则4a﹣2b+c的值为0 .EmxvxOtOco考点:抛物线与x轴的交点分析:依据抛物线的对称性求得与x轴的另一个交点,代入解读式即可.解答:解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点<1,0),与x轴的一个交点是P<4,0),∴与x轴的另一个交点Q<﹣2,0),把<﹣2,0)代入解读式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.点评:本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.考点:因式分解的应用;一元二次方程的解;根与系数的关系专题:计算题.分根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即析:a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.解答:解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a<a+3)+b+3+3<a+3)﹣11a﹣b+5 =2a2﹣2a+17=2<a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为23.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.也考查了一元二次方程解的定义.的一列数,若a1+a2+…+a2018=69,<a1+1)2+<a2+1)2+…+<a2018+1)2=4001,考点:规律型:数字的变化类.分析:首先根据<a1+1)2+<a2+1)2+…+<a2018+1)2得到a12+a22+…+a20182+2152,然后设有x个1,y个﹣1,z个0,得到方程组,解方程组即可确定正确的答案.解答:解:<a1+1)2+<a2+1)2+…+<a2018+1)2=a12+a22+…+a20182+2<a1+a2+…+a2018)+2018 =a12+a22+…+a20182+2×69+2018=a12+a22+…+a20182+2152,设有x个1,y个﹣1,z个0∴,化简得x﹣y=69,x+y=1849解得x=959,y=890,z=165∴有959个1,890个﹣1,165个0,故答案为:165.点评:本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,难度较大.19.<8分)<2018•扬州)<1)计算:<3.14﹣π)0+<﹣)﹣2﹣2sin30°;<2)化简:﹣÷.考实数的运算;分式的混合运算;零指数幂;负整数指数幂;特式的减法法则计算即可得到结果.﹣•=﹣=.20.<8分)<2018•扬州)已知关于x的方程<k﹣1)x2﹣<k﹣1)x+=0有两个相x+)10<2)计算乙队的平均成绩和方差;分析:<1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;<2)先求出乙队的平均成绩,再根据方差公式进行计算;<3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.解答:解:<1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是<9+10)÷2=9.5<分),则中位数是9.5分;10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;<2)乙队的平均成绩是:<10×4+8×2+7+9×3)=9,则方差是:[4×<10﹣9)2+2×<8﹣9)2+<7﹣9)2+3×<9﹣9)2]=1;<3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.点评:本题考查方差、中位数和众数:中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<或最中间两个数的平均数),一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.M2ub6vSTnP <1)若他去买一瓶饮料,则他买到奶汁的概率是;<2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或考点:列表法与树状图法;概率公式分析:<1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;<2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.解答:解:<1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;故答案为:;∴他恰好买到雪碧和奶汁的概率为:=.ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.eUts8ZQVRd<1)判断线段DE、FG的位置关系,并说明理由;<2)连结CG,求证:四边形CBEG是正方形.∴∠BCG+∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原考点:分式方程的应用.分析:设原来每天制作x件,根据原来用的时间﹣现在用的时间=10,列出方程,求出x的值,再进行检验即可.解答:解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.点评:此题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键,本题的等量关系是原来用的时间﹣现在用的时间=10.D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.GMsIasNXkA<1)求证:DE∥BC;<2)若AF=CE,求线段BC的长度.。

2018年中考数学二模试卷含答案

2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。

扬州市中考数学试题及答案(word版)

扬州市 2018 年初中毕业、升学一致考试数学试卷一、选择题1.- 2 的倒数是A .-1 1C .- 2D .22B .26的是2.以下运算中,结果是 aA .a 2 · a 3B .a 12 ÷a 2C . (a 3 ) 3D .(一 a) 6 3.以下说法正确的选项是 A .“明日降雨的概率是 80%”表示明日有 80%的时间都在降雨 B .“抛一枚硬币正面向上的概率为1”表示每抛两次就有一次正面朝2上C .“彩票中奖的概率为1%”表示买 100 张彩票必定会中奖D .“抛一枚均匀的正方体般子,向上的点数是2 的概率1”,表示随26着投掷次数的增添,“抛出向上的点数是 ”这一事件发生的频次稳固 在1邻近64.某几何体的三视图以下图,则这个几何体是A .三棱柱B .圆柱C .正方体D .三棱锥 5.以下图形中,由 AB ∥ CD 能获得∠ 1=∠2 的是6.一个多边形的每个内角均为 108o ,则这个多边形是A .七边形B .六边形C .五边形D .四边形7.如图,在菱形 ABCD 中,∠ BAD=80 o , AB 的垂直均分线交对角线 AC于点 F ,垂足为 E ,连结 DF ,则∠ CDF 等于 A .50oB .60oC .70oD . 80o8.方程 x 2 +3x -1= 0 的根可视为函数 y =x + 3 的图象与函数 y =1x3的图象交点的横坐标,则方程x + 2x - 1=0 的实根 x 0 所在的范围是A . 0< x 0 < 1B . 1< x 0 <1C .14 433D .1<x 0 < 12< x 0 <12二、填空题 (本大题共有 10 小题,每题 3 分,共 30 分.不需写出解答过程,请把答案直接填写在答题卡相应地点上 )........ 9.据认识,截止 2018 年 5 月 8 日,扬泰机场开通一年,客流量累计达到 450000 人次.数据 450000 用科学记数法可表示为▲.3211.在温度不变的条件下,必定质量的气体的压强 p 与它的体积 V 成反比率.当 V=200 时, p=50,则当 p=25 时, V= ▲. 12.为了预计鱼塘中鱼的条数,养鱼者第一从鱼塘中打捞30 条鱼做上标记,而后放归鱼塘.经过一段时间,等有标志的鱼完整混淆于鱼中,再打捞 200 条鱼,发现此中带标志的鱼有 5 条,则鱼塘中预计有▲条鱼.13.在△ ABC 中, AB=AC=5 ,sin ∠ABC =,则 BC =▲.14.如图,在梯形 ABCD 中, AD ∥ BC,AB=AD= CD, BC =12,∠ ABC=60o ,则梯形 ABCD 的周长为▲.15.如图,在扇形 OAB 中,∠ AOB =110o ,半径OA =18,将扇形 OA⌒ 沿过点 B 的直线折叠,点O 恰巧落在 AB 上的点 D 处,折痕交 OA 于点⌒C ,则 AD 的长为▲.16.已知关子 x 的方程3xn= 2 的解是负数,则 n 的取值范围为▲.2x 117.矩形的两邻边长的差为2,对角线长为 4,则矩形的面积为▲.18.如图,已知⊙ O 的直径 AB = 6,E 、 F 为 AB 的三均分点,从M 、N⌒为 AB 上两点,且∠ MEB =∠ NFB= 60 o ,则 EM + FN =▲.三、解答题(本大题共有10 小题,共 96 分.请在答题卡指定地区 内作.......答,解答时应写出必需的文字说明、证明过程或演算步骤)19.(此题满分 8 分) (1)计算: (1) 2 一 2sin60o + 12 ;2,此中x=一2.(2)先化简,再求值:(x +l)(2x - 1)一 (x-3) 25x 2 y 11a18 20.(此题满分8 分)已知对于x、 y 的方程组2x 3 y 12a8的解知足x>0, y> 0,务实数 a 的取值范围.21.(此题满分8 分)端午节时期,扬州一某商场为了吸引顾客,展开有奖促销活动,建立了一个能够自由转动的转盘,转盘被分红 4 个面积相等的扇形,四个扇形地区里分别标有“10 元”、“ 20 元”、“ 30元”和“ 40 元”的字样(如图).规定:同一日内,顾客在本商场每花费满 100 元,就能够转转盘一次,商场依据转盘指针指向地区所标金额返还相应数额的购物券.某顾客当日花费240 元,转了两次转盘.(1)该顾客最少可得▲元购物券,最多可得▲元购物券;( 2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.40元10元30元20元22.(此题满分8 分)为支援扬州“运河申遗”,某校举办了一次运河知识比赛,满分10 分,学生得分均为整数,成绩达到 6 分以上(包括 6 分)为合格,达到 9 分以上(包含 9 分)为优异.此次比赛中甲、乙两组学生成绩散布的条形统计图以下图.(1)增补达成下边的成绩统计剖析表:(2)小明同学说:“此次比赛我得了7 分,在我们小组中排名属中游略偏上!”察看上表可知,小明是▲组的学生;(填“甲”或组别均匀分中位数方差合格率优异率甲组▲90%20%乙组▲80%10%“乙”)(3 )甲组同学说他们组的合格率、优异率均高于乙组,因此他们组的成绩好于乙组.但乙组同学不一样意甲组同学的说法,以为他们组的成绩要好于甲组.请你给出两条支持乙组同学看法的原因.23.(此题满分10 分)如图,在△ABC 中,∠ ACB= 90o, AC= BC ,点D 在边 AB 上,连结 CD,将线段 CD 绕点 C 顺时针旋转 90oCE 至“地点,连结 AE .(1)求证: AB ⊥AE;2(2)若 BC =AD ·AB ,求证:四边形ADCE 为正方形.ADEB C24.(此题满分10 分)某校九 (1)、九 (2)两班的班长沟通了为四川雅安地震灾区捐钱的状况:(Ⅰ)九( 1)班班长说:“我们班捐钱总数为1200 元,我们班人数比你们班多8 人.”(Ⅱ)九( 2)班班长说:“我们班捐钱总数也为1200 元,我们班人均捐钱比你们班人均捐钱多20%.”请依据两个班长的对话,求这两个班级每班的人均捐钱数.25.(此题满分 10 分)如图,△ ABC 内接于⊙ O,弦 AD ⊥ AB 交 BC 于点 E,过点 B 作⊙ O 的切线交 DA 的延伸线于点 F,且∠ ABF =∠ABC .(1)求证: AB = AC;4,(2)若 AD = 4, cos∠ABF =5求 DE 的长.26.(此题满分10 分)如图,抛物线y=x2-2x-8 交 y 轴于点 A ,交x轴正半轴于点B.(1)求直线 AB 对应的函数关系式;(2)有一宽度为 1 的直尺平行于 y 轴,在点 A 、 B 之间平行挪动,直尺两长边所在直线被直线 AB 和抛物线截得两线段 MN 、 PQ.设 M 点的横坐标为m,且 0 < m <3 .试比较线段MN与PQ的大小.27.(此题满分12 分)如图1,在梯形ABCD 中,AB ∥CD,∠B =90 o,AB = 2,CD=1, BC=m,P 为线段 BC 上的一动点,且和 B 、 C 不重合,连结 PA,过 P 作 PE⊥PA 交 CD 所在直线于 E.设 BP =x, CE= y.(1)求 y 与 x 的函数关系式;(2)若点 P 在线段BC 上运动时,点 E 总在线段CD 上,求m 的取..值范围.(3)如图 2,若 m= 4,将△ PEC 沿 PE 翻折至△ PEG 地点,∠ BAG= 90o,求 BP 长.28.(此题满分12 分)假如10 b=n,那么称b为n的劳格数,记为b=d(n),由定义可知:10 b=n与b=d (n)所表示的是b、n两个量之间的同一关系.229.(1) 依据劳格数的定义,填空: d(10)=▲ , d(10 ) =▲ ;(2)劳格数有以下运算性质:若 m、,n 为正数,则 d(mn) = d(m)+ d(n), d(n)= d(m)一 d(n) .依据运算性质,填空d (a3)=▲ (a 为正数),d ( a)若 d(2) =,则 d(4) =▲, d(5)=▲, d(0. 08) =▲; (3)下表中与数 x 对应的劳格数 d (x) 有且只有两个是错误的,请找犯错误的劳格数,说明原因并更正.x356891227d(3a-b2a a1+a- b3-3a- 4a-3-b- 6a-+x)+c-b-c3c2b2c3bc2018 83241 2 3 4 5 6 7 8ADDABCBC10330× 10 511 400 12 120013 610 a (a 2b) (a 2b) 14 30 15 5π16 n 2 n ≠ 31761833210 9619(1)43 2 33 4342x 27103x220 420x 3a2 y442a>3a22a>542 1 7a 2328aa 2321(1) 20 802(2)开 始次10 20 30 40扬州市中考数学试题及答案(word版)第二次第一次102030104010203040 20304050 30405060 40506070 50607080610 5P(5081684 26 3823.(1)BCADCE 90oBCDACECB CA CD CE BCD ACE CAE CBD 3 AC BC ACB 90o ABC BAC=45 oCAE=45 oBAE 90o AB AE5(2BC 2AD·AB BC AC AC2AD·ABACADABACCADBACCADBACADCACB=90 o8 DCEDAE 90oADCE9CD CEADCE10241)x(2(x 8)120012004x(1+20x 8x 48 7 x=4881200251200 x 8 40 30(94840(1 25 2) 30 10 1) y 2 1 20 )y1200 1200 84y(1 20%) yy 25 7 y=258 y 251 20%)y 3091)252)3010251 BD AD AB BD OBFOABDABF 90o AD AB ABD ADB 90o ABF ADB 3ABC ABFABC ADBACB ADB ABC ACBAB AC52Rt ABDBAD 90ocos ADBADADAD4BDcos ADBBDcos ABF4 565AB 37 Rt ABEBAE=90 oCos ABEAB AB 315BEcos ABEBE4 45AE(15)2329 944DEADAE497104426(1A(08)B40)2ABy kx bA Bk =2 b8ABy 2x 85(2Mm 2m 8) Nm m22m 8)0 m 3MN (2m 8) m 2 2m 8) m 2 4m PQ m 1) 2 4(m 1) m 22m 3 7PQ MNm22m 3m24mm3230 m8PQ MN 2PQ MNm2 2m 3m2 4mm33 2mPQMN92PQ MNm 2 2m 3m 2 4mm323m 3 PQ MN102m0 m 3 1 27(1) AB CD B.=90o B C 90o APB BAP 90oPE PAAPE 90oAPBCPE 90oBAPCPEABP PCE B C 90o BAP CPEABP PCE2ABBPBC m BP xPC m xPC CE2 xy1 x 2mxm xy22y xy 1 x2mx x0 x m2 2(2) y1x2mx1 (x m )2 m 22 22 2 8my 最大值m 2x628ECDm 2≤ 1m ≤22 0 m 2 288mm 0(3CGPPHAG HCG PE PG PC 4 x PE PACG PABBAG 90o AG PCAPCG9AG PC 4 x B BAG AHP 90o ABPHAH BP x PH AB2 HG 4 2x10Rt PHGPH 2 HG 2 PG 22 2 (4 2x) 2 (4 x) 2x2 x2 2 121 2BP 23328(1)1212(2) 3 0.6020 0. 6990 16(3d 3 ≠ 2a bd 92d 3 ≠ 4a 2b D 273d 3 ≠ 6a 3bd(3) 2a b8d.(5) ≠a cd(2) 1 d(5) ≠1 a c d(8) 3d(2) ≠3 3a 3cd(6) d(3) d(2) ≠1 a b cd 5a c10d 1.5d 12D 1.5d 3d 51 3a b c 111 D 12d 32d 22 b 2c1211。

江苏省扬州市邗江区2018年中考二模数学试卷及答案

江苏省扬州市邗江区2018年中考二模数学试卷及答案2018 年中考第二次涂卡训练试题九年级数学一、选择题 (本大题共有 8 小题,每小题 3 分,共 24 分) 1.下列各数中,绝对值最大的数是(▲) A .1 B .-1 C .3.14 D .π 2.化简 (-a 2 )a 3 所得的结果是(▲) A . a 5 B . -a 5 C . a 6 D . -a 63.已知甲、乙两同学 1 分钟跳绳的平均数相同,若甲同学 1 分钟跳绳成绩的方差 S 甲 2=0.006,乙同学 1 分钟跳绳成绩的方差 S 乙2=0.035,则(▲)A .甲的成绩比乙的成绩更稳定B .乙的成绩比甲的成绩更稳定C .甲、乙两人的成绩一样稳定D .甲、乙两人的成绩稳定性不能比较4.如图,是一个几何体的三视图,该几何体是(▲)A .三棱锥B .三棱柱C .圆柱D .圆锥5.实数 a ,b 在数轴上对应点的位置如图所示,化简2()b b a +-的结果是(▲)A . a - 2bB . -aC . 2b - aD . a第 4 题第 6 题第 7 题6.如图,半径为1的⊙ O 与正五边形 ABCDE 的边相切于点的 A 、C ,则 AC 的长为(▲)A . 34πB . 35πC .45πD .237.如图,AB ∥ CD , E 、 F 分别为 BC 、 AD 的中点,若 AB = 1,CD = 4 ,则 EF 长为(▲)A . 2B .52C .32D .38 .若二次函数y =ax2 +bx +c 的图象与x 轴交于A 和B 两点,顶点为C ,且b2 - 4ac = 4 ,则∠ACB 的度数为(▲)A.120°B.90°C.60°D.30°二、填空题(本大题共有10 小题,每小题3 分,共30 分.)9.2018年4月22日,扬州鉴真国际半程马拉松正式鸣枪,来自世界各地的35000名跑35000用科学记数法表示为▲.10.函数y =1x-的自变量x 的取值范围是▲.11.分解因式:2m2 -8 = ▲.12.若2a2 -b +1=3,则4 - 4a2 + 2b =▲.13.若23511xAx x-=-++,则A =▲.14.四边形ABCD 是⊙O 的内接四边形,且∠A:∠B :∠C =1:2:3,则∠D =▲.15.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx(x< 0) 的图象经过顶点B ,则k 为▲.16.若点P(1,1) 在直线l1 :y =kx +2 上,点Q(m,2m -1) 在直线l2 上,则直线l1 和l2 的交点坐标是▲.17.如图,在边长为a 的正方形ABCD 中,M 是边AD 上一动点(点M 与点A 、D 不重合),N 是CD 的中点,且∠CBM =∠NMB ,则tan ∠ABM =▲.第15 题第17 题第18 题18.如图,在矩形ABCD 中,已知AB = 2 , BC =4,点O 、P 分别是边AB 、AD 的中点,点H 是边CD 上的一个动点,连接OH ,将四边形OBCH 沿OH 折叠,得到四边形OFEH ,连接PE ,则PE 长度的最小值是▲.三.解答题(本大题共有10 小题,共96 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤)19.(本题满分8 分) (1)计算:(-1)2 -2cos600+12;(2)先化简,再求值:(b + 2a)(b - 2a) - (a -b)2 ,其中a =1,b=-1.20.(本题满分8 分) 关于x 的方程(k -1)x2 -4x -1= 0 有两个不相等的实数根,求k 的取值范围.21.(本题满分8 分) 中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”,某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)请将条形统计图补充完整;(2)本次调查所得数据的众数是▲部,中位数是▲部,扇形统计图中“1 部”所在扇形的圆心角为▲度;(3)若该校共有800个人,那么看完3部以上(包含3部)的有多少人?22.(本题满分8 分) 某校举行“厉害了,我的国”为主题的征文比赛,九年级(1)班从甲、乙、丙、丁4 名同学中选出2 名同学参加征文比赛.(1)已确定甲参加比赛,再从其余3 名同学中随机选取1 名,求恰好选中乙的概率;(2)随机选取2名同学,求其中有乙同学的概率.请用列表法或画树状图法分析说明.23.(本题满分10 分)下面是两位同学的一段对话:聪聪:周末我们去15 千米外的生态园去旅游吧.明明:好啊,我骑车先走,你坐汽车.你坐的汽车速度是我骑的自行车速度的3 倍呢.聪聪:嗯,如果我要想和你同时到达,你出发40 分钟后我再出发.根据对话内容,请你求出明明骑自行车的速度.24.(本题满分10 分) 如图,在平行四边形ABCD 中,过点D 作DE ⊥AB 于点E ,点F在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分∠DAB ,CF =3,BF = 4 ,求DF 长.25.(本题满分10 分) 在Rt?ABC 中,∠ACB = 90,点O 在BC 上,经过点B 的⊙O 与BC ,AB 分别相交于点D ,E 连接CE ,CE =CA.(1)求证:CE 是⊙O 的切线;(2)若tan ∠ABC =12,BD =4,求CD 的长.26.(本题满分10 分) 已知,如图1,六边形ABCDEF 的每一个内角都相等.(1)六边形 ABCDEF 每一个内角的度数是▲ ;(2)在图 1 中,若 AF = 2 ,AB = 4 ,BC = 3 ,CD = 1 ,则DE = ▲ ,EF = ▲ ;(3)如图 2,在(2)的条件下,若 M 、N 分别为边 AF 、 AB 的中点,连接 CM 、DN交于点 G ,求MGGC的值.图 1 图 227.(本题满分 12 分) 如图 1,在平面直角坐标系中,图形 W 在坐标轴上的投影长度定义如下:设点 P ( x 1 , y 1 ) ,Q ( x 2 , y 2 ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则图形 W 在 x 轴上的投影长度为 l x = m ;若12y y -的最大值为 n ,则图形 W 在 y 轴上的投影长度为 l y = n .如图 1,图形 W 在 x 轴上的投影长度为 l x =40=4-;在 y 轴上的投影长度为 l y =30=3- (1)已知点 (1, , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC ,则l x = ▲ ,l y = ▲ ;(2)已知点 C (32-, 0) ,点 D 在直线 y =12x - 1(x < 0) 上,若图形 W 为 ?OCD ,当 l x = l y 时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中(0 ≤ a < b ) ,当该图形满足 l x = l y ≤ 1时,请直接写出 a 的取值范围.图 1 图 228.(本题满分12 分)已知,如图,在?ABC 中,∠ACB = 90,∠B = 60,BC =2 ,∠MON = 30.(1)如图1,∠MON 的边MO ⊥AB ,边ON 过点C ,求AO 的长;(2)如图2,将图1 中的∠MON 向右平移,∠MON 的两边分别与?ABC 的边AC 、BC相交于点E 、F ,连接EF ,若?OEF 是直角三角形,求AO 的长;(3)在(2)的条件下,∠MON 与?ABC 重叠部分面积是否存在最大值,若存在,求出最大值,若不存在,请说明理由.图1 图2 备用图2018年中考第二次涂卡训练试题九年级数学参考答案及评分建议2018.5说明:本评分标准每题给出了一种解答供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.43.51010.1x ≥ 11.2(2)(2)m m +- 12.0 13.214.90° 15.32- 16.(1,1) 17.1318三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:2(1)2cos 60--+o .=11-+……………………………3分= ……………………………4分(2)化简2(2)(2)()b a b a a b +--- =252a ab -+ ……………………………3分∵1,1a b ==- ∴252a ab -+=7- ……………………………4分20.(本题满分8分) ∵关于x 的方程2(1)410k x x ---=有两个不相等的实数根∴240,0b ac a ->≠ ……………………………2分∴2(4)4(1)(1)0,10k k ---->-≠ ……………………………4分∴3k >-且1k ≠ ……………………………8分 21.(1)图略……………………………2分(2)1,2,126° ……………………………5分(3)280 ……………………………8分22.(1)13……………………………2分(2)树状图如下……………………………6分其中有乙同学的的概率为12……………………………8分23.解:设明明骑自行车的速度为x千米/小时,则聪聪坐车的速度为3x千米/小时,根据题意得:151540360x x-=……………………………5分解之得:x=……………………………8分15x=是原方程的经检验15根……………………………9分答:明明骑自行车的速度为15千米/小时……………………………10分24.(1)∵四边形ABCD是平行四边形∴AB∥DC∵DF=BE∴四边形BFDE是平行四边形……………………………2分∵DE⊥AB∴四边形BFDE是矩形……………………………4分(2)∵四边形BFDE是矩形∴∠BFD=90°∴∠BFC=90°在Rt△BCF中,CF=3,BF=4∴BC=5 (6)分∵AF平分∠DAB∴∠DAF=∠BAF∵AB∥DC∴∠DFA=∠BAF∴∠DAF=∠DFA∴AD=DF (8)分∵AD=BC∴DF=BC∴DF=5 (10)分25.(1)解:连接OE∵CE=CA∴∠A=∠CEA∵OE=OB∴∠B=∠OEB……………………………2分∵∠A CB=90°∴∠A+∠B=90°∴∠CEA+∠OEB=90°∴∠OEC =90°∴CE是⊙O的切线……………………………5分(2)设CD 的长为x ,∵BD =4∴BC=x +4,CO=2+x∵tan ∠ABC=12∴AC =12BC =12(x +4) ∵CE=CA ∴CE=12(x +4) ……………………………7分在Rt △CEO 中,222CE OE CO += ∴2221(4)2(2)2x x ??++=+ ……………………………8分∴1244,3x x =-=∴CD 的长为43……………………………10分 26.(1)120° ……………………………2分(2)5,2 ……………………………6分(3)延长FA 、DN 交与点P ,延长AB 、DC 交与点Q ,∵∠ABC =∠BCD= 120°∴∠QBC =∠QCB= 60°∴∠BQC =60°,即△BQC 为等边三角形∵N 为AB 的中点,AB=4 ∴AN=BN=2∴QN=5 ∵QD=QC +CD ∴QD=4∵∠BAF= 120°∴∠BQC +∠BAF = 180°∴AF ∥QD ……………………………8分∴AP ANQD QN =∴245AP = ∴85AP =……………………………9分∵M 为AF 的中点∴AM=1∴MP=AP+AM=135∴135MG MP GC CD == ……………………………10分27.(1)3,3 ……………………………4分(2)∵点D 在直线11(0)2y x x =-<上∴设D 坐标为1(,1)2x x - ①当302x -≤<时,310()0(1)22x --=-- ∴1x =-∴D 坐标为3(1,)2-- ……………………………7分②当32x <-时,100(1)2x x -=-- ∴2x =-∴D 坐标为(2,2)-- ……………………………10分(3)102a ≤< ……………………………12分28.(1)∴∠MON =30°,MO ⊥AB ∴∠COB =60°∵∠B =60° ∴△BOC 是等边三角形∵BC=2∴BO=2 ……………………………2分在ABC ?中,90ACB ∠=o,60B ∠=o,2BC =,AB=4.……………………………3分∴ AO=AB-BO=2 ……………………………4分(2)①∠OEF=90°设AO=x ,根据题意得OB=4x -,OE =,4OF x =-,∴2OE OF =∴125x = ……………………………6分②∠OFE =90°设AO=x ,根据题意得OB=4x -,3OE =,4OF x =-,∴OF OE = ∴83x = ……………………………8分∴OEF ?是直角三角形时,AO 长为125或83(3)设AO=x ,根据题意得OB=4x -,3OE =,设重叠部分的面积为S,根据题意得:S S ABC S AOE S OBF =--V V V∴21)2S x x =-g ……………………………10分整理得:2S=+-∵0a=,∴S有最大值∴当125x=时,S最大值=……………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省扬州市翠岗2018届中考九年级数学二模试卷
一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列各数中,比-1小的数是 A .1
B .0
C .-1
D .-2
2.下列运算错误的是 A .()
63
2
--=a a B .()
53
2
a a = C .231a a a -÷= D .532a a a =⋅
3.下列说法正确的是 A .一个游戏的中奖概率是
10
1
,则做10次这样的游戏一定会中奖 B .多项式22x x -分解因式的结果为(2)(2)x x x +- C .一组数据6,8,7,8,8,9,10的众数和中位数都是8
D .若甲组数据的方差S 2
甲=0.1,乙组数据的方差S 2
乙=0.2,则乙组数据比甲组数据稳定 4.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是
A .14,9
B .9,8
C .9,9
D .8,9
5、给出下列四个函数:①x y -=;②x y =;③x
y 2=;④2
x y =.其中当0<x 时,y 随x 的增大而减小的函数有 A .1个
B .2个
C .3个
D .4个
6. 如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是 A .① B .② C .③
D .④
7.试运用数形结合
的思想方法确定方程2
4
2x x
+=
的根的取值范围为 A. 01x << B. 10x -<< C. 12x << D. 23x <<
8、如图①,在矩形 ABCD 中,动点 E 从点 A 出发,沿 AB → BC 方向运动,当点 E 到达点 C 时 停止运动.过点 E 作 FE ⊥ AE ,交 CD 于 F 点,设点 E 运动路程为x , FC = y ,图②表示 y 与 x 的函数关系的大致图像,则矩形 ABCD 的面积是 A.
5
23 B.5 C.6 D. 425
二、填空题(每题3分,满分30分,将答案填在答题纸上)
9、我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为 10.函数2-=
x y 中自变量x 的取值范围是
11、分解因式:22123y x -=
12.已知m 是方程2210x x --=的一个根,则代数式263m m -+1的值为_____. 13.已知圆锥的底半径为1cm ,圆锥的高为2 cm ,则圆锥的侧面积为 。

14. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,4),顶点C 在x 轴的正半轴上,函数k
y x
=
的图象经过顶点B ,则k 的值为
(第14题) (第16题) (第18题) 15.已知点1122(,)(,)A x y B x y 、在二次函数m x y +--=2
)2(的图象上, 若221<<x x ,则12____y y 。

(填“>”、“=”或“<”)。

16、如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE=5,BE=1, ∠AED=︒30,
则CD= .
17.若方程(x-m )(x ﹣n )=2(m ,n 为常数,且m <n )的两实数根分别为a ,b (a <b ),则m ,n ,a ,b 的大小关系是 .。

相关文档
最新文档