生物化学.
生物化学课后习题答案

第二章糖类1、判断对错,如果认为错误,请说明原因。
(1)所有单糖都具有旋光性。
答:错。
二羟酮糖没有手性中心。
(2)凡具有旋光性的物质一定具有变旋性,而具有变旋性的物质也一定具有旋光性。
答:凡具有旋光性的物质一定具有变旋性:错。
手性碳原子的构型在溶液中发生了改变。
大多数的具有旋光性的物质的溶液不会发生变旋现象。
具有变旋性的物质也一定具有旋光性:对。
(3)所有的单糖和寡糖都是还原糖。
答:错。
有些寡糖的两个半缩醛羟基同时脱水缩合成苷。
如:果糖。
(4)自然界中存在的单糖主要为D-型。
答:对。
(5)如果用化学法测出某种来源的支链淀粉有57 个非还原端,则这种分子有56 个分支。
答:对。
2、戊醛糖和戊酮糖各有多少个旋光异构体(包括α-异构体、β-异构体)?请写出戊醛糖的开链结构式(注明构型和名称)。
答:戊醛糖:有3 个不对称碳原子,故有2 3 =8 种开链的旋光异构体。
如果包括α-异构体、β-异构体,则又要乘以2=16 种。
戊酮糖:有2 个不对称碳原子,故有2 2 =4 种开链的旋光异构体。
没有环状所以没有α-异构体、β-异构体。
3、乳糖是葡萄糖苷还是半乳糖苷,是α-苷还是β-苷?蔗糖是什么糖苷,是α-苷还是β-苷?两分子的D-吡喃葡萄糖可以形成多少种不同的二糖?答:乳糖的结构是4-O-(β-D-吡喃半乳糖基)D-吡喃葡萄糖[β-1,4]或者半乳糖β(1→4)葡萄糖苷,为β-D-吡喃半乳糖基的半缩醛羟基形成的苷因此是β-苷。
蔗糖的结构是葡萄糖α(1→2)果糖苷或者果糖β(2→1)葡萄糖,是α-D-葡萄糖的半缩醛的羟基和β- D -果糖的半缩醛的羟基缩合形成的苷,因此既是α苷又是β苷。
两分子的D-吡喃葡萄糖可以形成19 种不同的二糖。
4 种连接方式α→α,α→β,β→α,β→β,每个5 种,共20 种-1 种(α→β,β→α的1 位相连)=19。
4、某种α-D-甘露糖和β-D-甘露糖平衡混合物的[α]25D 为+ °,求该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率(纯α-D-甘露糖的[α]25D 为+ °,纯β-D-甘露糖的[α]25D 为-°);解:设α-D-甘露糖的含量为x,则(1-x)=X=%该平衡混合物中α-D-甘露糖和β-D-甘露糖的比率:=5、请写出龙胆三糖[β-D-吡喃葡萄糖(1→6)α-D-吡喃葡萄糖(1→2)β-D-呋喃果糖] 的结构式。
生物化学考试试卷及答案

一、名词解释1、蛋白质的变性作用:2、氨基酸的等电点:3、氧化磷酸化:4、乙醛酸循环:5、逆转录:二、选择题1、蛋白质多肽链形成α-螺旋时,主要靠哪种次级键维持()A:疏水键;B:肽键:C:氢键;D:二硫键。
2、在蛋白质三级结构中基团分布为()。
A:疏水基团趋于外部,亲水基团趋于内部; B:疏水基团趋于内部,亲水基团趋于外部;C:疏水基团与亲水基团随机分布; D:疏水基团与亲水基团相间分布。
3、双链DNA的Tm较高是由于下列哪组核苷酸含量较高所致()A:A+G;B:C+T:C:A+T;D:G+C。
4、DNA复性的重要标志是()。
A:溶解度降低; B:溶液粘度降低;C:紫外吸收增大; D:紫外吸收降低。
5、酶加快反应速度的原因是()。
A:升高反应活化能; B:降低反应活化能;C:降低反应物的能量水平; D:升高反应物的能量水平。
6、鉴别酪氨酸常用的反应为( )。
A 坂口反应 B米伦氏反应 C与甲醛的反应 D双缩脲反应7、所有α-氨基酸都有的显色反应是( )。
A双缩脲反应 B茚三酮反应 C坂口反应 D米伦氏反应8、蛋白质变性是由于( )。
A蛋白质一级结构的改变 B蛋白质空间构象的破环 C 辅基脱落 D蛋白质发生水解9、蛋白质分子中α-螺旋构象的特征之一是( )。
A肽键平面充分伸展 B氢键的取向几乎与中心轴平行 C碱基平面基本上与长轴平行 D氢键的取向几乎与中心轴平行10、每个蛋白质分子必定有( )。
Aα-螺旋 Bβ-折叠结构 C三级结构 D四级结构11、多聚尿苷酸完全水解可产生( )。
A 核糖和尿嘧啶 B脱氧核糖和尿嘧啶 C尿苷 D尿嘧啶、核糖和磷酸12、Watson-Crick提出的DNA结构模型( )。
A是单链α-螺旋结构 B是双链平行结构C是双链反向的平行的螺旋结构 D是左旋结构13、下列有关tRNA分子结构特征的描述中,( )是错误的。
A 有反密码环B 二级结构为三叶草型C 5'-端有-CCA结构D 3'-端可结合氨基酸14、下列几种DNA分子的碱基组成比例各不相同,其Tm值最低的是( )。
生物化学、化学生物学、分子生物学,三者联系与区别

一、生物化学、化学生物学、分子生物学,三者联系与区别欧洲化学生物学的一个专门刊名为ChemBioChem刊物,这部刊物在我所阅读的文献中被反复提及,我查到该文献的两位主编分别是Jean-Marie Lehn教授和Alan R. Fersht教授,他们在诠释刊物的宗旨[1]时指出:ChemBioChem意指化学生物学和生物化学,其使命是涵盖从复杂的碳水化合物、多肽蛋白质到DNA/RNA,从组合化学、组合生物学到信号传导,从催化抗体到蛋白质折叠,从生物信息学和结构生物学到药物设计,这一范围宽广而欣欣向荣的学科领域。
既然化学生物学涵盖面这么广泛,它到底和其它学科之间怎么区分呢?想到拿这个题目出来介绍是因为这是我在第一节课课堂讨论中的内容,我们小组所参考的文献主要是关于对化学生物学这门学科的认识,化学生物学的分析手段以及一些新的研究进展,比如药物开发和寻找药物靶点。
当时课堂上对于题目中三者展开过热烈讨论,作为新兴学科的化学生物学,研究的是小分子作为工具解决生物学问题的学科,它如何从生物化学和分子生物学中分别出来,这也是我自己最开始产生过矛盾的问题,这里我结合所查阅的文献谈一下自己的理解。
1.1 生物化学(Biological Chemistry)生物化学是研究生命物质的化学组成、结构、化学现象及生命过程中各种化学变化的生物学分支学科[1]。
根据一些生物化学的书我归纳了一下,其研究的基本内容包括对生物体的化学组成的鉴定,对新陈代谢与代谢调节控制,生物大分子的结构与功能测定,以及研究酶催化,生物膜和生物力学,激素与维生素,生命的起源与进化。
生物化学对其他各门生物学科的深刻影响首先反映在与其关系比较密切的细胞学、微生物学、遗传学、生理学等领域。
通过对生物高分子结构与功能进行的深入研究,揭示了生物体物质代谢、能量转换、遗传信息传递、光合作用、神经传导、肌肉收缩、激素作用、免疫和细胞间通讯等许多奥秘,使人们对生命本质的认识跃进到一个崭新的阶段。
生物化学(PDF)版

有甜味蛋白、毒素蛋白等都具有特异的生物学功能
所以,没有蛋白质就没有生命。
二、蛋白质的分类
(一)根据分子形状分:球状蛋白质、纤维状蛋白质。
(二)根据功能分:活性蛋白质、结构蛋白质。
(三)根据组成分:
� 简单蛋白质:清蛋白、球蛋白、谷蛋白、醇溶谷蛋白、组蛋白、精蛋白、硬蛋白。
� 结合蛋白质:色素蛋白、金属蛋白、磷蛋白、核蛋白、脂蛋白、糖蛋白。
由 108 个氨基酸残基构成的前胰岛素原 pre-proinsulin),在合成的时候完全没有活性,当切去 N-端的 24 个氨基酸信号肽,形成 84 个氨基酸的胰岛素原(proinsulin),胰岛素原也没活性,在包装分泌时,A、 B 链之间的 33 个氨基酸残基被切除,才形成具有活性的胰岛素。
c. 在镰刀状红细胞贫血患者中,由于基因突变导致血红蛋白β-链第六位氨基酸残基由谷氨酸改变为缬氨
� 参与机体的运动:如心跳、胃肠蠕动等,依靠与肌肉收缩有关的蛋白质来实现,如肌球蛋白、肌动蛋
白。
� 参与机体的防御:机体抵抗外来侵害的防御机能,靠抗体,抗体也称免疫球蛋白,是蛋白质。
� 接受传递信息:如口腔中的味觉蛋白、视网膜中的视觉蛋白。
� 调节或控制细胞的生长、分化、遗传信息的表达。
� 其它:如鸡蛋清蛋白、牛奶中的酪蛋白是营养和储存蛋白;胶原蛋白、纤维蛋白等属于结构蛋白。还
水键,如 Leu,Ile,Val,Phe,Ala 等的侧链基团。 3. 离子键(盐键): � 离子键(salt bond)是由带正电荷基团与带负电荷基团之间相互吸引而形成的化学键。 � 在近中性环境中,蛋白质分子中的酸性氨基酸残基侧链电离后带负电荷,而碱性氨基酸残基侧链电离
后带正电荷,二者之间可形成离子键。 4.范德华氏(van der Waals)引力:原子之间存在的相互作用力。 三、蛋白质的二级结构 � 蛋白质的二级结构是指蛋白质多肽链主链原子局部的空间结构,但不包括与其他肽段的相互关系及侧
生物化学题库及答案

糖一、名词解释1、直链淀粉:是由α―D―葡萄糖通过1,4―糖苷键连接而成的,没有分支的长链多糖分子。
2、支链淀粉:指组成淀粉的D-葡萄糖除由α-1,4糖苷键连接成糖链外还有α-1,6糖苷键连接成分支。
3、构型:指一个化合物分子中原子的空间排列。
这种排列的改变会关系到共价键的破坏,但与氢键无关。
例氨基酸的D型与L型,单糖的α—型和β—型。
4、蛋白聚糖:由蛋白质和糖胺聚糖通过共价键相连的化合物,与糖蛋白相比,蛋白聚糖的糖是一种长而不分支的多糖链,即糖胺聚糖,其一定部位上与若干肽链连接,糖含量可超过95%,其总体性质与多糖更相近。
5、糖蛋白:糖与蛋白质之间,以蛋白质为主,其一定部位以共价键与若干糖分子链相连所构成的分子称糖蛋白,其总体性质更接近蛋白质。
二、选择*1、生物化学研究的内容有(ABCD)A 研究生物体的物质组成B 研究生物体的代谢变化及其调节C 研究生物的信息及其传递D 研究生物体内的结构E 研究疾病诊断方法2、直链淀粉的构象是(A)A螺旋状 B带状 C环状 D折叠状三、判断1、D-型葡萄糖一定具有正旋光性,L-型葡萄糖一定具有负旋光性。
(×)2、所有糖分子中氢和氧原子数之比都是2:1。
(×)#3、人体既能利用D-型葡萄糖,也能利用L-型葡萄糖。
(×)4、D-型单糖光学活性不一定都是右旋。
(√)5、血糖是指血液中的葡萄糖含量。
(√)四、填空1、直链淀粉遇碘呈色,支链淀粉遇碘呈色,糖原与碘作用呈棕红色。
(紫蓝紫红)2、蛋白聚糖是指。
(蛋白质和糖胺聚糖通过共价键连接而成的化合物)3、糖原、淀粉和纤维素都是由组成的均一多糖。
(葡萄糖)脂类、生物膜的组成与结构一、名词解释1、脂肪与类脂:脂类包括脂肪与类脂两大类。
脂肪就是甘油三酯,是能量储存的主要形式,类脂包括磷脂,糖脂。
固醇类。
是构成生物膜的重要成分。
2、生物膜:细胞的外周膜和内膜系统统称为生物膜。
#3、外周蛋白:外周蛋白是膜蛋白的一部分,分布于膜的脂双层表面,通过静电力或范德华引力与膜结合,约占膜蛋白质的20—30%。
生物化学试题及答案

生物化学试题及答案一名词解释1 糖苷:单糖半缩醛结构羟基可与其他含羟基的化合物(如醇、酚等)这类糖苷大多都有苦味或特殊香气,不少还是剧毒物质,但微量时可作药用。
例:苦杏仁苷HCN2. 糖脎:单糖游离羰基与3分子苯肼作用生成糖脎,各种糖脎的结晶形状与熔点都不相同,常用糖脎的生成判断糖的类型3. 糖胺聚糖:同下4.蛋白聚糖:是一种长而不分枝的多糖链,既糖胺聚糖,其一定部位上与若干肽链相连,多糖呈双糖的系列的重复结构,其总体性质与多糖更相近。
(特点:含糖量一般比糖蛋白高,糖链长而不分支作用:由于蛋白聚糖中的糖胺聚糖密集的负电荷,在组织中可吸收大量的水而具有粘性和弹性,具有稳定、支持、保护细胞的作用,并在保持水盐平衡方面有重要作用)5. 酸败:油脂是在空气中暴露过久即产生难闻的臭味这种现象称为酸败。
(酸值(价)中和1g油脂中的游离脂肪酸所需KOH的mg数。
水解性酸败:由于光、热或微生物的作用,使油脂水解生成脂酸,低级脂酸有臭味,称水解性酸败。
氧化性酸败:由于空气中的氧使不饱和脂酸氧化,产生醛和酮等,称氧化性酸败。
)6. 碘价:指100克油脂与碘作用所需碘的克数。
7. 鞘磷脂:即鞘氨醇磷脂,由一个鞘氨醇、一个脂肪酸、一个磷酸、一个胆碱或乙醇胺组成。
8. 卵磷脂:磷脂酰胆碱也称卵磷脂,卵磷脂的结构中极性部分是胆碱,胆碱成分是是一种季铵离子。
卵磷脂是生物膜的主要成分之一。
胆固醇:胆固醇又称胆甾醇。
一种环戊烷多氢菲的衍生物。
甾核C3有一个羟基,C17有8个碳的侧链,C5 ~ C6有一双键。
(胆固醇主要存在于动物细胞,是生物膜的主要成分,也是类固醇激素和胆汁酸及维生D3的前体,过多引起胆结石、动脉硬化等)9. 凯氏定氮法:100克有机物中蛋白质的含量=1克样品中含氮的克数×6.25×100.10.茚三酮反应:茚三酮在弱酸性溶液中与氨基酸共热引起氨基酸氧化脱氨、脱羧反应,最后茚三酮与反应产物发生作用,生成蓝紫色物质。
《生物化学》教案(完整)
教案授课日期:年月日教案编号:教学安排课型:新授课教学方式:讲授性,主体参与教学教学资源相关视频,图片,多媒体授课题目(章、节)蛋白质化学教学目的与要求:1,掌握蛋白质的元素组成特点,氨基酸的结构通式;2、掌握蛋白质一级结构、二级结构的概念、维系键;3、掌握蛋白质的结构与功能的关系;4、熟悉蛋白质物化性质;5、了解蛋白质的与医学的关系;重点与难点:重点:蛋白质的元素组成特点,氨基酸的结构通式难点:蛋白质物化性质教学内容与教学组织设计:详见附页课堂教学小结:一、蛋白质的变性 1 、概念:天然蛋白质受到物理、化学因素的影响,导致其空间结构的破坏,从而使蛋白质的理化性质发生改变和生物功能的丧失称为蛋白质的变性作用。
2 、引起蛋白质变性的因素:物理因素、化学因素二、蛋白质的两性性质蛋白质中所带的正电荷与负电荷相等而呈电中性(此时为两性离),此时溶液的pH 称为该蛋白质的等电点,常用pI 表示。
三、蛋白质具有两性电离、胶体、变性和沉淀的性质。
四、蛋白质的定性、定量测定方法有多种。
五、蛋白质具机体的有三大功能:。
不同状态下的机体对蛋白质的需求及代谢情况有差异。
构成人体的氨基酸有20种,其中8种是体内不能合成的,需从饮食种摄取。
复习思考题、作业题:医院杀菌灭毒的方式有哪些?这些方式和蛋白质变性有何关系?课后反思:做好新课导入是成功教学的关键,尽量做到知识点讲解的深入简出,要注意结合日常生活知识和护理相关知识。
教案授课日期:年月日教案编号:教学安排课型:新授课教学方式:讲授性,主体参与教学教学资源相关视频,图片,多媒体授课题目(章、节)核酸化学教学目的与要求:掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。
生物化学在医学中的作用
生物化学在医学中的作用生物化学是研究生物体内化学反应和生物分子结构、功能的科学,它在医学领域中扮演着至关重要的角色。
生物化学的研究不仅有助于深入理解人体内部的生物过程,还为医学诊断、治疗和药物研发提供了重要的理论基础。
本文将探讨生物化学在医学中的作用,以及其在疾病诊断、治疗和药物研发中的应用。
1. 生物化学在疾病诊断中的作用生物化学在疾病诊断中发挥着关键作用。
通过检测患者体液中的生物标志物,如蛋白质、酶、代谢产物等,可以帮助医生判断疾病的类型、程度和发展趋势。
例如,血液中的血糖、胆固醇、肝功能酶等指标可以反映患者的健康状况,有助于早期发现糖尿病、高血压、肝病等疾病。
此外,生物化学还可以通过分子生物学技术检测DNA、RNA等遗传物质,帮助诊断遗传性疾病和肿瘤。
2. 生物化学在疾病治疗中的作用生物化学在疾病治疗中也发挥着不可或缺的作用。
基于对疾病发生机制的深入理解,生物化学研究为新药物的研发提供了理论基础。
许多药物的研发过程都是从生物化学研究开始的,通过设计靶向特定生物分子的药物,实现对疾病的精准治疗。
例如,抗生素、抗癌药物等都是通过生物化学研究开发出来的,为临床治疗提供了重要的药物支持。
3. 生物化学在药物研发中的应用生物化学在药物研发中的应用日益广泛。
通过研究药物在生物体内的代谢途径、药效机制等生物化学特性,可以评估药物的安全性、有效性和副作用,为药物的临床应用提供科学依据。
此外,生物化学还可以通过研究药物与生物分子的相互作用,优化药物的结构和性能,提高药物的生物利用度和靶向性,从而提高药物的疗效和减少不良反应。
总的来说,生物化学在医学中的作用不可低估。
它为疾病的诊断、治疗和药物研发提供了重要的理论基础和技术支持,推动了医学领域的发展和进步。
随着生物化学研究的不断深入和发展,相信在未来的医学领域中,生物化学将发挥更加重要的作用,为人类健康事业作出更大的贡献。
生物化学简答题及答案
生物化学简答题及答案氨基酸脱氨作用是动物体内产生氨的主要途径。
氨可以通过肠道吸收和肾小管上皮细胞分泌等方式进入体内。
肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,血中尿素也可以在肠道内水解产生氨。
肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。
氨的来源受到肠道和原尿中pH值的影响,碱性环境有利于氨的吸收。
氨可以通过丙氨酸-葡萄糖循环和谷氨酰胺的生成转运。
丙氨酸-葡萄糖循环是肌肉中氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝,在肝中通过联合脱氨基作用释放出氨用于合成尿素。
谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺,谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。
氨的主要代谢去路是尿素合成。
肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成。
NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。
合成尿素是一个耗能过程,每生成一分子尿素需要4个高能键。
除了尿素合成,氨基酸脱氨作用后生成的α-酮酸还可以参与非必须氨基酸及嘌呤、嘧啶的合成。
氨基酸脱氨基后,α酮酸的代谢途径主要有三种:(1)通过转氨基作用合成非必需氨基酸;(2)转变成糖或脂类,其中能转变成糖的氨基酸称为生糖氨基酸,能转变成酮体的称为生酮氨基酸,而兼备两种能力的则称为生糖兼生酮氨基酸,其中大多数氨基酸为生糖氨基酸;(3)通过氧化供能途径进行代谢。
动物体内可生成游离氨的氨基酸脱氨方式有三种:(1)氧化脱氨基作用,只有L-谷氨酸脱氢酶能催化反应,其他D-氨基酸氧化酶和L-氨基酸氧化酶则不起作用;(2)联合脱氨基作用,即转氨基作用和L-谷氨酸氧化脱氨基同时作用,是肝脏等器官的主要作用方式;(3)嘌呤核苷酸循环,适用于骨骼肌和心肌,因为肌肉缺乏L-谷氨酸脱氢酶,而腺苷酸脱氨酶活性高,能催化氨基酸脱氨基反应。
生物化学
遗传信息的贮存、传 遗传信息的贮存、 代、表达 遗传的物质基础) (遗传的物质基础) 260nm 粘度↓ 粘度↓ Tm
α-螺旋和β-折叠结构比较 螺旋和β
区别点 形 氢 状 键 α-螺旋 螺旋状 链内,与长轴平行 链内, 较大 较大 0 .15nm 毛发角蛋白 β-折叠 锯齿状 链间,与长轴垂直 链间, 较小 较小 0.36nm 蚕丝蛋白
> 1056
个不同的氨基酸、 (* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目) 个不同的氨基酸 核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
生物信息大分子的特点: 生物信息大分子的特点:
• • 质量一般在10 之间或以上。 质量一般在 4~106之间或以上。 由特殊的亚单位( 由特殊的亚单位(subunit)按一定的顺序、首 亚单位 )按一定的顺序、 尾连接形成的多聚物( 尾连接形成的多聚物(polymer)。 )。 亚单位在多聚物中的排列是有一定顺序(称为序 亚单位在多聚物中的排列是有一定顺序(称为序 )。序列决定着生物大分子的空 列,sequence)。序列决定着生物大分子的空 )。 立体)结构形式和功能, 间(立体)结构形式和功能,决定着生物大分子 的信息内容。 的信息内容。
3、重要性质:两性解离及带电状态判定;紫外吸收;沉淀;变性 、重要性质:两性解离及带电状态判定;紫外吸收;沉淀; 4、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析;分子筛 、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析; 5、结构与功能关系(举例) 、结构与功能关系(举例)
复习思考题
1.为什么说: 蛋白质是生命的物质基础” 1.为什么说:“蛋白质是生命的物质基础”? 为什么说 2.简述蛋白质α螺旋和β折叠的结构特点。 2.简述蛋白质α螺旋和β折叠的结构特点。 简述蛋白质 3.什么是Pr的一、二、三和四级结构,分别指出 3.什么是Pr的一、 什么是Pr的一 三和四级结构, 维持它们结构的化学键。 维持它们结构的化学键。 4.举例说明Pr结构与功能的关系。 4.举例说明Pr结构与功能的关系。 举例说明Pr结构与功能的关系 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 简述Pr变性 6.Pr定量测定的方法主要有哪些? 6.Pr定量测定的方法主要有哪些? 定量测定的方法主要有哪些
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论1、生物化学是用化学的原理和方法,从分子水平来研究生物体的化学组成,及其在体内的
代谢转变规律从而阐明生命现象本质的一门科学。2、生命的定义:自我复制、自我装配、自我调节。3、生命起源:基本粒子——原子——小分子——巨分子——核酸(复制信息)
4、细胞是生物体的基本结构单元。5、生物体的化学组成:组成水、无机离子和生物分子。6、生命体的元素组成:C、H、O和N;、P、Cl、Ca、K、Na和Mg。Fe、Cu、Co、Mn和Zn;Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si7、生物分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。8、生物分子的主要类型包括:多糖、脂、核酸和蛋白质等生物大分子。9、七大营养要素:水、无机盐、糖、脂、蛋白质、维生素、氧。第一章、蛋白质的结构与功能1、蛋白质:由许多氨基酸通过肽键相连形成的高分子含氮化合物。2、蛋白质的生物学重要性:1、生物体的重要组成成分、2、重要的生物学功能(作为生物催化剂、代谢调节作用、免疫保护作用、物质的转运和存储、运动与支持作用、参与细胞间信息传递)3、氧化供能3、蛋白质的元素组成:主要有C、H、O、N和S。少量含有P、Fe、Cu、Zn、Mn、Co、Mo,个别蛋白质还含有I。4、蛋白质元素组成的特点:含氮量平均为16%、蛋白质含量(g%)=含氮量(g%)×6.25。5、氨基酸——蛋白质的基本组成单位。6、人体内的氨基酸:组成人体蛋白质的氨基酸仅有20种,且均属L--氨基酸(甘氨酸除外)。7、L-氨基酸的通式:
8、氨基酸的分类:非极性疏水性氨基酸、极性中性氨基酸、酸性氨基酸、碱性氨基酸9、非极性疏水性氨基酸
蛋白质(催化功能)原始细胞CH
+H3NR
-OOC
C
H
+H3NCH
3
-OOC
C
H
+H3NH
-OOC
甘氨酸丙氨酸
L-氨基酸的通式:2
10、极性中性氨基酸11、酸性氨基酸12、碱性氨基酸
13、习惯分类方法(芳香族氨基酸:Trp、Tyr、Phe)、(含羟基氨基酸:Ser、Thr、Tyr)、(含硫氨基酸:Cys、Met)、(杂环族氨基酸:His)、(杂环族亚氨基酸:Pro)、(支链氨基酸:Val、Leu、Ile)。
14、几种特殊氨基酸(Gly:无手性碳原)、(Pro:为环状亚氨基酸)、(Cys:可形成二硫键)。15、修饰氨基酸:蛋白质合成后通过修饰加工生成的氨基酸。没有相应的编码。如:胱氨酸、羟脯氨酸(Hyp)、羟赖氨酸(Hyl)。16、非生蛋白氨基酸:蛋白质中不存在的氨基酸。如:瓜氨酸、鸟氨酸、同型半胱氨酸,
是代谢途径中产生的。17、氨基酸的理化性质:两性解离及等电点、紫外吸收、茚三酮反应。18、肽键:是由一个氨基酸的-羧基与另一个氨基酸的-氨基脱水缩合而形成的化学键。
19、几种生物活性肽:谷胱甘肽(GSH)3
谷氨酸、半胱氨酸和甘氨酸组成的三肽、谷氨酸的-羧基形成肽键、-SH为活性基团为酸性肽、是体内重要的还原剂。
20、肽类激素及神经肽:肽类激素:如促甲状腺素释放激素(TRH)。21、蛋白质的分类:1、根据蛋白质组成成分(单纯蛋白质、结合蛋白质)2、根据蛋白质形状(纤维状蛋白质、球状蛋白质)。22、蛋白质的分子结构包括:一级结构、二级结构、三级结构、四级结构(高级结构)
蛋白质的一级结构23、蛋白质的一级结构:蛋白质的一级结构指多肽链中氨基酸的排列顺序。24、蛋白质的一级结构的主要化学键:肽键;25、一级结构是蛋白质空间构象和特异生物学功能的基础。
蛋白质的二级结构26、蛋白质的二级结构:蛋白质分子中某一段肽链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。27、蛋白质的二级结构的稳定因素:氢键28、肽单元:参与组成肽键的6个原子位于同一平面,又叫酰胺平面或肽键平面。它是蛋白质构象的基本结构单位。29、蛋白质二级结构的主要形式:-螺旋、-折叠、-转角、无规卷曲。30、-螺旋:多肽链主链围绕中心轴形成右手螺旋,侧链伸向螺旋外侧。每圈螺旋含3.6个氨基酸,螺距为0.54nm。每个肽键的亚氨氢和第四个肽键的羰基氧形成的氢键保持螺旋稳定。氢键与螺旋长轴基本平行。31、-折叠:多肽链充分伸展,相邻肽单元之间折叠成锯齿状结构,侧链位于锯齿结构的
上下方。②两段以上的β-折叠结构平行排列,两链间可顺向平行,也可反向平行。③两链间的肽键之间形成氢键,以稳固β-折叠结构。氢键与螺旋长轴垂直。32、-转角:肽链内形成180º回折。②含4个氨基酸残基,第一个氨基酸残基与第四个形
成氢键。③第二个氨基酸残基常为Pro。33、无规卷曲:没有确定规律性的肽链结构。34、模体:蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成个具有特殊功能的空间构象,被称为模体。35、影响二级结构形成的因素:1、影响α-螺旋形成的因素(氨基酸侧链所带电荷、大小及
形状)。2、β-折叠形成条件(要求氨基酸侧链较小)。
蛋白质的三级结构36、蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。37、蛋白质的三级结构稳定因素:疏水键、离子键、氢键和VanderWaals力等。38、结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行其功能,称为结构域。39、分子伴侣:通过提供一个保护环境从而加速蛋白质折叠成天然构象或形成四级结构的
一类蛋白质。40、分子伴侣的作用:可逆地与未折叠肽段的疏水部分结合随后松开,如此重复进行可使
肽链正确折叠;与错误聚集的肽段结合,诱导其正确折叠;对蛋白质分子中二硫键的正确形成起重要的作用
蛋白质的四级结构41、蛋白质的四级结构:42、亚基:每条具有完整三级结构的多肽链43、蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用。44、亚基之间的结合力:主要是氢键和离子键。45、蛋白质一级结构与功能的关系:一级结构是空间构象的基础(天然状态有催化活性;非折叠状态,无活性)46、协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响此寡聚体中另一个
亚基与配体结合能力的现象47、正协同效应:促进作用;负协同效应:抑制作用48、变构效应:凡蛋白质(或亚基)因与某小分子物质相互作用而发生构象变化,导致白质(或亚基)功能的变化,称为蛋白质的变构效应。49、蛋白质构象病:若蛋白质的折叠发生错误,尽管其一级结构不变,但蛋白质的构象发
生改变,仍可影响其功能,严重时可导致疾病发生。50、蛋白质构象病的机理:有些蛋白质错误折叠后相互聚集,常形成抗蛋白水解酶的淀粉
样纤维沉淀,产生毒性而致病,表现为蛋白质淀粉样纤维沉淀的病理改变。51、蛋白质的理化性质:蛋白质的两性电离、蛋白质的胶体性质、蛋白质的变性、沉淀和
凝固、蛋白质的紫外吸收、蛋白质的呈色反应。52、蛋白质的两性电离:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某
些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。53、蛋白质的等电点:当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,
即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。54、蛋白质两性电离的性质,可通过电泳、离子交换层析、等电聚焦等技术分离蛋白质。55、蛋白质的胶体性质:蛋白质属于生物大分子之一,分子量可自1万至100万之巨,其分子的直径可达1~100nm,为胶粒范围之内。56、蛋白质胶体稳定的因素:颗粒表面电荷、水化膜。57、蛋白质的变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失。58、蛋白质的变性的本质:破坏非共价键和二硫键,不改变蛋白质的一级结构。59、造成蛋白质的变性的因素:如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。60、蛋白质变性后的性质改变:溶解度降低、粘度增加、结晶能力消失、生物活性丧失及
易受蛋白酶水解。61、复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原的构象和功能,称为复性。62、蛋白质沉淀:在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因
而从溶液中析出。变性的蛋白质易于沉淀,有时蛋白质发生沉淀,但并不变性。63、蛋白质的凝固作用:蛋白质变性后的絮状物加热可变成比较坚固的凝块,此凝块不易再
溶于强酸和强碱中。64、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm
波长处有特征性吸收峰。蛋白质的OD280
与其浓度呈正比关系,因此可作蛋白质定量
测定。65、蛋白质的呈色反应:1\茚三酮反应:蛋白质经水解后产生的氨基酸也可发生茚三酮反应。2\双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,此反应称为双缩脲反应,双缩脲反应可用来检测蛋白质水解程度。66、蛋白质的分离和纯化:1、透析及超滤法(透析:利用透析袋把大分子蛋白质与小分子
化合物分开的方法。超滤法:应用正压或离心力使蛋白质溶液透过有一定截留分子量的超滤膜,达到浓缩蛋白质溶液的目的。)2、丙酮沉淀:(使用丙酮沉淀时,必须在0~4℃低温下进行,丙酮用量一般10倍于蛋白质溶液体积。蛋白质被丙酮沉淀后,应立
即分离。除了丙酮以外,也可用乙醇沉淀。3、盐析(saltprecipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。4、免疫沉淀法:将某一纯化蛋白质免疫动物可获得抗该蛋白的特异抗体。利用特异抗体识别相应的抗原蛋白,并形成抗原抗体复合物的性质,可从蛋白质混合溶液中分离获得抗原蛋白。67、电泳:蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移
动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术,称为电泳。68、几种重要的蛋白质电泳:SDS-聚丙烯酰胺凝胶电泳:常用于蛋白质分子量的测定;等
电聚焦电泳:通过蛋白质等电点的差异而分离蛋白质的电泳方法。双向凝胶电泳:是蛋白质组学研究的重要技术。69、层析:待分离蛋白质溶液(流动相)经过一个固态物质(固定相)时,根据溶液中待
分离的蛋白质颗粒大小、电荷多少及亲和力等,使待分离的蛋白质组分在两相中反复分配,并以不同速度流经固定相而达到分离蛋白质的目的。70、蛋白质分离常用的层析方法:离子交换层析:利用各蛋白质的电荷量及性质不同进行
分离。凝胶过滤(gelfiltration)又称分子筛层析:利用各蛋白质分子大小不同分离。71、超速离心:*超速离心法(ultracentrifugation)既可以用来分离纯化蛋白质也可以用作测
定蛋白质的分子量。蛋白质在离心场中的行为用沉降系数(sedimentationcoefficient,S)表示,沉降系数与蛋白质的密度和形状相关。72、多肽链中氨基酸序列分析:改进的Sanger法:1、分析已纯化蛋白质的氨基酸残基组