江苏省南京市建邺区2018届数学中考一模试卷(含答案解析) (1)

合集下载

2018年南京市联合体中考一模数学试卷及答案

2018年南京市联合体中考一模数学试卷及答案

3.答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净 后,再选涂其他答案.答非选择题必须用 0.5 毫米黑色墨水签字笔写在答题卡上的指定位
置,在其他位置答题一律无效. 4.作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚.
一、选择题(本大题共 6 小题,每小题 2 分,共 12 分.在每小题所给出的四个选项中,恰
标是(2,3),则点 B 的坐标是 ▲ .
14.如图,在△ABC 中,AC=BC,把△ABC 沿 AC 翻折,点 B 落在点 D 处,连接 BD,
若∠CBD=16°,则∠BAC= ▲ °. 15.如图,在⊙O 的内接五边形 ABCDE 中,∠B+∠E=210°,则∠CAD= ▲ °.
A
B
D
A
A
C
D (第 14 题)
学校
平均数(分) 方差
A、B 类的频率 和
城南中学
71
358
0.75
城北中学
71
588
0.82
数学试卷 第 3 页 (共 12 页)
请你评价这两所学校学生数学学业水平测试的成绩,提出一个解释来支持你的观 点.
数学试卷 第 4 页 (共 12 页)
21.(8 分)甲、乙、丙三人到某商场购物,他们同时在该商场的地下车库等电梯,三人都任
( 第 23
24.(8 分)已知二次函数 y=ax2+bx+c 中,函数 y 与自变量 x 的部分对应值如下表:
x
… -1 0
y

8
3
1
2
3

0 -1 0

(1)当 ax2+bx+c=3 时,则 x= ▲ ;
(2)求该二次函数的表达式;

【真题】2018年南京市中考数学试卷含答案解析(word版)

【真题】2018年南京市中考数学试卷含答案解析(word版)

江苏省南京2018年中考数学试卷(解析版)一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选中,恰有一项是符合题目要求的)1.(2018年江苏省南京市)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.2.(2018年江苏省南京市)计算a3•(a3)2的结果是()A.a8B.a9C.a11D.a18【分析】根据幂的乘方,即可解答.【解答】解:a3•(a3)2=a9,故选:B.【点评】本题考查了幂的乘方,解决本题的关键是熟记幂的乘方公式.3.(2018年江苏省南京市)下列无理数中,与4最接近的是()A.B.C.D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.4.(2018年江苏省南京市)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大【分析】分别计算出原数据和新数据的平均数和方差即可得.【解答】解:原数据的平均数为=188,则原数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(192﹣188)2+(194﹣188)2]=,新数据的平均数为=187,则新数据的方差为×[(180﹣188)2+(184﹣188)2+(188﹣188)2+(190﹣188)2+(186﹣188)2+(194﹣188)2]=,所以平均数变小,方差变小,故选:A.【点评】本题主要考查方差和平均数,解题的关键是掌握方差的计算公式.5.(2018年江苏省南京市)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF ⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b ﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.(2018年江苏省南京市)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是()A.①②B.①④C.①②④D.①②③④【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不能是直角三角形和钝角三角形.故选:B.【点评】本题考查了正方体的截面,注意:正方体的截面的四种情况应熟记.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程)7.(2018年江苏省南京市)写出一个数,使这个数的绝对值等于它的相反数:﹣1.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣1【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.8.(2018年江苏省南京市)习近平同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,河北塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是 1.12×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1120000=1.12×106,故答案为:1.12×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(2018年江苏省南京市)若式子在实数范围内有意义,则x的取值范围是x≥2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣2≥0,解得x≥2,故答案为:x≥2.【点评】此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.(2018年江苏省南京市)计算×﹣的结果是.【分析】先利用二次根式的乘法运算,然后化简后合并即可.【解答】解:原式=﹣2=3﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.(2018年江苏省南京市)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.12.(2018年江苏省南京市)设x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,则x1=﹣2,x2=3.【分析】根据根与系数的关系结合x1+x2=1可得出m的值,将其代入原方程,再利用因式分解法解一元二次方程,即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣mx﹣6=0的两个根,且x1+x2=1,∴m=1,∴原方程为x2﹣x﹣6=0,即(x+2)(x﹣3)=0,解得:x1=﹣2,x2=3.故答案为:﹣2;3.【点评】本题考查了根与系数的关系以及因式分解法解一元二次方程,利用根与系数的关系求出m的值是解题的关键.13.(2018年江苏省南京市)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(1,﹣2).【分析】直接利用关于y轴对称点的性质得出点A'坐标,再利用平移的性质得出答案.【解答】解:∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故答案为:1,﹣2.【点评】此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.14.(2018年江苏省南京市)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=5cm.【分析】直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【点评】此题主要考查了基本作图以及线段垂直平分线的性质,正确得出DE是△ABC的中位线是解题关键.15.(2018年江苏省南京市)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=72°.【分析】过B点作BF∥l1,根据正五边形的性质可得∠ABC的度数,再根据平行线的性质以及等量关系可得∠1﹣∠2的度数.【解答】解:过B点作BF∥l1,∵五边形ABCDE是正五边形,∴∠ABC=108°,∵BF∥l1,l1∥l2,∴BF∥l2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC=108°,∴∠1﹣∠2=72°.故答案为:72.【点评】考查了多边形内角与外角,平行线的性质,关键是熟练掌握正五边形的性质,以及添加辅助线.16.(2018年江苏省南京市)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A′B′C′D′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为4.【分析】连接OE,延长EO交CD于点G,作OH⊥B′C,由旋转性质知∠B′=∠B′CD′=90°、AB=CD=5、BC=B′C=4,从而得出四边形OEB′H和四边形EB′CG都是矩形且OE=OH=OC=2.5,继而求得CG=B′E=OH===2,根据垂径定理可得CF的长.【解答】解:连接OE,延长EO交CD于点G,作OH⊥B′C于点H,则∠OEB′=∠OHB′=90°,∵矩形ABCD绕点C旋转所得矩形为A′B′C′D′,∴∠B′=∠B′CD′=90°,AB=CD=5、BC=B′C=4,∴四边形OEB′H和四边形EB′CG都是矩形,OE=OH=OC=2.5,∴B′H=OE=2.5,∴CH=B′C﹣B′H=1.5,∴CG=B′E=OH===2,∵四边形EB′CG是矩形,∴∠OGC=90°,即OG⊥CD′,∴CF=2CG=4,故答案为:4.【点评】本题主要考查圆的切线的判定与性质,解题的关键是掌握矩形的判定与性质、旋转的性质、切线的性质、垂径定理等知识点.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(2018年江苏省南京市)计算(m+2﹣)÷.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=(﹣)÷=•=2(m+3)=2m+6.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.18.(2018年江苏省南京市)如图,在数轴上,点A、B分别表示数1、﹣2x+3.(1)求x的取值范围;(2)数轴上表示数﹣x+2的点应落在B.A.点A的左边B.线段AB上C.点B的右边【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据不等式的性质,可得点在A点的右边,根据作差法,可得点在B点的左边.【解答】解:(1)由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,解得x<1;(2)由x<1,得﹣x>﹣1.﹣x+2>﹣1+2,解得﹣x+2>1.数轴上表示数﹣x+2的点在A点的右边;作差,得﹣2x+3﹣(﹣x+2)=﹣x+1,由x<1,得﹣x>﹣1,﹣x+1>0,﹣2x+3﹣(﹣x+2)>0,∴﹣2x+3>﹣x+2,数轴上表示数﹣x+2的点在B点的左边.故选:B.【点评】本题考查了一元一次不等式,解(1)的关键是利用数轴上的点表示的数右边的总比左边的大得出不等式;解(2)的关键是利用不等式的性质19.(2018年江苏省南京市)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?【分析】设这种大米的原价是每千克x元,根据两次一共购买了40kg列出方程,求解即可.【解答】解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20.(2018年江苏省南京市)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.【分析】(1)延长AO到E,利用等边对等角和角之间关系解答即可;(2)连接OC,根据全等三角形的判定和性质以及菱形的判定解答即可.【解答】证明:(1)延长OA到E,∵OA=OB,∴∠ABO=∠BAO,又∠BOE=∠ABO+∠BAO,∴∠BOE=2∠BAO,同理∠DOE=2∠DAO,∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO)即∠BOD=2∠BAD,又∠C=2∠BAD,∴∠BOD=∠C;(2)连接OC,∵OB=OD,CB=CD,OC=OC,∴△OBC≌△ODC,∴∠BOC=∠DOC,∠BCO=∠DCO,∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,∴∠BOC=∠BOD,∠BCO=∠BCD,又∠BOD=∠BCD,∴∠BOC=∠BCO,∴BO=BC,又OB=OD,BC=CD,∴OB=BC=CD=DO,∴四边形OBCD是菱形.【点评】此题考查菱形的判定,关键是根据全等三角形的判定和性质以及菱形的判定解答.(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.【分析】(1)根据平均数的定义计算可得;(2)从极端值对平均数的影响作出判断,可用该店本周一到周日的日均营业额估计当月营业额.【解答】解:(1)该店本周的日平均营业额为7560÷7=1080元;(2)因为在周一至周日的营业额中周六、日的营业额明显高于其他五天的营业额,所以去掉周六、日的营业额对平均数的影响较大,故用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理,方案:用该店本周一到周日的日均营业额估计当月营业额,当月的营业额为30×1080=32400元.【点评】本题主要考查算术平均数及样本估计总体,解题的关键是掌握算术平均数的定义与样本估计总体思想的运用.22.(2018年江苏省南京市)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是D.A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球【分析】(1)先画出树状图展示所有6种等可能的结果数,再找出2个球都是白球所占结果数,然后根据概率公式求解;(2)根据概率公式分别计算出每种情况的概率,据此即可得出答案.【解答】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为=;(2)∵摸出的2个球颜色相同概率为=、摸出的2个球颜色不相同的概率为=,摸出的2个球中至少有1个红球的概率为=、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸出的2个球中至少有1个白球,故选:D.【点评】此题主要考查了列表法与树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(2018年江苏省南京市)如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)【分析】在△CED中,得出DE,在△CFD中,得出DF,进而得出EF,列出方程即可得出建筑物AB的高度;【解答】解:在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=,同理:EF=BE﹣BF=,∴,解得:AB≈5.9(米),答:建筑物AB的高度约为5.9米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.24.(2018年江苏省南京市)已知二次函数y=2(x﹣1)(x﹣m﹣3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?【分析】(1)代入y=0求出x的值,分m+3=1和m+3≠1两种情况考虑方程解的情况,进而即可证出:不论m为何值,该函数的图象与x轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标,令其大于0即可求出结论.【解答】(1)证明:当y=0时,2(x﹣1)(x﹣m﹣3)=0,解得:x1=1,x2=m+3.当m+3=1,即m=﹣2时,方程有两个相等的实数根;当m+3≠1,即m≠﹣2时,方程有两个不相等的实数根.∴不论m为何值,该函数的图象与x轴总有公共点;(2)解:当x=0时,y=2(x﹣1)(x﹣m﹣3)=2m+6,∴该函数的图象与y轴交点的纵坐标为2m+6,∴当2m+6>0,即m>﹣3时,该函数的图象与y轴的交点在x轴的上方.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及解一元一次不等式,解题的关键是:(1)由方程2(x﹣1)(x﹣m﹣3)=0有解证出该函数的图象与x 轴总有公共点;(2)利用二次函数图象上点的坐标特征求出该函数的图象与y轴交点的纵坐标.25.(2018年江苏省南京市)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第t min时的速度为vm/min,离家的距离为s m,v 与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min时离家的距离为200m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.【分析】(1)根据路程=速度×时间求出小明出发第2min时离家的距离即可;(2)当2<t≤5时,离家的距离s=前面2min走的路程加上后面(t﹣2)min走过的路程列式即可;(3)分类讨论:0≤t≤2、2<t≤5、5<t≤6.25和6.25<t≤16四种情况,画出各自的图形即可求解.【解答】解:(1)100×2=200(m).故小明出发第2min时离家的距离为200m;(2)当2<t≤5时,s=100×2+160(t﹣2)=160t﹣120.故s与t之间的函数表达式为160t﹣120;(3)s与t之间的函数关系式为,如图所示:故答案为:200.【点评】本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,读懂题目信息,从图中准确获取信息是解题的关键.26.(2018年江苏省南京市)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A 作AF⊥DE,垂足为F,⊙O经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.【分析】(1)欲证明△AFG∽△DFC,只要证明∠FAG=∠FDC,∠AGF=∠FCD;(2)首先证明CG是直径,求出CG即可解决问题;【解答】(1)证明:在正方形ABCD中,∠ADC=90°,∴∠CDF+∠ADF=90°,∵AF⊥DE,∴∠AFD=90°,∴∠DAF+∠ADF=90°,∴∠DAF=∠CDF,∵四边形GFCD是⊙O的内接四边形,∴∠FCD+∠DGF=180°,∵∠FGA+∠DGF=180°,∴∠FGA=∠FCD,∴△AFG∽△DFC.(2)解:如图,连接CG.∵∠EAD=∠AFD=90°,∠EDA=∠ADF,∴△EDA∽△ADF,∴=,即=,∵△AFG∽△DFC,∴=,∴=,在正方形ABCD中,DA=DC,∴AG=EA=1,DG=DA﹣AG=4﹣1=3,∴CG==5,∵∠CDG=90°,∴CG是⊙O的直径,∴⊙O的半径为.【点评】本题考查相似三角形的判定和性质、正方形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.27.(2018年江苏省南京市)结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=AC•BC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【分析】(1)由切线长知AE=AD=m、BF=BD=n、CF=CE=x,根据勾股定理得(x+m)2+(x+n)2=(m+n)2,即x2+(m+n)x=mn,再利用三角形的面积公式计算可得;(2)由由AC•BC=2mn得(x+m)(x+n)=2mn,即x2+(m+n)x=mn,再利用勾股定理逆定理求证即可;(3)作AG⊥BC,由三角函数得AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m)、BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,最后利用三角形的面积公式计算可得.【解答】解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)= [x2+(m+n)x+mn]=(mn+mn)=mn,(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)= [x2+(m+n)x+mn]=×(3mn+mn)=mn.【点评】本题主要考查圆的综合问题,解题的关键是掌握切线长定理的运用、三角函数的应用及勾股定理及其逆定理等知识点.。

最新-2018年建邺区初三一模数学卷 精品

最新-2018年建邺区初三一模数学卷 精品

2018建邺区中考第一次模拟考试数 学全卷共120分,考试时间为120分钟.本考试不允许使用计算器.请考生将答案填写在答题纸上.下列各题所附的四个选项中,有且只有一个是正确的一、选择题(每题2分,共20分)1.-4的绝对值是( )A .±4B .4C .-4D .162.下列各式计算正确的是( )A .336a a a ⋅= B . 3362a a a += C . 235()a a = D . 326(3)6a a =3.如果两圆的半径分别为4和6,圆心距为10,那么这两圆的位置关系是( )A .内含B .外离C .相交D .外切4.在一副52张的扑克牌(无大小王)中任意抽取一张,抽到方块的概率是( )A.12B.14C.13D.05.数据10,10,10,11,12,12,15,15的众数是( )A.10 B.11 C.12 D.156.下列图形中,既是轴对称图形又是中心对称图形的个数是( )A .1个B .2个C .3个D .4个7.自2002年,南京市组织实施了大规模的区划调整,建邺区辖域东临外秦淮河,西至长江,南到秦淮新河,北至汉中门大街,全区区域面积82 000 000平方米.用科学记数法表示正确的是( )A .建邺区区域面积为8.2×118平方米B .建邺区区域面积为82×118平方米C .建邺区区域面积为0.82×118平方米D .建邺区区域面积为820×118平方米 8.顺次连接等腰梯形四边中点所得到的四边形是( )A.等腰梯形 B.直角梯形 C.矩形 D.菱形9.已知圆柱体体积V (m 3)一定,则它的底面积y (m 2)与高x (m)之间的函数图象大致为( )10.根据图中的信息,估算tan α的值与下列数值最接近的是( )A.0.2640 B.0.8970 C.0.4590D.2.1785二、填空题(每小题3分,共18分) 11.计算:02=+-22_________.12.图12(1)、图12(2)是某市近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表,可以判断这两年6月上旬气温比较稳定的年份..是___________.13.已知扇形的半径为2 cm ,面积是π34cm 2,则扇形的弧长是 cm . 14.已知二次函数的图象经过原点且开口向上,这个函数可以是 .(只写一个即可)15.已知小明同学身高1.5米,经太阳光照射,在地面的影长为2米,若此时测得一塔在同一地面的影长为60米,则塔高应为 米. 16.正方形纸片ABCD 和BEFG 的边长分别为5和2,按如图所示的方式剪下2个阴影部分的直角三角形,并摆放成正方形DHFI ,则正方形DHFI 的边长为_________.A .B.C.D.图12(1) 2018年6月上旬 图12(2) 2018年6月上旬(第12题图)IB(第16题图)三、解下列各题(每小题5分,共20分)17.化简:yx y y x x ---22. 18.解不等式:312(1)x x -+≥.19.解方程:2450x x +-=.20.如图,在□ABCD 中,E F ,分别在AB 、CD 上,且DE ∥FB .求证:△AED ≌△CFB .四、(每小题6分,共18分)21.据2018年4月江心洲旅游网消息:江心洲是扬子江中一座小岛,全岛的可耕地都种植了葡萄、韭菜、小品种蔬菜、水果等。

2018年南京市建邺区中考数学一模试卷解析版

2018年南京市建邺区中考数学一模试卷解析版

2018年江苏省南京市建邺区中考数学一模试卷解析版一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列计算结果为负数的是()A.(﹣3)+(﹣4)B.(﹣3)﹣(﹣4)C.(﹣3)×(﹣4)D.(﹣3)﹣4【分析】根据有理数的加减、乘除和乘方计算即可.【解答】解:A、(﹣3)+(﹣4)=﹣7,正确;B、(﹣3)﹣(﹣4)=1,错误;C、(﹣3)×(﹣4)=12,错误;D、(﹣3)﹣4=,错误;故选:A.【点评】此题考查负整数指数幂,关键是根据法则计算.2.(2分)计算a6×(a2)3÷a4的结果是()A.a3B.a7C.a8D.a9【分析】根据同底数幂的乘法、除法和幂的乘方计算即可.【解答】解:a6×(a2)3÷a4=a6+6﹣4=a8,故选:C.【点评】此题考查同底数幂的除法,关键是根据法则计算.3.(2分)若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<4【分析】由tan45°=1,tan60°=且锐角范围内tanα随∠α的增大而增大,知tan45°<tan55°<tan60°,即1<a<,从而得出答案.【解答】解:∵tan45°=1,tan60°=,且锐角范围内tanα随∠α的增大而增大,∴tan45°<tan55°<tan60°,即1<a<,则1<a<2,故选:B.【点评】本题主要考查锐角三角函数的增减性,解题的关键是掌握特殊锐角的三角函数值及tanα随∠α的增大而增大.4.(2分)下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和﹣1【分析】依据相反数,绝对值,平方根和立方根的定义求解即可.【解答】解:∵0的相反数是0,02=0,03=0,∴相反数、平方根、立方根、绝对值都等于它本身的数是0.故选:A.【点评】本题主要考查的是相反数、绝对值、平方根和立方根的定义,掌握相反数、绝对值、平方根和立方根的定义是解题的关键.5.(2分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.(2分)如图①,是一个每条棱长均相等的三棱锥.图②是它的主视图、左视图与俯视图.若边AB的长度为a.则在这三种视图的所有线段中.长度为a的线段条数是()A.12条B.9条C.5条D.4条【分析】根据线段AB=a知三棱锥的棱长为a,据此可知主视图的三角形中只有底边长为a、左视图中左上线段的长度为a,俯视图中大三角形的三条边均为a,即可得出答案.【解答】解:因为主视图中线段AB=a,所以该三棱锥的棱长为a,在主视图的三角形中只有底边长为a、左视图中左上线段的长度为a,俯视图中大三角形的三条边均为a,即三视图中长度为a的线段有5条,故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是熟练掌握三视图的定义及常见几何体的三视图.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)函数y=中自变量x的取值范围是x≤1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1﹣x≥0,解得x≤1.故答案为:x≤1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(2分)分解因式a3﹣a的结果是a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(2分)若关于x的一元二次方程x2﹣kx﹣2=0有一个根是1,则另一个根是﹣2.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,由根据根与系数的关系可得:x1•1=﹣2,∴x1=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.10.(2分)辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12=S22(填“>”、“=”或“<”).【分析】根据方差的定义分别计算出两组数据的方差即可得.【解答】解:第1组数据的平均数为×(1+2+3+4+5)=3,则其方差S12=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;第2组数据的平均数为×(6+7+8+9+10)=8,则其方差S22=×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2;∴S12=S22,故答案为:=.【点评】本题考查了方差的意义,解题的关键是观察数据,找到波动较小的就方差小,也可以分别求得方差后再比较,难度不大.12.(2分)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与一次函数y2=﹣x+a(a为常数,a≠0)的图象相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为(n,m).【分析】依据一次函数y2=﹣x+a(a为常数,a≠0)的图象经过一二四或二三四象限,可得反比例函数图象经过而四象限,进而得出A、B两点关于直线y=x对称,由此可得点B的坐标.【解答】解:∵反比例函数y1=(k为常数,k≠0)的图象与一次函数y2=﹣x+a(a 为常数,a≠0)的图象相交于A、B两点,∴A、B两点关于直线y=x对称,又∵点A的坐标为(m,n),∴点B的坐标为(n,m),故答案为:(n,m).【点评】本题主要考查了反比例函数图象与一次函数图象的交点问题.点(a,b)关于直线y=x对称的点为(b,a),关于原点对称的两点的横、纵坐标分别互为相反数.13.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为cm.【分析】连接OB、OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.【解答】解:连接OB、OD,∵∠A=110°,∴∠C=70°,∴∠BOD=140°,则劣弧==.故答案为:.【点评】本题考查了弧长的计算,解答本题的关键是根据圆周角定理求出∠BOD的度数,注意掌握弧长公式.14.(2分)如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=108°.【分析】利用正五边形的性质得出BC=CD,∠BCF=∠D,再利用全等三角形的判定得出△BCF≌△CDG;利用全等三角形的性质得出∠CBF+∠BCH=∠BHG,进而得出∠DCG+∠BCH=∠BHG=∠BCD即可得出答案.【解答】解:∵正五边形ABCDE,∴BC=CD,∠BCF=∠D,∴在△BCF和△CDG中,∴△BCF≌△DCG(SAS);∴∠CBF=∠DCG,∵∠CBF+∠BCH=∠BHG,∴∠DCG+∠BCH=∠BHG=∠BCD==108°.∴∠BHG=108°.故答案为:108°【点评】此题主要考查了全等三角形的判定与性质以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.15.(2分)如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为a(用含a的代数式表示).【分析】连接AD,过B作BM⊥AD于M,过C作CN⊥AD于N,求出AD的长,利用梯形的中位线定理即可解决问题;【解答】解:连接AD,过B作BM⊥AD于M,过C作CN⊥AD于N,∵正八边形ABCDEFGH的边长为a,∴∠BAH=135°,∵∠DAH=90°,∴∠BAM=45°,∴AM=BM=DN=a,∴AD=a+a,∵BI=IA,CJ=JD,∴IJ==a,故答案为a.【点评】本题考查正多边形与圆,等腰直角三角形的判定和性质,梯形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,特殊四边形解决问题.16.(2分)如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若=,则∠B=18°.【分析】如图,连接OC.首先证明=,即可推出∠AOC=×180°=36°解决问题;【解答】解:如图,连接OC.∵=,=,∴=,∴=,∴∠AOC=×180°=36°,∵OC=OB,∴∠OCB=∠B,∵∠AOC=∠B+∠OCB,∴∠B=18°,故答案是:18【点评】本题考查了圆周角定理,翻折变换等知识,正确的作出辅助线是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(a+2+)÷(a﹣).【分析】根据分式的加减法和除法可以解答本题.【解答】解:(a+2+)÷(a﹣)===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.18.(7分)解不等式组并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得x<2.解不等式②,得x≥﹣1.所以,不等式组的解集是﹣1≤x<2.在数轴上表示:.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.19.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是②(直接写出这个条件的序号).【分析】(1)只要证明△AOE≌△COF(ASA),可得AE=CF即可解决问题;(2)条件②多余;【解答】解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形.(2)在本题①②③三个已知条件中,去掉一个条件②,(1)的结论依然成立.故答案为②【点评】本题考查平行四边形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿豆角批发价(单位:元/千克) 3.6 4.6零售价(单位:元/千克) 5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,3.6×西红柿的重量+4.6×豆角的重量=180,根据这两个等量关系可列出方程组.【解答】解:设批发了西红柿x千克,豆角y千克由题意得:解得:(5.4﹣3.6)×4+(7.5﹣4.6)×36=111.6(元)答:卖完这些西红柿和豆角能赚111.6元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,栽设出未知数,列出方程组.21.(8分)超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出它们总重量超过232g的结果数,然后根据概率公式计算.【解答】解:(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中它们总重量超过232g的结果数为4,所以它们总重量超过232g的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.22.(8分)河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是①.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.整理数据(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°;②估计九年级A、B类学生一共有225名.成绩(单位:分)频数频率A类(80~100)18B类(60~79)9C类(40~59)6D类(0~39)3分析数据(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和河西中学71524320.75复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.【分析】(1)根据抽样调查的可靠性解答可得;(2)①用360°乘以C、D类别的频率可得;②总人数乘以A、B的频率之和;(3)根据方差和频率的意义解答可得.【解答】解:(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是:①在九年级学生中随机抽取36名学生的成绩,故答案为:①;(2)①C类部分的圆心角度数为360°×=60°,D类部分的圆心角度数为360°×=30°,故答案为:60°,30°;②估计九年级A、B类学生一共有300×(+)=225,故答案为:225;(3)选择河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.选择复兴中学,理由是平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多.【点评】本题考查频数分布表、扇形统计图、用样本估计总体、方差、平均数,解答本题的关键是明确题意,找出所求问题需要的条件.23.(8分)如图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC =30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1m).(参考数据:tan15°≈0.27,tan30°≈0.58)【分析】过点A作AP⊥EF,垂足为P,想办法求出PC的长即可解决问题;【解答】解:过点A作AP⊥EF,垂足为P.∵AD⊥DE,∴∠ADE=90°,∵AD∥EF,∴∠DEP=90°,∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°,∴四边形ADEP为矩形,∴EP=AD=0.5m,∠APC=90°,∠ACB=45°,∴∠CAP=45°=∠ACB,∠BAP=∠CAP﹣∠CAB=45°﹣30°=15°,∴AP=CP,在Rt△APB中,tan∠BAP==tan15°=0.27,∴BP=0.27AP=0.27CP,∴BC=CP﹣BP=CP﹣0.27CP=0.73CP=1.2m∴CP=1.64m,∴CF=EF﹣EP﹣CP=3.5﹣0.5﹣1.64=1.36≈1.4m【点评】本题考查解直角三角形的应用、矩形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(9分)一辆货车从甲地出发以每小时80km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5h后,在距乙地160km处与轿车相遇.图中线段AB表示货车离乙地的距离y1km与货车行驶时间xh的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图象,求该图象与x轴交点坐标并解释其实际意义.【分析】(1)根据函数图象和题意可以求得y1与x之间的函数表达式;(2)根据题意可以求得y2与x之间的函数表达式并画出图象,并求出该图象与x轴交点坐标并解释其实际意义.【解答】解:(1)由条件可得k1=﹣80,设y1=﹣80x+b1,过点(2.5,160),可得方程160=﹣80×2.5+b1解得,b1=360,∴y1=﹣80x+360;(2)当y1=0时,可得x=4.5轿车和货车同时到达,终点坐标为(4.5,360)设y2=k2x+b2,过点(2.5,160)和(4.5,360)解得k2=100,b2=﹣90∴y2=100x﹣90,轿车离乙地的距离y2与x的图象如右图所示,与x轴交点坐标为(0.9,0),实际意义是轿车比货车晚出发0.9h.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.25.(8分)某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=﹣3x+90.(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;(2)当x为多少元时,销售利润最大?最大利润是多少?【分析】(1)根据每天的销售利润等于每件的利润乘以销售量求解;(2)利用顶点式求出函数最值进而得出答案.【解答】解:(1)表达式为:y=(﹣3x+90)(x﹣20)化简为y=﹣3x2+150x﹣1800;(2)把表达式化为顶点式:y=﹣3(x﹣25)2+75,当x=25时,y有最大值75,答:当售价为25元时,有最大利润75元.【点评】本题考查了二次函数的应用以及配方法求出二次函数最值,正确得出函数关系式是解题关键.26.(9分)Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.【分析】(1)连接OD,根据等腰三角形性质求出∠OEG=∠ODE,∠ADG=∠AGD=∠EGC,求出∠ODA=90°,根据切线的判定得出即可;(2)连接OF,解直角三角形求出CE和CF,根据勾股定理求出半径,再证△ECF∽△BDO即可.【解答】(1)证明:连结OD,∵∠ACB=90°,∴∠OED+∠EGC=90°,∵OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB,∵OD为半径,∴AB是⊙O的切线;(2)解:连接OF,∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3,又∵EF=5,∴CF=4,CE=3,设半径=r,则OF=r,CF=4,CO=r﹣3.在Rt△OCF中,由勾股定理,可得r=,∵EF∥AB,∴∠CEF=∠B,∵∠ECF=∠ODB=90°,∴△CEF∽△DBO,∴=,∴=,∴BD=.【点评】本题考查了切线的判定,相似三角形的性质和判定,勾股定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键.27.(10分)图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=2cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.【分析】(1)①由平行线的性质得出∠O=∠CP A,由折叠的性质得出∠C=∠O,OP=CP,证出∠CP A=∠C,得出OP∥QC,证出四边形OPCQ是菱形,得出OQ=OP=2cm 即可;②先过点P作OB的垂线l,然后依据依据点C在l上且点OP=OC作图即可;(2)当折叠后重叠部分为等腰三角形时,符合条件的点Q共有5个;点C在∠AOB的内部或一边上时,由折叠的性质、三角形内角和定理以及解直角三角形即可求出OQ的长;点C在∠AOB的外部时,同理求出OQ的长即可【解答】解:(1)①当PC∥QB时,∠O=∠CP A,由折叠的性质得:∠C=∠O,OP=CP,∴∠CP A=∠C,∴OP∥QC,∴四边形OPCQ是平行四边形,∴四边形OPCQ是菱形,∴OQ=OP=2cm;故答案为:2cm;②如图所示:(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ.因为△CPQ是由△OPQ折叠得到,所以当△OPQ为等腰三角形时,重叠部分必为等腰三角形.如图1、2、3三种情况:当PQ=PO时,OQ=OP=2cm,当QO=QP时,OQ=OP=cm,当OQ=OP时,OQ=OP=2cm.当点C在∠AOB的外部时,当点C在射线OB的上方时(如图4),OQ=﹣(cm)当点C在射线OA的下方时(如图5),OQ=+(cm).综上所述:当折叠后重叠部分为等腰三角形时,OQ的长为2cm或cm或2cm,或(﹣)cm或(+)cm.【点评】本题是三角形综合题目,考查了折叠的性质、等腰直角三角形的判定与性质、平行线的性质、等腰三角形的判定与性质、菱形的判定与性质、解直角三角形等知识;本题综合性强,有一定难度,熟练掌握折叠的性质,证明三角形是等腰直角三角形是解决问题的关键,注意分类讨论.。

江苏省南京市建邺区中考数学一模试题(有答案)

江苏省南京市建邺区中考数学一模试题(有答案)

注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题纸上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题纸上.3.答选择题必须用2B 铅笔将答题纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必面用0.5毫米黑色墨水签字笔写在答题纸上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上) 1.()2-+的值是( )A .2-B .2C .2±D .42.联合国粮农组织2012年6月发表声明,指出全世界每年浪费的粮食数量达到约1300000000吨.将1300000000用科学记数法可表示为( )A .81310⨯B .81.310⨯C .91.310⨯D .100.1310⨯ 3.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果125∠=°,那么2∠的度数是( )A .100°B .105°C .115°D .120°4.为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是( )小明 小君 小红 小华A .31分B .33分C .36分D .38分5.甲、乙两名射击运动员在某场测试中各射击20次,甲、乙两人的测试成绩如下表,A .甲B .乙C .甲、乙两人成绩稳定程度相同D .无法确定6.在同一直角坐标系中,P 、Q 分别是3y x =-+与35y x =-的图象上的点,且P 、Q 关于原点成中心对称,则点P 的坐标是( )A .()21,B .()25-,C .1722⎛⎫- ⎪⎝⎭,D .()47-,21二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上) 7.在函数12y x=+中,自变量x 的取值范围是 . 8.在1-,()22-,03,14-中任取一个数,取到正数的概率是 . 9.如图,在直角坐标系中,直线2y x =与双曲线()0ky k x=≠相交于A 、B 两点,过A 作AC x ⊥轴,过B 作BC y ⊥轴,AC 、BC 交于点C 且ABC △的面积为8,则k = .CO BAy x10.如图,12345∠+∠+∠+∠+∠= .5432111.如图,在四边形ABCD 中,8AC =,6BD =,且AC BD ⊥,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则22EG FH += .H GFE D C BA12.如图,在矩形ABCD 中,5AD =,4AB =,E 是BC 上的一点,3BE =,DF AE ⊥,垂足为F ,则tan FDC ∠= .F EDCBA13.两组邻边分别相等的四边形我们称它为菱形.如图,在四边形ABCD 中,AB AD =,BC DC =,AC 与BD 相交于点O ,下列判断正确的有 .(填序号).①AC BD ⊥;②AC 、BD 互相平分; ③AC 平分BDC ∠;ODCBA④90ABC ADC∠=∠=°;⑤筝形ABCD的面积为12AC BD⋅.14.如图,Rt ABC△的周长为(5cm+,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为225cm,则ABC△的面积是2cm.NMPQCBA15.如图,在梯形ABCD中,45C∠=°,90BAD B∠=∠=°,3AD=,CD=,M为BC上一动点,则AMD△周长的最小值为.M DCBA16.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则EFD∠=.F EDCBA三、解答题(本大题共有12小题,共88分.请在答题纸指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题6分)解不等式组()3261213x xxx⎧--⎪⎨+>-⎪⎩≤.18.(本题6分)化简:22111111x xx x x x x+⎛⎫+÷-⎪+-+-⎝⎭.19.(本题6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin150.26°≈,cos150.97°≈,tan150.27°≈,sin750.97°≈,cos750.26°≈,tan75 3.73°≈)图2CBA20.(本题6分)把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.32121.(本题6分)通常儿童服药量要少于成人.某药厂用来计算儿童服药量y 的公式为12axy x =+,其中a 为成人服药量,x 为儿童的年龄()13x ≤.问: (1)3岁儿童服药量占成人服药量的 ;(2)请求出哪个年龄的儿童服药量占成人服药量的一半?22.(本题7分)如图,已知点E ,C 在线段BF 上,BE EC CF ==,AB DE ∥,ACB F ∠=∠.(1)求证:ABC DEF △≌△;(2)试判断:四边形AECD 的形状,并证明你的结论.FE DCBA23.(本题7分)小明就本班同学“上网情况”进行了一次调查统计.下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有 名学生; (2)补全条形统计图;(3)若全校有1830名学生,请你估计出“其他”部分的学生人数.“上网情况”调查统计图人数玩游戏 聊天 查资料 其他 项目1615246810161412 其他查资料玩游戏30%聊天18%24.(本题8分)在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是2:1,设制作这面镜子的宽度是x 米,总费用是y 元,则224018060y x x =++.(注:总费用=镜面玻璃的费用+边框的费用+加工费)(1)这块镜面玻璃的价格是每平方米 元,加工费 元; (2)如果制作这面镜子共花了210元,求这面镜子的长和宽.25.(本题8分)甲、乙两观光船分别从A 、B 两港同时出发,相向而行,两船在静水中速度相同,水流速度为5千米/小时,甲船逆流而行4小时到达B 港.下图表示甲观光船距A 港的距离y (千米)与行驶时间x (小时)之间的函数关系式,结合图象解答下列问题:(1)A 、B 两港距离 千米,船在静水中的速度为 千米/小时; (2)在同一坐标系中画出乙船距A 港的距离y (千米)与行驶时间x (小时)之间的函数图象;(3)求出发几小时后,两船相距5千米.y /千米x /小时10203040 1 2 3 426.(本题8分)如图,直线与O 交于C 、D 两点,且与半径OA 垂直,垂足为H ,30ODC ∠=°,在OD 的延长线上取一点B ,使得AD BD =.(1)判断直线AB 与O 的位置关系,并说明理由;(2)若O 的半径为2,求图中阴影部分的面积.(结果保留π)27.(本题10分)已知:四边形ABCD 中,对角线的交点为O ,E 是OC 上的一点,过点A 作AG BE ⊥于点G ,AG 、BD 交于点F .(1)如图1,若四边形ABCD 是正方形,求证:OE OF =;(2)如图2,若四边形ABCD 是菱形,120ABC ∠=°.探究线段OE 与OF 的数量关系,并说明理由;(3)如图3,若四边形ABCD 是等腰梯形,ABC α∠=,且AC BD ⊥.结合上面的活动经验,探究线段OE 与OF 的数量关系为 .(直接写出答案).图1O G F E DCBA图2AB CDEFG O图3ABCDEFG O28.(本题10分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 一上两点,经过点A 、C 、B 的抛物线的一部分1C 与经过点A 、D B 的抛物线的一部分2C 组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为302⎛⎫- ⎪⎝⎭,,点M 是抛物线()22:230C y mx mx m m =--<的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得PBC △的面积最大?若存在,求出PBC △面积的最大值;若不存在,请说明理由;(3)当BDM △为直角三角形时,求m 的值.MODCBA y x备用图xyA B C DOM建邺区2013年九年级学情分析卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.≠x -2 8.34 9.4 10.540 11.5012.43 13.①、③、⑤ 14.5 15.8 16.45三、解答题(12小题,共88分) 17. (本题6分)解:解不等式①,0≥x ; ·························· 2分 解不等式②,x ﹤4. ··························· 4分所以,原不等式组的解集为0≤ x <4. ···················· 6分18. (本题6分)解:原式 ···················· 2分····································· 4分 ····································· 6分 19. (本题6分)解: 过点A 做AD ⊥BC 交 BC 于点D . ····················· 1分 BC =2AB cos15°=24 cos15° ≈23.18>20. ··············· 5分 ∴能够画出一个半径为20cm 的圆. ····················· 6分 20. (本题6分)解: 游戏不公平 ····························· 1分 游戏结果共(1,1),(1,2),(1,3), (2,1) ,(2,2) , (2,3) , (3,1) , (3,2) , (3,3)9种 ,是等可能出现的. ·························· 4分 所以,P (小亮获胜)=94 ,P (小明获胜)=95. 所以游戏规则不公平. ······· 6分 21. (本题6分) (1)51······························· 2分 (2 ) 解:当a y 21=,得122+=x axa , ···················· 3分即1221+=x x. 解得12=x . ···················· 4分 检验 12=x 是原方程的解. ····················· 5分 答:12岁儿童的服药量占成人服药量的一半. ················· 6分 22. (本题7分)(1)证明:AB ∥,DE ∴∠B=∠DEF . ·················· 1分∵BC=EC=CF ∴BC=EF . ·························· 2分 ∠B=∠DEF , BC=EF , ∠ACB=∠F∴△ABC ≌△DEF .(ASA ) ························· 3分 (2)四边形AECD 是平行四边形. ······················· 4分 ∵△ABC ≌△DEF ,∴AB =CD , ∵AB ∥DE , AB =CD . ∴四边形ABED 是平行四边形. ························ 5分∴AD ∥BE ,AD =BE .∵BE =EC ∴AD ∥EC ,AD =EC .∴四边形AECD 是平行四边形. ························ 7分 23. (本题7分)(1)50 ································· 2分 (2)补全条形统计图(略). ························ 4分(3)人数为1830×20%=366人. ······················· 7分 24. (本题8分)(1) 120;60 ······························ 4分(2)解:当y =210时, 可得方程 210601802402=++x x , ········· 5分解得 25.1,5.021-==x x (舍去) ···················· 7分答:镜子的长为1米,宽为0.5米. ···················· 8分25. (本题8分)(1) 40; 15 ······························ 2分(2) 函数图象(略) ··························· 4分(3) 67h 或23h . ····························· 8分 26. (本题8分)(1)解:直线AB 与⊙O 相切. ························ 1分∵∠ODC =30°,OA ⊥CD , ∴∠DOA =60°.∵OA =OD , ∴∠OAD =∠ODA =60°.又∵AD =AB ∴∠DAB =30°.∴∠OAB =90°. ···················· 3分∴OA ⊥AB ································· 4分∵OA 为⊙O 半径,∴直线AB 与⊙O 相切. ··················· 5分(2) ∵ππ322360602=⨯=OAD S 扇形 ······················ 6分 ∵3232221=⨯⨯=∆OAB S ························· 7分 ∴π32-32=阴影S . ···························· 8分 27. (本题10分)(1)证明:∵四边形ABCD 是正方形,对角线的交点为O ,∴AC =BD ,OA =OC ,OB =OD ,∴OA =OB . ··················· 1分∵AC ⊥BD ,AG ⊥BE ,∴∠FAO +∠AFO =90°,∠EAG +∠AEG =90°,∴∠AFO =∠BEO . ····························· 3分又∵∠AOF =∠BOE =90°∴△AOF ≌△BOE .∴OE =OF . ············· 4分(2)OF =3OE ······························ 5分 ∵四边形ABCD 是菱形,对角线的交点为O ,∠ABC =120°∴AC ⊥BD ,∠ABO =60° ∴∠FAO +∠AFO =90°.∵AG ⊥BE ,∴∠EAG +∠BEA =90°.∴∠AFO =∠BEO 又∵∠AOF =∠BOE =90°∴△AOF ∽△BOE . ····························· 8分∴OF :OE =AO :OB .∵∠ABO =60°,AC ⊥BD ,∴AO :OB =tan60°=3.∴OF =3OE ······························· 8分(3)OF =tan (α-45°)OE 或OF =tan (135°-α)OE ············ 10分28. (本题10分)(1)解:令y =0,则 0322=--m mx mx ∵m <0,∴0322=--x x解得:3,121=-=x x .∴A (-1,0)、B (3,0). ······················· 2分(2)存在.∴2321:21--=x x y C ·························· 3分 设P (n , 23212--n n ) ∴ S 四边形BOCP = S △POC + S 四边形BOCP -S △BOC =1627)23(432+--n ············· 5分 ∵a =43-<0, ∴当n =23时,S △PBC 最大值为1627. ················ 6分 (3)由C 2可知: D (0,-3m ), M (1,-4m ) , B (3,0) BD 2=992+m , BM 2=4162+m , DM 2=12+m ,∵∠MBD <90°, ∴讨论∠BMD =90°和∠BDM =90°两种情况.当∠BMD =90°时,BM 2+ DM 2= BD 2 ,4162+m +12+m =992+m 解得:m 1=22-, m 1=22(舍去) ······················ 8分 当∠BDM =90°时,BD 2+ DM 2= BM 2 ,992+m +12+m =4162+m解得:m 1= -1, m 1=1 (舍去) 综上 m =-1或m =22-时,△BDM 为直角三角形. ··············· 10分。

【真题】南京市2018年中考数学试卷含答案(Word版)

【真题】南京市2018年中考数学试卷含答案(Word版)

南京市2018年初中毕业生学业考试数 学第Ⅰ卷(共12分)一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.) A .32 B .32- C .32± D .81162.计算()233a a⋅的结果是( )A .8a B .9a C .11a D .18a 3.下列无理数中,与4最接近的是( )A B D 4.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大5.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c + C.a b c -+ D .a b c +-6.用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是( )A .①②B .①④ C. ①②④ D .①②③④第Ⅱ卷(共108分)二、填空题(每题2分,满分20分,将答案填在答题纸上)7.写出一个数,使这个数的绝对值等于它的相反数: .8.习近平同志在党的十九大报告中强调,生态文明建设功在当代,利在千秋.55年来,经过三代人的努力,河北塞罕坝林场有林地面积达到1120000亩.用科学记数法表示1120000是 .9.x 的取值范围是 .10.的结果是 . 11.已知反比例函数ky x=的图像经过点()3,1--,则k = . 12.设1x 、2x 是一元二次方程260x mx --=的两个根,且12=1x x +,则1x = ,2x = .13.在平面直角坐标系中,点A 的坐标是()1,2-.作点A 关于y 轴的对称点,得到点A ',再将点A '向下平移4个单位,得到点A '',则点A ''的坐标是( , ). 14.如图,在ABC △中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若10cm BC =,则DE = cm .15.如图,五边形ABCDE 是正五边形,若12//l l ,则12∠-∠= .16.如图,在矩形ABCD 中,5AB =,4BC =,以CD 为直径作O .将矩形ABCD 绕点C 旋转,使所得矩形A B CD '''的边A B ''与O 相切,切点为E ,边CD '与O 相交于点F ,则CF 的长为 .三、解答题 (本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤.)17. 计算532224m m m m -⎛⎫+-÷⎪--⎝⎭. 18. 如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边19. 刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?20. 如图,在四边形ABCD 中,BC CD =,2C BAD ∠=∠.O 是四边形ABCD 内一点,且OA OB OD ==.求证:(1)BOD C ∠=∠;(2)四边形OBCD 是菱形.21. 随机抽取某理发店一周的营业额如下表(单位:元):(1)求该店本周的日平均营业额.(2)如果用该店本周星期一到星期五的日平均营业额估计当月的营业总额,你认为是否合理?如果合理,请说明理由;如果不合理,请设计一个方案,并估计该店当月(按30天计算)的营业总额.22.甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球. (1)求摸出的2个球都是白球的概率. (2)下列事件中,概率最大的是( ). A .摸出的2个球颜色相同B .摸出的2个球颜色不相同C .摸出的2个球中至少有1个红球D .摸出的2个球中至少有1个白球23.如图,为了测量建筑物AB 的高度,在D 处树立标杆CD ,标杆的高是2m .在DB 上选取观测点E 、F ,从E 测得标杆和建筑物的顶部C 、A 的仰角分别为58、45,从F 测得C 、A 的仰角分别为22、70.求建筑物AB 的高度(精确到0.1m ) . (参考数据:tan 220.40≈,tan 58 1.60≈,tan 70 2.75≈.)24.已知二次函数()()213y x x m =---(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点; (2)当m 取什么值时,该函数的图像与y 轴的交点在x 轴的上方?25. 小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min 回到家中.设小明出发第min t 时的速度为m /min v ,离家的距离为m s .v 与t 之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2min 时离家的距离为 m ; (2)当25t <≤时,求s 与t 之间的函数表达式; (3)画出s 与t 之间的函数图像.26.如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径. 27.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt ABC △的内切圆与斜边AB 相切于点D ,3AD =,4BD =,求ABC △的面积.解:设ABC △的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得3AE AD ==,4BF BD ==,CF CE x ==. 根据勾股定理,得()()()2223434x x +++=+. 整理,得2712x x +=. 所以12ABC S AC BC =⋅△ ()()1342x x =++ ()217122x x =++ ()112122=⨯+12=.小颖发现12恰好就是34⨯,即ABC △的面积等于AD 与BD 的积.这仅仅是巧合吗? 请你帮她完成下面的探索.已知:ABC △的内切圆与AB 相切于点D ,AD m =,BD n =. 可以一般化吗?(1)若90C ∠=,求证:ABC △的面积等于mn . 倒过来思考呢?(2)若2AC BC mn ⋅=,求证90C ∠=. 改变一下条件……(3)若60C ∠=,用m 、n 表示ABC △的面积.试卷答案一、选择题1-5:ABCAD 6:B二、填空题7.1-(答案不唯一) 8.61.1210⨯ 9.2x ≥3 12.2-,3 13.1,2- 14.5 15.72 16.4三、解答题17.解:532224m m m m -⎛⎫+-÷⎪--⎝⎭ ()()()2252423m m m m m +---=⋅--()222923m m m m --=⋅--()()()332223m m m m m -+-=⋅--26m =+.18.解:(1)根据题意,得231x -+>. 解得1x <. (2)B.19.解:设这种大米的原价为每千克x 元, 根据题意,得105140400.8x x+=. 解这个方程,得7x =. 经检验,7x =是所列方程的解. 答:这种大米的原价为每千克7元. 20.(1)证法1:∵OA OB OD ==.∴点A 、B 、D 在以点O 为圆心,OA 为半径的圆上. ∴2BOD BAD ∠=∠.又2C BAD ∠=∠, ∴BOD C ∠=∠.证法2:如图①,作AO 的延长线OE . ∵OA OB =, ∴ABO BAO ∠=∠.又BOE ABO BAO ∠=∠+∠, ∴2BOE BAO ∠=∠. 同理2DOE DAO ∠=∠.∴()222BOE DOE BAO DAO BAO DAO ∠+∠=∠+∠=∠+∠, 即2BOD BAD ∠=∠. 又2C BAD ∠=∠, ∴BOD C ∠=∠.(2)证明:如图②,连接OC .∵OB OD =,CB CD =,OC OC =, ∴OBC ODC ≌△△.∴BOC DOC ∠=∠,BCO DCO ∠=.∵BOD BOC DOC ∠=∠+∠,BCD BCO DCO ∠=∠+∠, ∴12BOC BOD ∠=∠,12BCO BCD ∠=∠. 又BOD BCD ∠=∠. ∴BOC BCO ∠=∠, ∴BO BC =.又OB OD =,BC CD =, ∴OB BC CD DO ===,∴四边形OBCD 是菱形.21.解:(1)该店本周的日平均营业额为756071080÷=(元).(2)用该店本周星期一到星期五的日平均营业额估计当月的营业总额不合理.答案不唯一,下列解法供参考,例如,用该店本周星期一到星期日的日平均营业额估计当月的营业总额为10803032400⨯=(元).22.解:(1)将甲口袋中2个白球、1个红球分别记为1白、2白、1红,将乙口袋中1个白球、1个红球分别记为3白、2红,分别从每个口袋中随机摸出1个球,所有可能出现的结果有:()13白白,、()12白红,、()23白白,、()22白红,、()13红白,、()12红红,,共有6种,它们出现的可能性相同,所有的结果中,满足“摸出的2个球都是白球”(记为事件A )的结果有2种,即()13白白,、()23白白,,所以()2163P A ==. (2)D.23.解:在Rt CED △中,58CED ∠=,∵tan 58CDDE =. ∴2tan 58tan 58CD DE ==.在Rt CFD △中,22CFD ∠=,∵tan 22CDDF =∴2tan 22tan 22CD DF ==.∴22tan 22tan 58EF DF DE =-=-.同理tan 45tan 70AB ABEF BE BF =-=-.∴22tan 45tan 70tan 22tan 58AB AB -=-. 解得()5.9m AB ≈.因此,建筑物AB 的高度约为5.9m .24.(1)证明:当0y =时,()()2130x x m ---=.解得11x =,23x m =+.当31m +=,即2m =-时,方程有两个相等的实数根;当31m +≠,即2m ≠-时,方程有两个不相等的实数根.所以,不论m 为何值,该函数的图像与x 轴总有公共点.(2)解:当0x =时,26y m =+,即该函数的图像与y 轴交点的纵坐标是26m +. 当260m +>,即3m >-时,该函数的图像与y 轴的交点在x 轴的上方.25.(1)200.(2)根据题意,当25t <≤时,s 与t 之间的函数表达式为()2001602s t =+-,即160120s t =-.(3)s 与t 之间的函数图像如图所示.26.(1)证明:在正方形ABCD 中,90ADC ∠=.∴90CDF ADF ∠+∠=.∵AF DE ⊥.∴90AFD ∠=.∴90DAF ADF ∠+∠=.∴DAF CDF ∠=∠.∵四边形GFCD 是O 的内接四边形,∴180FCD DGF ∠+∠=.又180FGA DGF ∠+∠=,∴FGA FCD ∠=∠.∴AFG DFC ∽△△.(2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠,∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AF DA DF=. ∵AFG DFC ∽△△, ∴AG AF DC DF=. ∴AG EA DC DA =. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=,∴CG 是O 的直径.∴O 的半径为52.27.解:设ABC △的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得AE AD m ==,BF BD n ==,CF CE x ==.(1)如图①,在Rt ABC △中,根据勾股定理,得()()()222x m x n m n +++=+. 整理,得()2x m n x mn ++=. 所以12ABC S AC BC =⋅△ ()()12x m x n =++ ()212x m n x mn ⎡⎤=+++⎣⎦ ()12mn mn =+ mn =.(2)由2AC BC mn ⋅=,得()()2x m x n mn ++=.整理,得()2x m n x mn ++=. 所以()()2222AC BC x m x n +=+++()2222x m n x m n ⎡⎤=++++⎣⎦ 222m n mn =++()2m n =+ 2AB =.根据勾股定理的逆定理,得90C ∠=.(3)如图②,过点A 作AG BC ⊥,垂足为G .在Rt ACG △中,()3sin 602AG AC x m =⋅=+,()1cos 602CG AC x m =⋅=+.所以()()12BG BC CG x n x m =-=+-+. 在Rt ABG △中,根据勾股定理,得)()()()22212x m x n x m m n ⎤⎡⎤+++-+=+⎥⎢⎥⎣⎦⎣⎦. 整理,得()23x m n x mn ++=. 所以12ABC S BC AG =⋅△())12x n x m =++()24x m n x mn ⎡⎤=+++⎣⎦)34mn mn =+=.。

2018年江苏省南京市建邺区中考数学一模试卷及答案详解

2018年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列计算结果为负数的是()A.(﹣3)+(﹣4)B.(﹣3)﹣(﹣4)C.(﹣3)×(﹣4)D.(﹣3)﹣42.(2分)计算a6×(a2)3÷a4的结果是()A.a3B.a7C.a8D.a93.(2分)若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<44.(2分)下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和﹣15.(2分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm6.(2分)如图①,是一个每条棱长均相等的三棱锥.图②是它的主视图、左视图与俯视图.若边AB的长度为a.则在这三种视图的所有线段中.长度为a的线段条数是()A.12条B.9条C.5条D.4条二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)函数y=中自变量x的取值范围是.8.(2分)分解因式a3﹣a的结果是.9.(2分)若关于x的一元二次方程x2﹣kx﹣2=0有一个根是1,则另一个根是.10.(2分)辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是.11.(2分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12S22(填“>”、“=”或“<”).12.(2分)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与一次函数y2=﹣x+a(a为常数,a≠0)的图象相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为.13.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为cm.14.(2分)如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=.15.(2分)如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为(用含a的代数式表示).16.(2分)如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若=,则∠B=°.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(a+2+)÷(a﹣).18.(7分)解不等式组并把它的解集在数轴上表示出来.19.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是(直接写出这个条件的序号).20.(8分)某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿豆角批发价(单位:元/千克) 3.6 4.6零售价(单位:元/千克) 5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?21.(8分)超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?22.(8分)河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.整理数据(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为°、°;②估计九年级A、B类学生一共有名.成绩(单位:分)频数频率A类(80~100)18B类(60~79)9C类(40~59)6D类(0~39)3分析数据(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和河西中学71524320.75复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.23.(8分)如图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC =30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1m).(参考数据:tan15°≈0.27,tan30°≈0.58)24.(9分)一辆货车从甲地出发以每小时80km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5h后,在距乙地160km处与轿车相遇.图中线段AB表示货车离乙地的距离y1km与货车行驶时间xh的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图象,求该图象与x轴交点坐标并解释其实际意义.25.(8分)某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=﹣3x+90.(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;(2)当x为多少元时,销售利润最大?最大利润是多少?26.(9分)Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.27.(10分)图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.2018年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列计算结果为负数的是()A.(﹣3)+(﹣4)B.(﹣3)﹣(﹣4)C.(﹣3)×(﹣4)D.(﹣3)﹣4【分析】根据有理数的加减、乘除和乘方计算即可.【解答】解:A、(﹣3)+(﹣4)=﹣7,正确;B、(﹣3)﹣(﹣4)=1,错误;C、(﹣3)×(﹣4)=12,错误;D、(﹣3)﹣4=,错误;故选:A.【点评】此题考查负整数指数幂,关键是根据法则计算.2.(2分)计算a6×(a2)3÷a4的结果是()A.a3B.a7C.a8D.a9【分析】根据同底数幂的乘法、除法和幂的乘方计算即可.【解答】解:a6×(a2)3÷a4=a6+6﹣4=a8,故选:C.【点评】此题考查同底数幂的除法,关键是根据法则计算.3.(2分)若锐角三角函数tan55°=a,则a的范围是()A.0<a<1B.1<a<2C.2<a<3D.3<a<4【分析】由tan45°=1,tan60°=且锐角范围内tanα随∠α的增大而增大,知tan45°<tan55°<tan60°,即1<a<,从而得出答案.【解答】解:∵tan45°=1,tan60°=,且锐角范围内tanα随∠α的增大而增大,∴tan45°<tan55°<tan60°,即1<a<,则1<a<2,故选:B.【点评】本题主要考查锐角三角函数的增减性,解题的关键是掌握特殊锐角的三角函数值及tanα随∠α的增大而增大.4.(2分)下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A.0B.1C.0和1D.1和﹣1【分析】依据相反数,绝对值,平方根和立方根的定义求解即可.【解答】解:∵0的相反数是0,02=0,03=0,∴相反数、平方根、立方根、绝对值都等于它本身的数是0.故选:A.【点评】本题主要考查的是相反数、绝对值、平方根和立方根的定义,掌握相反数、绝对值、平方根和立方根的定义是解题的关键.5.(2分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =4cm,则球的半径长是()A.2 cm B.2.5 cm C.3 cm D.4 cm【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4﹣x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【解答】解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=2,在直角三角形OMF中,OM2+MF2=OF2即:(4﹣x)2+22=x2解得:x=2.5故选:B.【点评】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.6.(2分)如图①,是一个每条棱长均相等的三棱锥.图②是它的主视图、左视图与俯视图.若边AB的长度为a.则在这三种视图的所有线段中.长度为a的线段条数是()A.12条B.9条C.5条D.4条【分析】根据线段AB=a知三棱锥的棱长为a,据此可知主视图的三角形中只有底边长为a、左视图中左上线段的长度为a,俯视图中大三角形的三条边均为a,即可得出答案.【解答】解:因为主视图中线段AB=a,所以该三棱锥的棱长为a,在主视图的三角形中只有底边长为a、左视图中左上线段的长度为a,俯视图中大三角形的三条边均为a,即三视图中长度为a的线段有5条,故选:C.【点评】本题主要考查简单几何体的三视图,解题的关键是熟练掌握三视图的定义及常见几何体的三视图.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)函数y=中自变量x的取值范围是x≤1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1﹣x≥0,解得x≤1.故答案为:x≤1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(2分)分解因式a3﹣a的结果是a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.(2分)若关于x的一元二次方程x2﹣kx﹣2=0有一个根是1,则另一个根是﹣2.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,由根据根与系数的关系可得:x1•1=﹣2,∴x1=﹣2.故答案为:﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.10.(2分)辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2分)一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12=S22(填“>”、“=”或“<”).【分析】根据方差的定义分别计算出两组数据的方差即可得.【解答】解:第1组数据的平均数为×(1+2+3+4+5)=3,则其方差S12=×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;第2组数据的平均数为×(6+7+8+9+10)=8,则其方差S22=×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2;∴S12=S22,故答案为:=.【点评】本题考查了方差的意义,解题的关键是观察数据,找到波动较小的就方差小,也可以分别求得方差后再比较,难度不大.12.(2分)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与一次函数y2=﹣x+a(a为常数,a≠0)的图象相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为(n,m).【分析】依据一次函数y2=﹣x+a(a为常数,a≠0)的图象经过一二四或二三四象限,可得反比例函数图象经过而四象限,进而得出A、B两点关于直线y=x对称,由此可得点B的坐标.【解答】解:∵反比例函数y1=(k为常数,k≠0)的图象与一次函数y2=﹣x+a(a 为常数,a≠0)的图象相交于A、B两点,∴A、B两点关于直线y=x对称,又∵点A的坐标为(m,n),∴点B的坐标为(n,m),故答案为:(n,m).【点评】本题主要考查了反比例函数图象与一次函数图象的交点问题.点(a,b)关于直线y=x对称的点为(b,a),关于原点对称的两点的横、纵坐标分别互为相反数.13.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为cm.【分析】连接OB、OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.【解答】解:连接OB、OD,∵∠A=110°,∴∠C=70°,∴∠BOD=140°,则劣弧==.故答案为:.【点评】本题考查了弧长的计算,解答本题的关键是根据圆周角定理求出∠BOD的度数,注意掌握弧长公式.14.(2分)如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=108°.【分析】利用正五边形的性质得出BC=CD,∠BCF=∠D,再利用全等三角形的判定得出△BCF≌△CDG;利用全等三角形的性质得出∠CBF+∠BCH=∠BHG,进而得出∠DCG+∠BCH=∠BHG=∠BCD即可得出答案.【解答】解:∵正五边形ABCDE,∴BC=CD,∠BCF=∠D,∴在△BCF和△CDG中,∴△BCF≌△DCG(SAS);∴∠CBF=∠DCG,∵∠CBF+∠BCH=∠BHG,∴∠DCG+∠BCH=∠BHG=∠BCD==108°.∴∠BHG=108°.故答案为:108°【点评】此题主要考查了全等三角形的判定与性质以及正五边形的性质等知识,熟练掌握全等三角形的判定方法是解题关键.15.(2分)如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为a(用含a的代数式表示).【分析】连接AD,过B作BM⊥AD于M,过C作CN⊥AD于N,求出AD的长,利用梯形的中位线定理即可解决问题;【解答】解:连接AD,过B作BM⊥AD于M,过C作CN⊥AD于N,∵正八边形ABCDEFGH的边长为a,∴∠BAH=135°,∵∠DAH=90°,∴∠BAM=45°,∴AM=BM=DN=a,∴AD=a+a,∵BI=IA,CJ=JD,∴IJ==a,故答案为a.【点评】本题考查正多边形与圆,等腰直角三角形的判定和性质,梯形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,特殊四边形解决问题.16.(2分)如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若=,则∠B=18°.【分析】如图,连接OC.首先证明=,即可推出∠AOC=×180°=36°解决问题;【解答】解:如图,连接OC.∵=,=,∴=,∴=,∴∠AOC=×180°=36°,∵OC=OB,∴∠OCB=∠B,∵∠AOC=∠B+∠OCB,∴∠B=18°,故答案是:18【点评】本题考查了圆周角定理,翻折变换等知识,正确的作出辅助线是解题的关键.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(a+2+)÷(a﹣).【分析】根据分式的加减法和除法可以解答本题.【解答】解:(a+2+)÷(a﹣)===.【点评】本题考查分式的混合运算,解答本题的关键是明确分式的混合运算的计算方法.18.(7分)解不等式组并把它的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得x<2.解不等式②,得x≥﹣1.所以,不等式组的解集是﹣1≤x<2.在数轴上表示:.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.19.(7分)如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是②(直接写出这个条件的序号).【分析】(1)只要证明△AOE≌△COF(ASA),可得AE=CF即可解决问题;(2)条件②多余;【解答】解:(1)∵四边形ABCD是平行四边形,∴AE∥CF,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴AE=CF,∴四边形AFCE是平行四边形.(2)在本题①②③三个已知条件中,去掉一个条件②,(1)的结论依然成立.故答案为②【点评】本题考查平行四边形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:品名西红柿豆角批发价(单位:元/千克) 3.6 4.6零售价(单位:元/千克) 5.47.5问:他当天卖完这些西红柿和豆角能赚多少钱?【分析】通过理解题意可知本题的两个等量关系,西红柿的重量+豆角的重量=40,3.6×西红柿的重量+4.6×豆角的重量=180,根据这两个等量关系可列出方程组.【解答】解:设批发了西红柿x千克,豆角y千克由题意得:解得:(5.4﹣3.6)×4+(7.5﹣4.6)×36=111.6(元)答:卖完这些西红柿和豆角能赚111.6元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,栽设出未知数,列出方程组.21.(8分)超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?【分析】(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出它们总重量超过232g的结果数,然后根据概率公式计算.【解答】解:(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中它们总重量超过232g的结果数为4,所以它们总重量超过232g的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.22.(8分)河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是①.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.整理数据(2)将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为60°、30°;②估计九年级A、B类学生一共有225名.成绩(单位:分)频数频率A类(80~100)18B类(60~79)9C类(40~59)6D类(0~39)3分析数据(3)教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:学校平均数(分)极差(分)方差A、B类的频率和河西中学71524320.75复兴中学71804970.82你认为哪所学校本次测试成绩较好,请说明理由.【分析】(1)根据抽样调查的可靠性解答可得;(2)①用360°乘以C、D类别的频率可得;②总人数乘以A、B的频率之和;(3)根据方差和频率的意义解答可得.【解答】解:(1)若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是:①在九年级学生中随机抽取36名学生的成绩,故答案为:①;(2)①C类部分的圆心角度数为360°×=60°,D类部分的圆心角度数为360°×=30°,故答案为:60°,30°;②估计九年级A、B类学生一共有300×(+)=225,故答案为:225;(3)选择河西中学,理由是平均分相同,河西中学极差和方差较小,河西中学成绩更稳定.选择复兴中学,理由是平均分相同,复兴中学A,B类频率和高,复兴中学高分人数更多.【点评】本题考查频数分布表、扇形统计图、用样本估计总体、方差、平均数,解答本题的关键是明确题意,找出所求问题需要的条件.23.(8分)如图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC =30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF(结果精确到0.1m).(参考数据:tan15°≈0.27,tan30°≈0.58)【分析】过点A作AP⊥EF,垂足为P,想办法求出PC的长即可解决问题;【解答】解:过点A作AP⊥EF,垂足为P.∵AD⊥DE,∴∠ADE=90°,∵AD∥EF,∴∠DEP=90°,∵AP⊥EF,∴∠APE=∠APC=90°,∴∠ADE=∠DEP=∠APE=90°,∴四边形ADEP为矩形,∴EP=AD=0.5m,∠APC=90°,∠ACB=45°,∴∠CAP=45°=∠ACB,∠BAP=∠CAP﹣∠CAB=45°﹣30°=15°,∴AP=CP,在Rt△APB中,tan∠BAP==tan15°=0.27,∴BP=0.27AP=0.27CP,∴BC=CP﹣BP=CP﹣0.27CP=0.73CP=1.2m∴CP=1.64m,∴CF=EF﹣EP﹣CP=3.5﹣0.5﹣1.64=1.36≈1.4m【点评】本题考查解直角三角形的应用、矩形的判定和性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(9分)一辆货车从甲地出发以每小时80km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5h后,在距乙地160km处与轿车相遇.图中线段AB表示货车离乙地的距离y1km与货车行驶时间xh的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图象,求该图象与x轴交点坐标并解释其实际意义.【分析】(1)根据函数图象和题意可以求得y1与x之间的函数表达式;(2)根据题意可以求得y2与x之间的函数表达式并画出图象,并求出该图象与x轴交点坐标并解释其实际意义.【解答】解:(1)由条件可得k1=﹣80,设y1=﹣80x+b1,过点(2.5,160),可得方程160=﹣80×2.5+b1解得,b1=360,∴y1=﹣80x+360;(2)当y1=0时,可得x=4.5轿车和货车同时到达,终点坐标为(4.5,360)设y2=k2x+b2,过点(2.5,160)和(4.5,360)解得k2=100,b2=﹣90∴y2=100x﹣90,轿车离乙地的距离y2与x的图象如右图所示,与x轴交点坐标为(0.9,0),实际意义是轿车比货车晚出发0.9h.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.25.(8分)某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=﹣3x+90.(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;(2)当x为多少元时,销售利润最大?最大利润是多少?【分析】(1)根据每天的销售利润等于每件的利润乘以销售量求解;(2)利用顶点式求出函数最值进而得出答案.【解答】解:(1)表达式为:y=(﹣3x+90)(x﹣20)化简为y=﹣3x2+150x﹣1800;(2)把表达式化为顶点式:y=﹣3(x﹣25)2+75,当x=25时,y有最大值75,答:当售价为25元时,有最大利润75元.【点评】本题考查了二次函数的应用以及配方法求出二次函数最值,正确得出函数关系式是解题关键.26.(9分)Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.【分析】(1)连接OD,根据等腰三角形性质求出∠OEG=∠ODE,∠ADG=∠AGD=∠EGC,求出∠ODA=90°,根据切线的判定得出即可;(2)连接OF,解直角三角形求出CE和CF,根据勾股定理求出半径,再证△ECF∽△BDO即可.【解答】(1)证明:连结OD,∵∠ACB=90°,∴∠OED+∠EGC=90°,∵OD=OE,∴∠ODE=∠OED,∵AG=AD,∴∠ADG=∠AGD,∵∠AGD=∠EGC,∴∠OED+∠EGC=∠ADG+∠ODE=∠ADO=90°,∴OD⊥AB,∵OD为半径,∴AB是⊙O的切线;(2)解:连接OF,∵EF∥AB,AC:BC=4:3,∴CF:CE=4:3,又∵EF=5,∴CF=4,CE=3,设半径=r,则OF=r,CF=4,CO=r﹣3.在Rt△OCF中,由勾股定理,可得r=,∵EF∥AB,∴∠CEF=∠B,∵∠ECF=∠ODB=90°,∴△CEF∽△DBO,∴=,∴=,∴BD=.【点评】本题考查了切线的判定,相似三角形的性质和判定,勾股定理,等腰三角形的性质等知识点,能综合运用知识点进行推理是解此题的关键.27.(10分)图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=2cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);(2)当折叠后重叠部分为等腰三角形时,求OQ的长.【分析】(1)①由平行线的性质得出∠O=∠CP A,由折叠的性质得出∠C=∠O,OP=CP,证出∠CP A=∠C,得出OP∥QC,证出四边形OPCQ是菱形,得出OQ=OP=2cm 即可;②先过点P作OB的垂线l,然后依据依据点C在l上且点OP=OC作图即可;(2)当折叠后重叠部分为等腰三角形时,符合条件的点Q共有5个;点C在∠AOB的内部或一边上时,由折叠的性质、三角形内角和定理以及解直角三角形即可求出OQ的长;点C在∠AOB的外部时,同理求出OQ的长即可【解答】解:(1)①当PC∥QB时,∠O=∠CP A,由折叠的性质得:∠C=∠O,OP=CP,∴∠CP A=∠C,∴OP∥QC,∴四边形OPCQ是平行四边形,∴四边形OPCQ是菱形,∴OQ=OP=2cm;故答案为:2cm;②如图所示:(2)当点C在∠AOB的内部或一边上时,则重叠部分即为△CPQ.因为△CPQ是由△OPQ折叠得到,所以当△OPQ为等腰三角形时,重叠部分必为等腰三角形.如图1、2、3三种情况:当PQ=PO时,OQ=OP=2cm,当QO=QP时,OQ=OP=cm,当OQ=OP时,OQ=OP=2cm.当点C在∠AOB的外部时,当点C在射线OB的上方时(如图4),OQ=﹣(cm)当点C在射线OA的下方时(如图5),OQ=+(cm).综上所述:当折叠后重叠部分为等腰三角形时,OQ的长为2cm或cm或2cm,或(﹣)cm或(+)cm.【点评】本题是三角形综合题目,考查了折叠的性质、等腰直角三角形的判定与性质、平行线的性质、等腰三角形的判定与性质、菱形的判定与性质、解直角三角形等知识;本题综合性强,有一定难度,熟练掌握折叠的性质,证明三角形是等腰直角三角形是解决问题的关键,注意分类讨论.。

2018年南京市中考数学第一次模拟试卷-含答案

2018年南京市中考数学第一次模拟试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1.下列实数中,无理数是A .2B .-12C .3.14D .32.下列运算正确的是A .a 2+a 3=a 5B .a 2 a 3=a 6C .a 4÷a 2=a 2D .(a 2)4=a 63.不透明的布袋中有2个红球和3个白球,所有球除颜色外无其它差别.某同学从布袋里任意摸出一个球,则他摸出红球的概率是A .35B .25C .23D .124.某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为 A .5,7 B .6,7 C .8,5 D .8,7 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,AC ∥OB ,则∠BOC 的度数为A .30°B .45°C .60°D .75°6.如图,△ABC 三个顶点分别在反比例函数y = 1 x ,y = kx 的图像上,若∠C =90°,AC ∥y 轴,BC ∥x 轴,S △ABC =8,则k 的值为A .3B .4C .5D .6(第5题)Cy二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 若式子x -22在实数范围内有意义,则x 的取值范围是 ▲ . 8.2017南京国际马拉松于4月16日在本市正式开跑.本次参赛选手共12629人,将12629用科学记数法表示为 ▲ .9.因式分解:a 3-2a 2+a = ▲ .10.计算:42-8 = ▲ .11.已知 x 1,x 2是方程 x 2-4x +3=0 的两个实数根,则x 1+x 2= ▲ .12.将点A (2,-1)向左平移3个单位,再向上平移4个单位得到点A ′,则点A ′的坐标是 ▲ . 13.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到△COD的位置,则旋转角为 ▲ °.14.如图,在平行四边形ABCD 中,点E 为AB 边上一点,将△AED 沿直线DE 翻折,点A落在点P 处,且DP ⊥BC ,则∠EDP = ▲ °.15.如图,正五边形ABCDE 的边长为2,分别以点C 、D 为圆心,CD 长为半径画弧,两弧交于点F ,则⌒BF 的长为 ▲ .16.如图,在等腰△ABC 中,AB =AC =5,BC =6,半径为1的⊙O 分别与AB 、AC 相切于E 、F 两点,BG 是⊙O 的切线,切点为G ,则BG 的长为 ▲ .ABCDEP(第14题)A(第16题) BC D EF(第15题)AABCD O (第13题)三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)先化简,再求代数式的值:(1-1m +2)÷ m 2+2m +1m 2-4 ,其中m =1.18.(7分)解不等式组⎩⎪⎨⎪⎧x +32≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.19.(7分)某学校以随机抽样的方式开展了“中学生喜欢数学的程度”的问卷调查,调查的结果分为A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级,图1、图2是根据采集的数据绘制的两幅不完整的统计图. 请根据统计图提供的信息,回答下列问题:(1)C 等级所占的圆心角为 ▲ °; (2)请直接在图2中补全条形统计图; (3)若该校有学生1000人,请根据调查结果,估计“比较喜欢”的学生人数为多少人.某校“中学生喜欢数学的程度”的扇形统计图某校“中学生喜欢数学的程度”的条形统计图20.(8分)如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,DE ∥AC 交BC 的延长线于点E .(1)求证:△ABC ≌△DCE ;(2)若CD =CE ,求证:AC ⊥BD .0 1 -4 -3 -2 -1 2 3 4 (第20题)A B CDE O (第19题) 等级 图2C 10% A BD 23% 32% 图121.(7分)运动会上,甲、乙、丙三位同学进行跳绳比赛,通过“手心手背”游戏决定谁先跳,规则如下:三个人同时各用一只手随机出示手心或手背,若其中有一个人的手势与另外两个不同,则此人先进行比赛;若三个人手势相同,则重新决定.那么通过一次“手心手背”游戏,甲同学先跳绳的概率是多少?22.(6分)如图,已知点P 为∠ABC 内一点,利用直尺和圆规确定一条过点P 的直线,分别交AB 、BC 于点E 、F ,使得BE =BF .(不写作法,保留作图痕迹)23.(7分)如图,用细线悬挂一个小球,小球在竖直平面内的A 、C 两点间来回摆动,A 点与地面距离AN =14cm ,小球在最低点B 时,与地面距离BM =5cm ,∠AOB =66°,求细线OB 的长度. (参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)A(第22题)M N O (第23题)24.(7分)某水果店销售樱桃,其进价为40元/千克,按60元/千克出售,平均每天可售出100千克.经调查发现,这种樱桃每降价1元/千克,每天可多售出10千克,若该水果店销售这种樱桃要想每天获利2240元,每千克樱桃应降价多少元?25.(9分)已知一元二次方程x2-4mx+4m2+2m-4=0,其中m为常数.(1)若该一元二次方程有实数根,求m的取值范围.(2)设抛物线y=x2-4mx+4m2+2m-4的顶点为M,点O为坐标原点,当m变化时,求线段MO长度的最小值.26.(12分)今年暑假,小勇、小红打算从城市A到城市B旅游,他们分别选择下列两种交通方案:方案一:小勇准备从城市A坐飞机先到城市C,再从城市C坐汽车到城市B,整个行程中,乘飞机所花的时间比汽车少用3h.如图1所示,城市A、B、C在一条直线上,且A、C两地的距离为2400km,飞机的平均速度是汽车的8倍.方案二:小红准备坐高铁直达城市B,其离城市A的距离y2(km)与出发时间x(h)之间的函数关系如图2所示.(1)AB两地的距离为▲km;(2)求飞机飞行的平均速度;(3)若两家同时出发,请在图2中画出小勇离城市A的距离y1与x之间的函数图像,并求出y1与x的函数关系式.A BC图1h)3 4 5 6 7图2(第26题)27.(12分)定义:当点P 在射线OA 上时,把OPOA的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA =13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形; ②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形; ③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有A .①②B .②③C .①③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以O 为圆心,OA 为半径画圆,点B 是⊙O 上任意点. ①如图2,若点B 在射线OA 上的射影值为12.求证:直线BC 是⊙O 的切线.②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式.图2BCDOA图3图1 (第27题)数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.1.2629×104 9.a (a -1)2 10.0 11.4 12.(-1,3) 13.90° 14.45° 15.815π 16.113三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=m +1m +2 (m +2)(m -2)(m +2)2········································································· 2分=m -2m +1······························································································ 4分 当m =1时,原式=1-21+1=-12. ·························································· 6分18.(本题7分)解:解不等式①,得x ≤1. ·············································································· 2分解不等式②,得x >-2. ·········································································· 4分 所以,不等式组的解集是-2<x ≤1. ······················································· 5分 画图正确(略). ····················································································· 7分 19.(本题7分)(1)126; ···································································································· 2分 (2)图略; ·································································································· 4分 (3)在抽取的样本中,“比较喜欢”数学的人数所占的百分比为1-32%-10%-23%=35%, ····································································· 5分 由此可估计,该校1000名学生中,“比较喜欢”数学的人数所占的百分比35%, 1000×35%=350(人). ··········································································· 6分 答:估计这些学生中,“比较喜欢”数学的人数约有350人. ······························ 7分20.(本小题满分8分)证明:(1)∵ 四边形ABCD 是平行四边形,∴ AB //CD ,AB =DC .∴ ∠ABC =∠DCE . ∵ AC //DE ,∴ ∠ACB =∠DEC . ································································· 3分在△ABC 和△DCE 中,∠ABC =∠DCE ,∠ACB =∠DEC ,AB =DC .∴△ABC ≌△DCE (AAS ). ······································································ 4分(2)由(1)知△ABC ≌△DCE ,则有BC =CE . ∵ CD =CE , ∴ BC =CD .∴四边形ABCD 为菱形. ·········································································· 7分 ∴AC ⊥BD . ··························································································· 8分 21.(本题7分)列表或树状图表示正确; ·········································································· 3分22方法1: 方法2: ··············································································· 6分 23.(本题7分)解:过点A 作AD ⊥OB 于点D .由题意得AN ⊥MN ,OB ⊥MN ,AD ⊥OB ,∴四边形ANMD 是矩形,∴DM =AN , ·············································分设OB =OA =x cm ,在Rt ∆OAD 中,∠ODA =90°cos ∠AOD =OD OA = x +5-14x≈0.6. ················分解得x =15cm .经检验,x =15为原方程的解. 答:细线OB 的长度是15cm . ······················分 24.(本小题满分7分)解:设每千克樱桃应降价x 元,根据题意,得 ······················································ 1分(60-x -40)(100+10x )=2240. ···························································· 4分 解得:x 1=4,x 2=6. ··············································································· 6分 答:每千克樱桃应降价4元或6元. ··························································· 7分 25.(本小题满分9分)(1)解法一:∵关于x 的一元二次方程x 2-4mx +4m 2+2m -4=0有实数根, ∴△=(-4m )2-4(4m 2+2m -4)=-8m +16≥0, ··································· 3分 ∴m ≤2. ······························································································· 4分解法二:∵x 2-4mx +4m 2+2m -4=0,∴(x -2m )2=4-2m . ······················· 3分 ∴m ≤2. ······························································································· 4分 (2)解法一:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ············ 6分 ∴MO 2=(2m )2+(2m -4)2=8(m -1)2+8. ········································· 7分 ∴MO 长度的最小值为22. ····································································· 9分 解法二:y =x 2-4mx +4m 2+2m -4的顶点为M 为(2m ,2m -4), ···················· 6分 ∴点M 在直线l :y=x -4上, ···································································· 7分 ∴点O 到l 的距离即为MO 长度的最小值22. ············································ 9分 26.(本小题满分12分)解:(1)3000;······························································································ 2分 (2)设汽车的速度为x km/h ,则飞机的速度为8x km/h ,根据题意得:3000-2400x -24008x =3, ············································································ 4分 解之得:x =100.经检验,x =100为原方程的解.则飞机的速度为8×100=800 km/h .答:飞机的速度为800km/h . ····································································· 6分 (3)图略. ··························································································· 8分 当0≤x ≤3,y 1=800x .当3<x ≤9,,设函数关系式为y 1=kx +b ,代入点(3,2400),(9,3000)得:⎩⎨⎧3k +b =2400,9k +b =3000解得⎩⎨⎧k =100,b =2100.∴函数关系式为:y 1=100x +2100 ···························································· 12分 27.(本题10分)解:(1)B . ·································································································· 2分(2)解法一:过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12,∵CA =OA ,∴OB OC =12,∴OH OB =OBOC.又∵∠O =∠O , ∴△OHB ∽△OBC . ····························································∴∠OBC =∠OHB =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 解法二:连接AB ,过点B 作BH 垂直OC ,垂足为H .∵B 在射线OA 上的射影值为12,∴OH OA =12,∵OB =OA ,∴OH OB =12=cos ∠O ,∴∠O =60°.∵OB =OA ,∴△OBA 是等边三角形,∴∠OAB =60°. ·············· 4分∵AC =OA ,∴AB =AC ,∴∠ABC =∠C ,∴∠C =30°. ··································· 6分 ∴∠OBC =90°.∴OB ⊥BC ,∵点B 是圆O 上的一点, ∴BC 是圆O 的切线. ·············································································· 8分 (3)y =0 (12≤x <34); ··············································································· 10分y =2x -32(34≤x ≤32) ········································································· 12分。

南京市建邺区2018届数学中考一模试卷(含答案)

江苏省南京市建邺区2018届数学中考一模试卷一、单选题1.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A. 0B. 1C. 0和1D. 1和-12.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径长是()A. 2cmB. 2.5cmC. 3cmD. 4cm3.如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是()A. 12条B. 9条C. 6条D. 5条4.下列计算结果为负数的是()A. (-3)+(-4)B. (-3)-(-4)C. (-3)´(-4)D. (-3)-45.计算a6×(a2)3÷a4的结果是()A. a3B. a7C. a8D. a9二、填空题6.若锐角三角函数tan55°=a,则a的范围是()A. 0<a<1B. 1<a<2C. 2<a<3D. 3<a<47.函数y=中,自变量x的取值范围是________.8.分解因式a3﹣a的结果是________.9.若关于x的一元二次方程x2-kx-2=0有一个根是1,则另一个根是________.10.辽宁号是中国人民解放军海军第一艘可以搭载固定翼飞机的航空母舰,其满载排水量为67500吨.用科学记数法表示67500是________.11.一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12________S22(填“>”、“=”或“<”).12.在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图像与一次函数y2=-x+a(a为常数,a≠0)的图像相交于A、B两点.若点A的坐标为(m,n),则点B的坐标为________.13.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为3cm,∠A=110°,则劣弧的长为________cm.14.如图,点F、G在正五边形ABCDE的边上,BF、CG交于点H,若CF=DG,则∠BHG=________°.15.如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).16.如图,以AB为直径的半圆沿弦BC折叠后,AB与相交于点D.若,则∠B=________°二、解答题17.计算:(a+2+ )÷(a- ).18.解不等式组,并把解集在数轴上表示出来.19.如图,①四边形ABCD是平行四边形,线段EF分别交AD、AC、BC于点E、O、F,②EF⊥AC,③AO=CO.(1)求证:四边形AFCE是平行四边形;(2)在本题①②③三个已知条件中,去掉一个条件,(1)的结论依然成立,这个条件是________(直接写出这个条件的序号).20.某天,一蔬菜经营户用180元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表所示:问:他当天卖完这些西红柿和豆角能赚多少钱?21.超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是________;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?22.河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:(1)【收集数据】若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是________.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.(2)【整理数据】将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为________°、________°;②估计九年级A、B类学生一共有________名.(3)【分析数据】教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:你认为哪所学校本次测试成绩较好,请说明理由.23.下图是投影仪安装截面图.教室高EF=3.5m,投影仪A发出的光线夹角∠BAC=30°,投影屏幕高BC=1.2m.固定投影仪的吊臂AD=0.5m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下边沿离地面的高度CF (结果精确到0.1 m).(参考数据:tan15°≈0.27,tan30°≈0.58)24.一辆货车从甲地出发以每小时80 km的速度匀速驶往乙地,一段时间后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.货车行驶2.5 h后,在距乙地160 km处与轿车相遇.图中线段AB表示货车离乙地的距离y1 km与货车行驶时间xh的函数关系.(1)求y1与x之间的函数表达式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离乙地的距离y2与x的图像,求该图像与x 轴交点坐标并解释其实际意义.25.某超市欲购进一种今年新上市的产品,购进价为20元/件,该超市进行了试销售,得知该产品每天的销售量t(件)与每件销售价x(元/件)之间有如下关系:t=-3x+90.(1)请写出该超市销售这种产品每天的销售利润y(元)与x之间的函数表达式;(2)当x为多少元时,销售利润最大?最大利润是多少?26.Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一点,⊙O交AB于点D,交BC延长线于点E.连接ED,交AC于点G,且AG=AD.(1)求证:AB与⊙O相切;(2)设⊙O与AC的延长线交于点F,连接EF,若EF∥AB,且EF=5,求BD的长.27.图①是一张∠AOB=45°的纸片折叠后的图形,P、Q分别是边OA、OB上的点,且OP=2cm.将∠AOB 沿PQ折叠,点O落在纸片所在平面内的C处.(1)①当PC∥QB时,OQ=________cm;②在OB上找一点Q,使PC⊥QB(尺规作图,保留作图痕迹);________(2)当折叠后重叠部分为等腰三角形时,求OQ的长.江苏省南京市建邺区2018届数学中考一模试卷答案一、单选题1.下列各数中,相反数、绝对值、平方根、立方根都等于其本身的是()A. 0B. 1C. 0和1D. 1和-1【答案】A【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,平方根,立方根及开立方【解析】【解答】解:∵相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,∴相反数、平方根、立方根都等于它本身的数是0.故答案为:A.【分析】相反数等于它本身的数是0,平方根等于它本身的数是0,立方根等于它本身的数是0,±1,就可得出相反数、平方根、立方根都等于它本身的数。

2018年南京建邺区初三一模试卷及答案

建邺区2018年九年级学情分析卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题纸上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题纸上.3.答选择题必须用2B 铅笔将答题纸上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题纸上的指定位置,在其它位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共计12分.在每小题所给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的序号填涂在答题纸上)1.如果a 与-3互为相反数,那么a 等于(▲).A .3B .-3C .31 D .31 2. 计算 (a 2)3的结果是(▲).A . a 5B .a 6C .a 8D .a 93.南京长江三桥是世界上第一座弧线形钢塔斜拉桥,全长15600m ,用科学记数法表示为(▲).A .156×102mB .15.6×103mC .0.156×104mD .1.56×104m4.从正面观察下图所示的两个物体,看到的是(▲).5.已知反比例函数的图象经过点(-1,2),则这个函数的图象位于(▲).A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限6.矩形ABCD 中,AD =8 cm ,AB =6 cm .动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动至点B 停止,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的(▲).二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题..纸.相应..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京市鼓楼区2018届数学第二次调研考试试卷一、单选题1.下列图标,是轴对称图形的是()A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:根据定义可得D为轴对称图形,故答案为:D.【分析】根据轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合,对各选项逐一判断。

2.如图,若A,B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A.b+aB.b-aC.a bD.【答案】B【考点】数轴及有理数在数轴上的表示,有理数的加法,有理数的减法,有理数的乘方,有理数的除法【解析】【解答】解:根据数轴可得:a+b<0;b-a>0;;计算时,如果b为偶数,则结果为正数,b为奇数时,结果为负数.故本题选B.【分析】观察数轴可得出b>0,a<0,再根据有理数的运算法则判断各选项的符号,即可求解。

3.关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大D. 比x小【答案】C【考点】有理数大小比较【解析】【解答】解:当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,故答案为:C.【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案。

4.如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b >0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【考点】二次函数y=a(x-h)^2+k的图像,二次函数y=a(x-h)^2+k的性质【解析】【解答】解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故答案为:B.【分析】观察函数图像的开口方向、与y轴的交点情况、对称轴的位置,可对①作出判断;由对称轴的情况,可对②作出判断;观察图形,可得出当x>3时,y的值小于0,综上所述,可得出答案。

5.计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【考点】同底数幂的乘法【解析】【解答】解:根据幂的性质可得:999-93最接近于999,故答案为:A.【分析】利用幂的性质求解。

6.如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的()A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【考点】切线的性质,角的平分线判定【解析】【解答】解:∵N、M为切点,∴OM=ON,∴OP为∠MPN的角平分线,∴点K是△PMN的角平分线的交点.【分析】根据切线的性质及角平分线的判定定理,可得出答案。

二、填空题7.的相反数是________,的倒数是________.【答案】-;3【考点】相反数及有理数的相反数,有理数的倒数【解析】【解答】解:的相反数是,的倒数是3.【分析】根据求一个数的相反数就是在这个数的前面添上负号,求一个数的倒数就是用1除以这个数的商,即可求解。

8.若△ABC∽△DEF,请写出2个不同类型的正确的结论:________,________.【答案】∠A=∠D;∠B=∠E【考点】相似三角形的性质【解析】【解答】解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,.【分析】利用相似三角形的性质,可得出对应角相等或对应边成比例。

9.如果-2x m y3与xy n是同类项,那么2m-n的值是________.【答案】-1【考点】同类项【解析】【解答】解:根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案为:-1【分析】根据同类项的定义中的相同字母的指数相等,建立方程组求出m、n的值,然后求出再2m-n的值。

10.分解因式2x2y-4xy+2y的结果是________.【答案】2y(x-1)2【考点】提公因式法与公式法的综合运用【解析】【解答】解:原式=2y( )= .故答案为:2y(x-1)2【分析】观察此多项式的特点:有公因式2y,因此先提取公因式2y,再利用完全平方公式分解因式。

11.已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=________.【答案】2【考点】一元二次方程的根与系数的关系【解析】【解答】解:∵,,∴原式=-1-(-3)=-1+3=2.故答案为:2【分析】利用一元二次方程根与系数的关系,分别求出x1+x2,x1x2的值,整体代入求值即可。

12.用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为________.【答案】2【考点】圆锥的计算【解析】【解答】解:∵设圆锥的半径为r,母线长为4,∴即,解得:r=2.故答案为:2【分析】根据圆锥的侧面展开图的扇形的弧长等于底面圆的周长,即可求解。

13.如图,点A在函数y=(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为________.【答案】【考点】待定系数法求反比例函数解析式,等边三角形的性质【解析】【解答】解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC= ,∴k=1× = .【分析】过点A作AC⊥OB,根据△OAB是边长为2的等边三角形,求出OC、AC的长,就可得出点A的坐标,利用待定系数法求出k的值。

14.如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足________时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【考点】平行四边形的性质,菱形的判定【解析】【解答】解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.【分析】根据E、F是平行四边形ABCD的AB、CD边的中点,可证得四边形EHFG为平行四边形,再证明四边形EHFG的一组邻边相等,因此∠ABC=90°时,易证得结论。

15.如图,一次函数y=-x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP 将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是________.【答案】(,0),(-24,0)【考点】翻折变换(折叠问题),一次函数图像与坐标轴交点问题【解析】【解答】解:根据题意可得:OA=6,OB=8,则AB=10,①、当点P在线段OA上时,设点P的坐标为(x,0),则AP=6-x,BC=OB-8,CP=OP=x,AC=10-8=2,∴根据勾股定理可得:,解得:x= ,∴点P的坐标为( ,0);②、当点P在x轴的负半轴上时,设OP的长为x,则AP=6+x,BC=8,CP=OP=x,AC=10+8=18,∴根据勾股定理可得:,解得:x=24,∴点P的坐标为(-24,0);∴综上所述,点P的坐标为( ,0),(-24,0).【分析】根据点A、B的坐标,求出OA、OB的长,利用勾股定理求出AB的长;分情况讨论:①、当点P 在线段OA上时,设点P的坐标为(x,0),则AP=6-x,BC=OB-8;②、当点P在x轴的负半轴上时,设OP 的长为x,则AP=6+x,BC=8,利用勾股定理求出x的值,即可解答。

16.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.若△DCE其中一边与AB平行,则∠ECB的度数为________.【答案】15°、30°、60°、120°、150°、165°【考点】平行线的性质,旋转的性质【解析】【解答】解【解答】解:∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°如图2CE∥AB时,∠ECB=∠B=60°.如图3CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;③如图2,DE∥AB时,延长DC交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴∠ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.故答案为:15°、30°、60°、120°、150°、165°【分析】分情况讨论:分CE、DE、CD分别于AB平行,分别作出图形,利用平行线的性质及旋转的性质,分别求出∠ECB的度数即可。

三、解答题17.求不等式≤1+的负整数解.【答案】解:2x≤6+3(x-1),2x≤6+3x-3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【考点】解一元一次不等式,一元一次不等式的特殊解【解析】【分析】先去分母、移项、合并同类项,求出不等式的解集,再求出不等式的整数解。

18.(1)化简:-(2)解方程-=.【答案】(1)解::-=-====-(2)解:去分母可得:8-2(x+2)=(x+2)(x-2),化简可得:,解得:,经检验:x=2是方程的增根,x=-4是方程的解.【考点】分式的加减法,解分式方程【解析】【分析】(1)将第一个分式的分母分解因式,再通分计算,结果化成最简分式。

(2)先去分母,将分式方程转化为整式方程,再解整式方程,检验就可得出方程的解。

19.小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)解:答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等(2)解:这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)=848(元)(3)解:用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平【考点】折线统计图,平均数及其计算【解析】【分析】(1)根据折线统计图的波动情况,可解答此题。

相关文档
最新文档