高考复数真题

合集下载

高考数学试卷复数题

高考数学试卷复数题

一、选择题(本大题共10小题,每小题5分,共50分)1. 设复数 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \)),若 \( z \) 在复平面上对应的点与原点的距离为2,则 \( a^2 + b^2 \) 的值为()A. 1B. 2C. 4D. 02. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( |z_1 - z_2|^2 \) 的值为()A. 5B. 4C. 3D. 23. 已知 \( z = 3 + 4i \),则 \( \overline{z} \) 的值为()A. 3 - 4iB. 4 + 3iC. -3 + 4iD. -4 + 3i4. 若复数 \( z \) 满足 \( |z - 1| = |z + 1| \),则 \( z \) 所对应的点在复平面上的轨迹是()A. 实轴B. 虚轴C. 直线D. 圆5. 设 \( z_1 = 1 + 2i \),\( z_2 = 3 - 4i \),则 \( z_1 \cdot z_2 \) 的值为()A. 7 + 10iB. 7 - 10iC. -7 + 10iD. -7 - 10i6. 设 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \)),若 \( z \) 在复平面上对应的点到点 \( (1, 1) \) 的距离等于到点 \( (-1, 1) \) 的距离,则 \( a \) 的值为()A. 0B. 1C. -1D. 不存在7. 若复数 \( z \) 满足 \( z^2 + 2z + 5 = 0 \),则 \( z \) 的值为()A. \( 1 + i \)B. \( -1 + i \)C. \( 1 - i \)D. \( -1 - i \)8. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( \frac{z_1}{z_2} \) 的值为()A. \( \frac{1}{2} + \frac{3}{2}i \)B. \( \frac{1}{2} - \frac{3}{2}i \)C. \( \frac{3}{2} + \frac{1}{2}i \)D. \( \frac{3}{2} -\frac{1}{2}i \)9. 若复数 \( z \) 满足 \( z^2 = 1 \),则 \( z \) 的值为()A. \( 1 \)B. \( -1 \)C. \( 1 \pm i \)D. \( -1 \pm i \)10. 设 \( z_1 = 1 + i \),\( z_2 = 2 - i \),则 \( \frac{z_1}{z_2} \) 的模为()A. \( \frac{\sqrt{2}}{2} \)B. \( \sqrt{2} \)C. \( \sqrt{3} \)D. \( \sqrt{5} \)二、填空题(本大题共5小题,每小题10分,共50分)11. 设复数 \( z = 2 - 3i \),则 \( \overline{z} \) 的值为__________。

高考英语单复数单选题20题

高考英语单复数单选题20题

高考英语单复数单选题20题1.The box contains ______ apples.A.manyB.muchC.lot ofD.a few of答案:A。

本题考查可数名词的修饰词。

apples 是可数名词复数,many 可以修饰可数名词复数,表示“许多”;much 修饰不可数名词;lot of 表达错误,正确形式是a lot of 或lots of;a few of 表达错误,正确形式是a few。

2.There are ______ people in the park.A.lots ofB.a lotC.muchD.lot答案:A。

people 是集合名词,表示“人们”,是可数名词复数,lots of 可以修饰可数名词复数;a lot 后面不能直接跟名词;much 修饰不可数名词;lot 表达错误,正确形式是a lot of 或lots of。

3.I have ______ books on my shelf.A.a lotB.lots ofC.many答案:B。

books 是可数名词复数,lots of 可以修饰可数名词复数;a lot 后面不能直接跟名词;many 也可以修饰可数名词复数,但没有lots of 语气强烈;much 修饰不可数名词。

4.There are ______ sheep in the field.A.manyB.muchC.lot ofD.a few of答案:A。

sheep 单复数同形,这里表示复数意义,many 可以修饰可数名词复数;much 修饰不可数名词;lot of 表达错误,正确形式是a lot of 或lots of;a few of 表达错误,正确形式是a few。

5.He has ______ friends.A.a lot ofB.lots ofC.manyD.much答案:A。

friends 是可数名词复数,a lot of、lots of 和many 都可以修饰可数名词复数,much 修饰不可数名词,a lot of 和lots of 比较常用,语气更强。

高考数学复数典型例题附答案

高考数学复数典型例题附答案

1, 已知复数求k的值。

的值。

解:解:,∴由的表示形式得k=2 即所求k=2 点评:点评:(i) 对于两个复数、,只要它们不全是实数,就不能比较大小,因此,、能够比较大小,均为实数。

均为实数。

比较大小,更无正负之分,因此,(ii)虚数不能与0比较大小,更无正负之分,因此,对于任意复数z,且R;且R。

2, 若方程有实根,求实数m的值,并求出此实根。

的值,并求出此实根。

解:设为该方程的实根,将其代入方程得由两复数相等的定义得,消去m得,故得当时得,原方程的实根为;当时得,原方程的实根为。

点评:对于虚系数一元方程的实根问题,一般解题思路为:设出实根——代入方程——利用两复数相等的充要条件求解。

充要条件求解。

3, 已知复数z满足,且z的对应点在第二象限,求a的取值范围。

的取值范围。

解:设,。

由得①对应点在第二象限,故有对应点在第二象限,故有②又由①得③由③得,即,∴,∴④于是由②,④得 ,即于是由②,④得再注意到a<0,故得即所求a的取值范围为点评:为利用导出关于a的不等式,再次利用①式:由①式中两复数相等切入,导出关于与a的关系式:此为解决这一问题的关键。

此外,这里对于有选择的局部代入以及与的相互转化,都展示了解题的灵活与技巧,请同学们注意领悟,借鉴。

4, 求同时满足下列两个条件的所有复数:(1);的实部与虚部都是整数。

(2)z的实部与虚部都是整数。

,则解:设,则由题意,∴∴y=0或(Ⅰ)当y=0时,,,∴由 得①∴由注意到当x<0时,;当x>0时,,此时①式无解。

此时①式无解。

(Ⅱ)当时,由得∴又这里x,y均为整数均为整数∴x=1,或x=3,,∴或于是综合(Ⅰ)(Ⅱ)得所求复数z=1+3i,1-3i,3+i,3-i. 5, (1)关于x的方程在复数集中的一个根为-2i,求a+b的值。

的值。

(2)若一元二次方程有虚根,且,试判断a,b,c所成数列的特征。

特征。

解:解:(1)解法一:解法一:由于∴由解:由题意得1z的两个方程R∴=122ab2|=2∴4=4=1=41515i151zz z=02z,下同解法一这些都是解决复数问题的常用方法2的最小值|=11)i133=1时,上式取等号zz 2200220001452225x x x x x æö+++++ç÷èø455225+222z 224(4)4z a -+132(4)413a -+222AC ABz z w ()(03313333z z yi y x x - 33333x )33设直线上任意一点(),P x y 经过变换后得到的()3,3Q x y x y +-仍然在该直线上仍然在该直线上 ()()()33313x y k x y b k y k x b Þ-=++Þ-+=-+当0b ¹时,方程组()3113k k kì-+=ïíï-=î无解无解 当0b =时,()231333230313或k k k k k k-+-=Þ+-=Þ=-Þ存在这样的直线,其方程为333或y x y x ==-16, 判断下列命题是否正确 (1) (1)若若C z Î, , 则则02³z (2) (2)若若,,21C z z Î且021>-z z,则21z z > (3) (3)若若b a >,则i b i a +>+17, 满足条件512=++-z i z 的点的轨迹是(的点的轨迹是( ))A.A.椭圆椭圆椭圆B. B. B.直线直线直线C. C. C.线段线段线段D. D. D.圆圆 18,.211<<-+=w w 是实数,且是虚数,设z z z.的实部的取值范围的值及求z z 解析解析 是虚数z yix yi x z z +++=+=\1)(1w 可设 i yx y y y x x x y x yi x yix)()(222222+-+++=+-++=,0¹y 是实数,且w 1,0112222=+=+-\y x y x 即 ,1=\zx 2=w 此时22121<<-<<-x 得由w)1,21(,121-<<-\的实部的范围是即z x圆锥曲线圆锥曲线一、在椭圆中一般以选择题或填空题的形式考查考生对椭圆的两个定义、焦点坐标、准线方程等基础知识的掌握情况;以解答题的形式考查考生在求椭圆的方程、直线与椭圆的位置关系等涉及分析、探求的数学思想的掌握情况.数学思想的掌握情况.例1.从集合{1,2,3,,11,11}} 中任意取两个元素作为椭圆22221x y m n+=方程中的m 和n ,则能组成落在矩形区域(){},|||1111,,||9B x y x y =<<内的椭圆的个数是(内的椭圆的个数是( )A 、43B 43 B、、72C 72 C、、86D 、90解:解:根据题意,根据题意,m 是不大于10的正整数、n 是不大于8的正整数.的正整数.但是当但是当m n =时22221x y m n +=是圆而不是椭圆.先确定n ,n 有8种可能,对每一个确定的n ,m 有1019-=种可能.故满足条件的椭圆有8972´=个.本题答案选B .例2.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则1234567PF P F P F P F P F P F P F ++++++=______________.. 解:如图,根据椭圆的对称性知,117111122PF P F PF PF a +=+=, 同理其余两对的和也是2a ,又41P F a =,∴1234567735PF P F P F P F P F P F P F a ++++++== 例3.如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(Ⅰ)求在0k =,01b <<的条件下,S 的最大值;的最大值;(Ⅱ)当2AB =,1S =时,求直线AB 的方程.的方程. 解:(Ⅰ)设A 1()x b ,,B 2()x b ,,由2214x b +=,解得21221xb =±-,,所以1212S b x x =- 2222111b b b b =-£+-= .当且仅当22b =时,S 取到最大值1. (Ⅱ)由2214y kx bx y =+ìïí+=ïî,得2221()2104k x kbx b +++-=,2241k b D =-+① 2121AB k x x =+- 2222411214k b k k -+=+=+.②.②AyxOB例3图设O 到AB 的距离为d ,则21Sd AB ==,又因为21b d k=+, 所以221b k =+,代入②式并整理,得42104k k -+=, 解得212k =,232b =,代入①式检验,0D >,故直线AB 的方程是的方程是 2622y x =+或2622y x =-或2622y x =-+,或2622y x =--.点评:本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.方法和综合解题能力.二、在双曲线中常以一道选择题或填空题的形式考查双曲线的两个定义、焦点坐标、准线方程以及渐近线方程等基础知识;解答题中往往综合性较强,在知识的交汇点出题,对双曲线的基础知识、解析几何的基本技能和基本方法进行考查.的基本技能和基本方法进行考查.例4.已知双曲线22221x y a b-=(0,0)a b >>的右焦点为F ,右准线与一条渐近线交于点A ,OAFD 的面积为22a (O 为原点),则两条渐近线的夹角为(,则两条渐近线的夹角为( )A .30º.30ºB .45º.45ºC .60º.60ºD .90º.90º解:解:D D .双曲线222221(0,0)(,0),x y a a b F c x abc-=>>=的焦点右准线方程,x ab y =渐近线,则),(2c ab c a A ,所以2212a c ab c S OAF =´´=D ,求得a b =,所以双曲线为等轴双曲线,则两条渐进线夹角为90°,故选D .点评:本题考查双曲线中焦距,本题考查双曲线中焦距,准线方程,准线方程,准线方程,渐近线方程,渐近线方程,渐近线方程,三角形面积,三角形面积,三角形面积,渐近线夹角等知识的综合运用.渐近线夹角等知识的综合运用.例5. P 是双曲线221916x y -=的右支上一点,M、N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为(的最大值为( ))A. 6B.7C.8D.9解:设双曲线的两个焦点分别是1(5,0)F -与2(5,0)F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、1F 三点共线以及P 与N 、2F 三点共线时所求的值最大,此时三点共线时所求的值最大,此时12(2)(1)1019PM PN PF PF -=---=-=,故选B .例例6.已知双曲线222x y -=的左、的左、右焦点分别为右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于A B ,两点.点.(Ⅰ)若动点M 满足1111F M F A F B FO=++(其中O 为坐标原点),求点M 的轨迹方程;的轨迹方程;(Ⅱ)在x 轴上是否存在定点C ,使CA ·CB为常数?若存在,求出点C 的坐标;若不存在,请说明理由.明理由.解:由条件知1(20)F -,,2(20)F ,,设11()A x y ,,22()B x y ,.(Ⅰ)设()M x y ,,则则1(2)F M x y =+ ,,111(2)F A x y =+,, 1221(2)(20)F B x y FO =+= ,,,,由1111F M F A F B FO =++得121226x x x y y y +=++ìí=+î,即12124x x x y y y +=-ìí+=î,,于是AB 的中点坐标为422x y -æöç÷èø,. 当AB 不与x 轴垂直时,121224822yy y yxx x x-==----,即1212()8y y y x x x -=--.又因为A B ,两点在双曲线上,所以22112x y -=,22222x y -=,两式相减得,两式相减得12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.将1212()8y y y x x x -=--代入上式,化简得22(6)4x y --=.当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程.,也满足上述方程. 所以点M 的轨迹方程是22(6)4x y --=.(Ⅱ)假设在x 轴上存在定点(0)C m ,,使CA CB为常数.为常数.当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-¹±. 代入222x y -=有2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421k x x k +=-,于是21212()()(2)(2)CA CB x m x m k x x =--+--22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--222222(12)2442(12)11m k mm m m k k -+-=+=-++--.因为CA CB是与k 无关的常数,所以440m -=,即1m =,此时CA CB =1-. 当AB 与x 轴垂直时,点A B ,的坐标可分别设为(22),,(22)-,,此时(12)(12)1CA CB =-=-,,.故在x 轴上存在定点(10)C ,,使CA CB 为常数.为常数.三、抛物线是历年高考的重点,在高考中除了考查抛物线的定义、标准方程、几何性质外,还常常与函数问题、应用问题结合起来进行考查,难度往往是中等.函数问题、应用问题结合起来进行考查,难度往往是中等.例例7.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是(的纵坐标是( )A .1716 B .1516 C .78D .0 解:由题意抛物线为:y x 412=,则焦点为1(0,)16F ,准线为:116y =-;由抛物线上的点00(,)M x y 到焦点的距离与到准线的距离相等,推得:16150=y,即M 点的纵坐标为1516,故选B .例8.已知抛物线24x y =的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(0)l >.过A 、B 两点分别作抛物线的切线,设其交点为M.两点分别作抛物线的切线,设其交点为M.(Ⅰ)证明FM AB为定值;为定值;(Ⅱ)设△ABM 的面积为S ,写出()S f l =的表达式,并求S 的最小值.的最小值.解:(Ⅰ)由已知条件,得(0,1)F ,0l >.设11(,)A x y ,22(,)B x y .由AF →=λFB →, 即得1122(,1)(,1)x y x y l --=-,îïíïì-x 1=λx 2 ①①1-y 1=λ(y 2-1) 1) ②② 将①式两边平方并把y 1=14x 12,y 2=14x 22代入得y 1=λ2y 2 ③③ 解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-=-44λy 2=-=-44,抛物线方程为y =14x 2,求导得y ′=12x .所以过抛物线上A 、B 两点的切线方程分别是两点的切线方程分别是y =12x 1(x (x--x 1)+y 1,y =12x 2(x (x--x 2)+y 2,即y =12x 1x -14x 12,y =12x 2x -14x 22. 解出两条切线的交点M 的坐标为的坐标为((x 1+x 22,x 1x 24)=(x 1+x 22,-,-1)1)1)..所以FM →·AB →=(x 1+x 22,-,-2)2)2)··(x 2-x 1,y 2-y 1)=12(x 22-x 12)-2(14x 22-14x 12)=0所以FM →·AB →为定值,其值为0.(Ⅱ)由(Ⅰ)知在△(Ⅱ)由(Ⅰ)知在△ABM ABM 中,中,FM FM FM⊥⊥AB AB,因而,因而S =12|AB||FM||AB||FM|..|FM||FM|==(x 1+x 22)2+(-2)2=14x 12+14x 22+12x 1x 2+4=y 1+y 2+12×(-4)4)++4=λ+1λ+2=λ+1λ.++λ+λ)=|AB||FM||AB||FM|=(λ+λ)λ+1λ≥2m ÷ø,m+=m +=2my -,2my -,211-+122y y +-24m - Oyx1 1- l FP B QMFO Axyyy P BOA 1d 2d2q解:(Ⅰ)在P AB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.方程为:2211x y l l -=-.(Ⅱ)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即21115110112l l ll l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l l ì-=ï-íï=-î得:2222(1)2(1)(1)()k x k x k l l l l l éù--+---+=ëû,由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--.于是:22212122(1)(1)(1)k y y k x x k l l l =--=--. 因为0OM ON = ,且M N ,在双曲线右支上,所以在双曲线右支上,所以2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l l l -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -£<.。

复数 高考试题精选

复数 高考试题精选

复数最新高考试题精选(一)一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设复数z满足(1+i)z=2i,则|z|=()A.B. C.D.26.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞) D.(﹣1,+∞)7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.28.已知a∈R,i是虚数单位,若z=a+i,z?=4,则a=()A.1或﹣1 B.或﹣C.﹣D.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1) B.(﹣1,3) C.(1,+∞) D.(﹣∞,﹣3)10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.311.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i14.复数=()A.i B.1+i C.﹣i D.1﹣i15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.219.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1} B.{1} C.{1,﹣1} D.?20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣121.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣122.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.223.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.424.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,425.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣231.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i32.设复数z满足=i,则|z|=()A.1 B.C.D.2二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为.34.已知复数z满足z+=0,则|z|= .35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= ,ab= .37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= .复数最新高考试题精选(一)参考答案与试题解析一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【解答】解:A.i(1+i)2=i?2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i【解答】解:原式=2﹣1+3i=1+3i.故选:B.4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z=i(﹣2+i)=﹣2i﹣1对应的点(﹣1,﹣2)位于第三象限.故选:C.5.设复数z满足(1+i)z=2i,则|z|=()A.B. C.D.2【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|=.故选:C.6.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞) D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.2【解答】解:∵复数z满足zi=1+i,∴z==1﹣i,∴z2=﹣2i,故选:A.8.已知a∈R,i是虚数单位,若z=a+i,z?=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z?=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选A.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1) B.(﹣1,3) C.(1,+∞) D.(﹣∞,﹣3)【解答】解:z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,可得:,解得﹣3<m<1.故选:A.10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.11.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵z===1+i,∴=1﹣i,故选:B12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i【解答】解:z=4+3i,则===﹣i.故选:D.13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i【解答】解:z=1+2i,则===i.故选:C.14.复数=()A.i B.1+i C.﹣i D.1﹣i【解答】解:===i,故选:A15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.19.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1} B.{1} C.{1,﹣1} D.?【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣1【解答】解:i607=i604+3=i3=﹣i,它的共轭复数为:i.故选:A.21.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣1【解答】解:i607=i606?i=(i2)303?i=(﹣1)303?i=﹣i.故选:A.22.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.23.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.24.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,4【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.25.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【解答】解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.31.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选;C32.设复数z满足=i,则|z|=()A.1 B.C.D.2【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为﹣2 .【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.34.已知复数z满足z+=0,则|z|= .【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2= 5 ,ab= 2 .【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为 1 .【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a= ﹣1 .【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣1。

高考复数专题及答案

高考复数专题及答案

一、复数选择题1.212i i+=-( ) A .1 B .−1 C .i - D .i2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1B .1C .-iD .i 4.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =- B .直线12y x = C .直线12x =- D .直线12y 6.已知复数()211i z i -=+,则z =( ) A .1i --B .1i -+C .1i +D .1i - 7.设2i z i +=,则||z =( )A B C .2 D .58.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④z z ,其结果一定是实数的是( )A .①②B .②④C .②③D .①③9.复数z 对应的向量OZ 与(3,4)a =共线,对应的点在第三象限,且10z =,则z =( )A .68i +B .68i -C .68i --D .68i -+10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .811.复数()()212z i i =-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 12.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .3 13.若i 为虚数单位,,a b ∈R ,且2a i b i i+=+,则复数a bi -的模等于( )A B C D14.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1- B .12- C .13 D .115.设复数满足(12)i z i +=,则||z =( )A .15BCD .5二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -18.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 19.设复数z 满足1z i z +=,则下列说法错误的是( ) A .z 为纯虚数B .z 的虚部为12i -C .在复平面内,z 对应的点位于第三象限D .2z = 20.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点21.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20zB .2z z =C .31z =D .1z = 22.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根23.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A .若0m =,则共轭复数1z =-B .若复数2z =,则mC .若复数z 为纯虚数,则1m =±D .若0m =,则2420z z ++= 24.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 25.复数21i z i +=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i +C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限 26.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( )A .1B .4-C .0D .5 27.对任意1z ,2z ,z C ∈,下列结论成立的是( )A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅D .12z z =的充要条件是12=z z28.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是( )A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 一定不为实数D .z 对应的点在实轴的下方 29.已知i 为虚数单位,下列命题中正确的是( )A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y ==B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D2.D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】由已知得,所以复数z 在复平面上所对应的点为,在第四象限,故选:D.解析:D【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项.【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--, 所以复数z 在复平面上所对应的点为17,55⎛⎫-⎪⎝⎭,在第四象限,3.B【分析】,然后算出即可.【详解】由题意,则复数的虚部为1故选:B解析:B【分析】1i z i-+=,然后算出即可. 【详解】 由题意()11111i i i i z i i i i -+-+--====+⋅-,则复数z 的虚部为1 故选:B 4.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i =-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.5.C【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可.【详解】 解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-. 6.B 【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 7.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .8.D【分析】设,则,利用复数的运算判断.【详解】设,则,故,,,.故选:D.解析:D【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断.【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b+-+==-+,22z z a b ⋅=+∈R . 故选:D.9.D【分析】设,根据复数对应的向量与共线,得到,再结合求解.【详解】设,则复数对应的向量,因为向量与共线,所以,又,所以,解得或,因为复数对应的点在第三象限,所以,所以,,解析:D【分析】设(,)z a bi a R b R =+∈∈,根据复数z 对应的向量OZ 与(3,4)a =共线,得到43a b =,再结合10z =求解.【详解】设(,)z a bi a R b R =+∈∈,则复数z 对应的向量(),OZ a b =,因为向量OZ 与(3,4)a =共线,所以43a b =, 又10z =,所以22100+=a b ,解得68a b =-⎧⎨=-⎩或68a b =⎧⎨=⎩, 因为复数z 对应的点在第三象限,所以68a b =-⎧⎨=-⎩, 所以68z i =--,68z i =-+,故选:D10.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D11.A【分析】利用复数的乘法化简复数,利用复数的乘法可得出结论.【详解】,因此,复数在复平面内对应的点位于第一象限.故选:A.解析:A【分析】利用复数的乘法化简复数z ,利用复数的乘法可得出结论.【详解】()()221223243z i i i i i =-+=+-=+,因此,复数z 在复平面内对应的点位于第一象限.故选:A.12.C【分析】首先求出复数的共轭复数,再求模长即可.【详解】据题意,得,所以的共轭复数是,所以.故选:C.解析:C【分析】首先求出复数z 的共轭复数,再求模长即可.【详解】 据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.13.C【分析】首先根据复数相等得到,,再求的模即可.【详解】因为,所以,.所以.故选:C解析:C【分析】首先根据复数相等得到1a =-,2b =,再求a bi -的模即可.【详解】因为()21a i b i i bi +=+=-+,所以1a =-,2b =.所以12a bi i -=--==故选:C 14.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B15.B【分析】利用复数除法运算求得,再求得.【详解】依题意,所以.故选:B 解析:B【分析】利用复数除法运算求得z ,再求得z .【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以5z == 故选:B二、多选题16.BC分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.19.AB【分析】先由复数除法运算可得,再逐一分析选项,即可得答案.由题意得:,即,所以z 不是纯虚数,故A 错误;复数z 的虚部为,故B 错误;在复平面内,对应的点为,在第三象限,故C 正确解析:AB【分析】 先由复数除法运算可得1122z i =--,再逐一分析选项,即可得答案. 【详解】 由题意得:1z zi +=,即111122z i i -==---, 所以z 不是纯虚数,故A 错误; 复数z 的虚部为12-,故B 错误; 在复平面内,z 对应的点为11(,)22--,在第三象限,故C 正确;2z ==,故D 正确. 故选:AB【点睛】本题考查复数的除法运算,纯虚数、虚部的概念,复平面内点所在象限、复数求模的运算等知识,考查计算求值的能力,属基础题.20.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.【点睛】本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.21.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.22.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.23.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m =时,1z =-,则1z =-,故A 错误;对于B ,若复数2z =,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误;对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.故选:BD.【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.24.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 25.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.26.ABC【分析】设,从而有,利用消元法得到关于的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设,∴,∴,∴,解得:,∴实数的值可能是.故选:ABC.【点解析:ABC【分析】设z x yi =+,从而有222()3x y i x yi ai ++-=+,利用消元法得到关于y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.【详解】设z x yi =+,∴222()3x y i x yi ai ++-=+,∴222223,23042,x y y a y y x a ⎧++=⇒++-=⎨=⎩, ∴244(3)04a ∆=--≥,解得:44a -≤≤, ∴实数a 的值可能是1,4,0-.故选:ABC.【点睛】本题考查复数的四则运算、模的运算,考查函数与方程思想,考查逻辑推理能力和运算求解能力.27.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不解析:AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.28.CD【分析】利用配方法得出复数的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】,,所以,复数对应的点可能在第一象限,也可能在第二象限,故A 错误解析:CD【分析】利用配方法得出复数z 的实部和虚部的取值范围,结合复数的概念和几何意义可判断出各选项的正误,由此可得出结论.【详解】22549492532488t t t ⎛+⎫= ⎪⎝⎭+-->-,()2222110t t t ++=++>, 所以,复数z 对应的点可能在第一象限,也可能在第二象限,故A 错误;当222530220t t t t ⎧+-=⎨++≠⎩,即3t =-或12t =时,z 为纯虚数,故B 错误; 因为2220t t ++>恒成立,所以z 一定不为实数,故C 正确;由选项A 的分析知,z 对应的点在实轴的上方,所以z 对应的点在实轴的下方,故D 正确. 故选:CD.【点睛】本题考查复数的几何意义与复数的概念相关命题真假的判断,解题的关键就是求出复数虚部和实部的取值范围,考查计算能力与推理能力,属于中等题.29.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误;4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.故选:BD .【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。

2025新高考数学计算题型精练专题05 复数的四则运算(解析版)

2025新高考数学计算题型精练复数的四则运算1.34i i +的共轭复数为().A .1i +B .1i-C .1i-+D .1i--【答案】A【详解】因为34i i 1i +=-,则其共轭复数为1i +.故选:A 2.若22i i 1i z +=+,则z =()A .13i22+B .13i22-C .13i22-+D .13i22--【答案】B 【详解】因为2i 1(2i 1)(1i)13i 13i 1i (1i)(1i)222z ---+====+++-,所以13i 22z =-.故选:B 3.已知i i z z +=,则z =()A2B .0C .12D .1【答案】A【详解】设i z a b =+,则()21i i i i a b a b b a ++=+=-+,故1a b b a =-⎧⎨+=⎩,解之得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以2z ==.故选:A 4.已知i1i z=+(其中i 为虚数单位),若z 是z 的共轭复数,则z z -=()A .1-B .1C .i-D .i【答案】D 【详解】由i 1i z=+,则()()()i 1i i 1i 1i 1i 1i 2z -+===++-,则1i 2z -=,所以i z z -=.故选:D .5.543i=-()A .43i-+B .43i +C .43i55-+D .43i55+【答案】D【详解】()()()()543i 543i 543i 43i 43i 43i 2555++===+--+.故选:D 6.若复数z 满足i 43i z ⋅=+,则z =()A .2BC .3D .5【答案】D【详解】()43i i 43i 4i 3i 43i 34i i i i 1z z +⋅+-⋅=+∴====-⋅- ,,5z ∴=.故选:D.7.若a 为实数,且7i2i 3ia +=-+,则=a ()A .2B .1C .1-D .2-【答案】C【详解】由题意得,()()2i 3i 7i1iia -+--===-,故选:C .8.2(1=()A .2+B .2-C .2-+D .2--【答案】C【详解】22(113i 2+=++=-+;故选:C.9.已知复数3i2i 12iz +=++,则z =()A .1BC .2D .【答案】B【详解】因为()()3i 12i 3i2i 2i 1i 2i 1i 12i 5z +-+=+=+=-+=++,所以z =.故选:B10.()1i 1z -=,则z =()A .1i +B .1i -C .22i +D .22i-【答案】B【详解】()1i 12z -=-= ,()()()()21i 21i 21i 1i 1i 1i 2z ++∴====+--+,1i z ∴=-.故选:B.11.设11iz =+,则z z -=()A .i-B .iC .1D .0【详解】由题意可得11i 11i 1i 222z -===-+,则11i 22z =+,所以1111i i i 2222z z ⎛⎫⎛⎫-=--+=- ⎪ ⎪⎝⎭⎝⎭.故选:A12.已知i 为虚数单位,复数13i2iz -=+,则z =()A .2BC D【答案】C 【详解】()()()()13i 2i 13i 17i 17i 2i 2i 2i 555z -----====--++-,则z =故选:C.13.已知i 为虚数单位,复数z满足(13i)i z =,则z =()A .i -B iC 1i2D 1i 2【答案】D【详解】依题意,2i 1i422z -===-,所以1i 22z =+.故选:D 14.若复数()43i i z =-,则z =()A .25B .20C .10D .5【答案】D【详解】因为()43i i 34i z =-=+,所以5z ==,故选:D.15.设复数z 满足()1i 4z -=,则z =()A .B .1C D .2【答案】A【详解】由()1i 4z -=,得()()()41i 444i 22i 1i 1i 1i 2z ⨯++====+--⨯+,所以z ==故选:A.16.已知复数()()()1i 2i z a a =-+∈R 在复平面对应的点在实轴上,则=a ()A .12B .12-C .2D .-2【详解】依题意,()()()()1i 2i 22i z a a a =-+=++-,因为复数z 在复平面对应的点在实轴上,所以20a -=,解得2a =.故选:C.17.已知复数z 满足(1)(23i)32i z --=+,则z =()A .0B .iC .1i-+D .1i+【答案】D【详解】∵(1)(23i)32i z --=+,∴()()()()32i 23i 32i 13i1111i 23i 23i 23i 49z +++=+==+=+--++,故选:D.18.若复数z 满足i 12i z ⋅=-,则z =()A .2i --B .2i-+C .2i+D .2i-【答案】B【详解】由已知可得,12i 2i i z -==--,从而2i z =-+.故选:B.19.设i 为虚数单位,若复数z 满足3i i 1iz -=-,则z 的虚部为()A .2-B .1-C .1D .2【答案】D【详解】由()()()()3i 1i 3i 42i2i i 1i 1i 1i 2z -+-+====+--+,则2i 1z =-,所以z 的虚部为2.故选:D .20.已知复数z 满足(2i)24i z +=-,则z 的虚部为()A .2i -B .2iC .2-D .2【答案】C 【详解】()()()()24i 2i 24i 10i2i 2i 2i 2i 5z ----====-++-,故虚部为2-.故选:C 21.已知i 12iz=-,i 为虚数单位,则z =()A .2i -+B .2i-C .2i+D .2i--【答案】C 【详解】因为i 12iz=-,则()i i 122i z =-=+.故选:C.22.已知复数z 满足()()1i 2i 2i z --=,则z 的虚部为()A .1-B .i-C .3D .3i【答案】C【详解】因为()()()2i 1i 2i2i 2i i 12i 13i 1i 1i 1i z +=+=+=-+=-+--+,所以z 的虚部为3,故选:C.23.已知复数()i z a a =+∈R 满足5z z ⋅=,则a 的值为()A B .2C .D .2±【答案】D【详解】因为i z a =+,所以2(i)(i)15z z a a a ⋅=+-=+=,解得2a =±,故选:D 24.已知复数z 是方程2220x x +=-的一个根,则z =()A .1B .2C D【答案】C【详解】因为方程2220x x +=-是实系数方程,且()224240∆=--⨯=-<,所以该方程有两个互为共轭复数的两个虚数根,即22i1i 2z ±==±,所以z ==故选:C 25.若复数()2iR 2ia z a -=∈+是纯虚数,则=a ()A .-2B .2C .-1D .1【答案】D【详解】由题意设i z b =(0b ≠),2ii 2ia zb -==+,即()2i i 2i 2i a b b b -=+=-+,则22a b b =-⎧⎨=-⎩,解得:1,1a b ==-.故选:D 26.已知复数z 满足()1i 3i z +=-,则复数z =()A .2BC .D【答案】B【详解】因为()1i 3i z +=-,则()()()()3i 1i 3i 24i12i 1i 1i 1i 2z ----====-++-,因此,z ==故选:B.27.已知复数1i 22z =+,则3z =()A .34B C .1D 【答案】C【详解】法一:由复数乘法运算得231111i i i i =i 22222222z ⎫⎫⎛⎫=++=++⎪ ⎪ ⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,则31z =,法二:由1||12z ==,则31z =,故选:C 28.已知复数z 满足i 43i z ⋅=+,则z =___________.【答案】5【详解】由i 43i z ⋅=+得2243i 4i 3i 4i 334i i i 1z ++-====--,因为5z ==,所以5z z ==,故答案为:5.29.3ii+=______【答案】13i -【详解】()23i i3i 13i i i ++==-.故答案为:13i -30.复数z 满足26i z z +=-(i 是虚数单位),则z 的虚部为___________.【答案】-1【详解】令i z a b =+,则i z a b =-,所以()()22i i 3i=6i z z a b a b a b +=++-=+-,故z 的虚部为1-.故答案为:-1.31.设复数z 满足()1i 2i z +=(i 为虚数单位),则z =____________.【答案】1i+【详解】∵()1i 2i z +=,则()()()i 1i ii i i i 221111z -===+++-.故答案为:1i +.32.复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,则12z z +=________.【答案】3i -/-i+3【详解】因为复数1z ,2z 在复平面上对应的点分别为()12,1Z ,()21,2Z -,所以12i z =+,212i z =-,所以123i z z +=-,故答案为:3i -.33.若复数21iz =+(i 为虚数单位),则i z -=___________.【详解】()()()()21i 21i 21i 1i 1i 1i 2z --====-++-,所以i 12i z -=-==.故答案34.若复数z 满足(1i)12i z -=+(i 是虚数单位),则复数z =_____________.【答案】13i 22-+.【详解】由(1i)12i z -=+可得()()()()12i 1i 12i 13i 13i 1i 1i 1i 222z +++-+===--+--+.故答案为:13i 22-+.35.若()12i 1z +=,则()1i z +=______【答案】62i55-【详解】因为()12i 12z +===,所以()212i 224i 12i 145z --===++,故()()24i 22i 4i 4621i 1i i 5555z -+-++=⨯+==-.故答案为:62i 55-.36.若复数z 满足2136i z -=+(其中i 是虚数单位),则z =______.【答案】23i-【详解】由2136i z -=+,得246i z =+,∴23i z =+,则23i z =-.故答案为:23i -.37.已知复数i 12i 2iz=-++,则z 的虚部为______.【答案】4-【详解】解:由题意得(12i)(2i)(43i)i34i i i iz -++-+===+⋅,则34i z =-,所以z 的虚部为-4,故答案为:-438.已知复数z 满足210z z ++=,则z z ⋅=_____________.【答案】1【详解】因为22131024z z z ⎛⎫++=++= ⎪⎝⎭,即2213i 242z ⎛⎫⎛⎫+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,12z =-或1i 22z =-+,若12z =-,则122z =-+,则111312244z z ⎛⎫⎛⎫⋅=---=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,若1i 22z =-+,则12z =-,则1113i 1222244z z ⎛⎫⎛⎫⋅=-+-=+= ⎪⎪ ⎪⎪⎝⎭⎝⎭.综上所述,1z z ⋅=.故答案为:1.39.已知复数z 满足()1i i z -=(i 为虚数单位),则z 的虚部为_____________.【答案】12/0.5【详解】由()1i i z -=得:()()()i 1i i 1i 11i 1i 1i 1i 222z +-+====-+--+,z ∴的虚部为12.故答案为:12.40.在复平面内,复数z 所对应的点为(1,1),则z z ⋅=___________.【答案】2【详解】由题意可知1i z =+,所以()()1i 1i 2z z ⋅=+-=,故答案为:241.已知复数z 满足()12i |43i |z +=-(其中i 为虚数单位),则复数z 的共轭复数为___________.【答案】12i+【详解】由()12i 43i 5z +=-==,得()()()()2512i 512i 512i 12i 12i 12i 14i z --====-++--,则复数z 的共轭复数为12i z =+;故答案为:12i +42.复数312i3i ++的值是_____________.【答案】17i 1010+【详解】解:312i 12i (12i)(3i)17i 17i 3i 3i 10101010+++++====++-.故答案为:17i 1010+.。

高考数学《复数》真题练习含答案

高考数学《复数》真题练习含答案一、选择题1.[2024·新课标Ⅰ卷]若z z -1=1+i ,则z =( ) A .-1-i B .-1+iC .1-iD .1+i答案:C解析:由z z -1 =1+i ,可得z -1+1z -1 =1+i ,即1+1z -1 =1+i ,所以1z -1=i ,所以z -1=1i=-i ,所以z =1-i ,故选C. 2.[2024·新课标Ⅱ卷]已知z =-1-i ,则|z |=( )A .0B .1C .2D .2答案:C解析:由z =-1-i ,得|z |=(-1)2+(-1)2 =2 .故选C.3.[2023·新课标Ⅱ卷]在复平面内,(1+3i)(3-i)对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:因为(1+3i)(3-i)=3-i +9i -3i 2=6+8i ,所以该复数在复平面内对应的点为(6,8),位于第一象限,故选A.4.[2023·新课标Ⅰ卷]已知z =1-i 2+2i,则z -z - =( ) A .-i B .iC .0D .1答案:A解析:因为z =1-i 2+2i =(1-i )22(1+i )(1-i ) =-12 i ,所以z - =12 i ,所以z -z - =-12 i -12i =-i.故选A. 5.|2+i 2+2i 3|=( )A .1B .2C .5D .5答案:C解析:|2+i 2+2i 3|=|2-1-2i|=|1-2i|=5 .故选C.6.设z =2+i 1+i 2+i5 ,则z - =( ) A .1-2i B .1+2iC .2-iD .2+i答案:B解析:z =2+i 1+i 2+i 5 =2+i 1-1+i =-i ()2+i -i 2 =1-2i ,所以z - =1+2i.故选B.7.[2022·全国甲卷(理),1]若z =-1+3 i ,则z z z --1=( ) A .-1+3 i B .-1-3 iC .-13 +33 iD .-13 -33i 答案:C解析:因为z =-1+3 i ,所以z z z --1=-1+3i (-1+3i )(-1-3i )-1 =-1+3i 1+3-1 =-13 +33i.故选C. 8.[2023·全国甲卷(文)]5(1+i 3)(2+i )(2-i )=( ) A .-1 B .1C .1-iD .1+i答案:C解析:由题意知,5(1+i 3)(2+i )(2-i ) =5(1-i )22-i2 =5(1-i )5 =1-i ,故选C. 9.(多选)[2024·山东菏泽期中]已知复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位),下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .|z |=cos θC .z ·z - =1D .z +1z为实数 答案:CD解析:复数z =cos θ+isin θ⎝⎛⎭⎫-π2<θ<π2 (其中i 为虚数单位), 复数z 在复平面上对应的点(cos θ,sin θ)不可能落在第二象限,所以A 不正确; |z |=cos 2θ+sin 2θ =1,所以B 不正确;z ·z - =(cos θ+isin θ)(cos θ-isin θ)=cos 2θ+sin 2θ=1,所以C 正确;z +1z =cos θ+isin θ+1cos θ+isin θ=cos θ+isin θ+cos θ-isin θ=2cos θ为实数,所以D 正确.二、填空题10.若a +b i i(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________. 答案:-7解析:a +b i i =i (a +b i )i 2 =b -a i ,(2-i)2=3-4i ,因为这两个复数互为共轭复数,所以b =3,a =-4,所以a -b =-4-3=-7.11.i 是虚数单位,复数6+7i 1+2i=________. 答案:4-i解析:6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=6-12i +7i +145 =20-5i 5=4-i. 12.设复数z 1,z 2 满足|z 1|=|z 2|=2,z 1+z 2=3 +i ,则|z 1-z 2|=________. 答案:23解析:设复数z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则a 2+b 2=4,c 2+d 2=4,又z 1+z 2=(a +c )+(b +d )i =3 +i ,∴a +c =3 ,b +d =1,则(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd =4,∴8+2ac +2bd =4,即2ac +2bd =-4,∴|z 1-z 2|=(a -c )2+(b -d )2 =a 2+b 2+c 2+d 2-(2ac +2bd ) =8-(-4) =23 .[能力提升] 13.(多选)[2024·九省联考]已知复数z ,w 均不为0,则( )A .z 2=|z |2B .z z - =z 2|z |2C .z -w =z - -w -D .⎪⎪⎪⎪z w =||z ||w 答案:BCD解析:设z =a +b i(a ,b ∈R ),w =c +d i(c ,d ∈R );对A :z 2=(a +b i)2=a 2+2ab i -b 2=a 2-b 2+2ab i ,|z |2=(a 2+b 2 )2=a 2+b 2,故A 错误;对B: z z - =z 2z -·z ,又z - ·z =||z 2,即有z z - =z 2|z |2 ,故B 正确; 对C :z -w =a +b i -c -d i =a -c +(b -d )i ,则z -w =a -c -(b -d )i ,z - =a -b i ,w -=c -d i ,则z - -w - =a -b i -c +d i =a -c -(b -d )i ,即有z -w =z - -w - ,故C 正确; 对D :⎪⎪⎪⎪z w =⎪⎪⎪⎪⎪⎪a +b i c +d i =⎪⎪⎪⎪⎪⎪(a +b i )(c -d i )(c +d i )(c -d i ) =⎪⎪⎪⎪⎪⎪ac +bd -(ad -bc )i c 2+d 2 =(ac +bd c 2+d 2)2+(ad -bc c 2+d 2)2 =a 2c 2+2abcd +b 2d 2+a 2d 2-2abcd +b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2(c 2+d 2)2 =a 2c 2+b 2d 2+a 2d 2+b 2c 2c 2+d 2 ,||z ||w =a 2+b 2c 2+d2 =a 2+b 2×c 2+d 2c 2+d 2 =(a 2+b 2)(c 2+d 2)c 2+d 2 =a 2c 2+b 2c 2+a 2d 2+b 2d 2c 2+d 2 ,故⎪⎪⎪⎪z w =||z ||w ,故D 正确.故选BCD. 14.[2022·全国乙卷(理),2]已知z =1-2i ,且z +a z +b =0,其中a ,b 为实数,则( )A .a =1,b =-2B .a =-1,b =2C .a =1,b =2D .a =-1,b =-2答案:A解析:由z =1-2i 可知z - =1+2i.由z +a z - +b =0,得1-2i +a (1+2i)+b =1+a +b+(2a -2)i =0.根据复数相等,得⎩⎪⎨⎪⎧1+a +b =0,2a -2=0, 解得⎩⎪⎨⎪⎧a =1,b =-2.故选A. 15.[2023·全国甲卷(理)]设a ∈R ,(a +i)(1-a i)=2,则a =( )A .-2B .-1C .1D .2答案:C解析:∵(a +i)(1-a i)=a +i -a 2i -a i 2=2a +(1-a 2)i =2,∴2a =2且1-a 2=0,解得a =1,故选C.16.已知z (1+i)=1+a i ,i 为虚数单位,若z 为纯虚数,则实数a =________. 答案:-1解析:方法一 因为z (1+i)=1+a i ,所以z =1+a i 1+i =(1+a i )(1-i )(1+i )(1-i )=(1+a )+(a -1)i 2,因为z 为纯虚数, 所以1+a 2 =0且a -12≠0,解得a =-1. 方法二 因为z 为纯虚数,所以可设z =b i(b ∈R ,且b ≠0),则z (1+i)=1+a i ,即b i(1+i)=1+a i ,所以-b +b i=1+a i ,所以⎩⎪⎨⎪⎧-b =1b =a ,解得a =b =-1.。

高考数学试卷共轭复数题

1. 已知复数z=a+bi(a,b∈R),则|z|的值是()A. a²+b²B. a²-b²C. a²D. b²2. 若复数z₁和z₂满足z₁z₂=2i,且|z₁|=1,|z₂|=2,则|z₁+z₂|的值为()A. √5B. 3C. 2√2D. √103. 已知复数z₁=1+i,z₂=1-i,则z₁z₂的值为()A. 2iB. -2iC. 2D. -24. 若复数z₁=2+3i,z₂=4-3i,则|z₁-z₂|的值为()A. 2√2B. 4√2C. 2D. 45. 已知复数z₁=1+i,z₂=2-i,若z₁z₂的虚部为0,则z₂的值为()A. 1+iB. 1-iD. 2-i二、填空题6. 复数z=3-4i的共轭复数为______。

7. 若复数z₁和z₂满足z₁z₂=-2,|z₁|=2,|z₂|=√2,则|z₁+z₂|的值为______。

8. 已知复数z₁=1-i,z₂=2+i,则z₁z₂的值为______。

9. 若复数z₁=1+i,z₂=√2(cosα+isinα),且z₁z₂的实部为0,则α的值为______。

10. 已知复数z₁=1+i,z₂=√3(cosβ+isinβ),若|z₁+z₂|=2,则β的值为______。

三、解答题11. (15分)已知复数z₁=2+i,z₂=a+bi(a,b∈R),求z₁z₂的实部和虚部。

12. (15分)已知复数z₁=1+i,z₂=√3(cosα+isinα),若z₁z₂的虚部为0,求α的值。

13. (20分)已知复数z₁=2+i,z₂=4-3i,求|z₁+z₂|的值。

14. (20分)已知复数z₁=1+i,z₂=√2(cosβ+isinβ),若|z₁+z₂|=2,求β的值。

15. (25分)已知复数z₁=1+i,z₂=2+3i,求z₁z₂的模长。

四、附加题16. (25分)已知复数z₁=√3(cosα+isinα),z₂=2+i,求|z₁z₂|的值。

高考英语单复数阅读理解20题

高考英语单复数阅读理解20题1<背景文章>Fruits are an essential part of our diet. There are various kinds of fruits with different characteristics. Apples, for example, can be singular or plural. When we say "an apple", it is in its singular form. But when we say "apples are delicious", it is in the plural form. Oranges are another common fruit. "An orange" is singular while "oranges are juicy" shows the plural form. Bananas also have their singular and plural uses. "A banana" is one single banana. However, when we talk about a bunch of bananas, we use the plural form "bananas".Strawberries are small and delicate fruits. We can say "a strawberry" for one strawberry and "strawberries are sweet" for multiple strawberries. Grapes come in clusters. "A grape" is singular and "grapes are sour sometimes" is plural.Peaches are soft and fuzzy. "A peach" is a single peach and "peaches are ripe in summer" is the plural form. Pears are another delicious fruit. "A pear" is one pear and "pears are good for health" shows the plural form.Watermelons are large fruits. "A watermelon" is singular and "watermelons are refreshing on a hot day" is plural. Mangoes are tropical fruits. "A mango" is one mango and "mangoes are colorful" is in pluralform.Kiwis are unique fruits. "A kiwi" is singular and "kiwis are rich in vitamin C" is plural. Cherries are small and bright red. "A cherry" is one cherry and "cherries are used in many desserts" is plural.Blueberries are tiny and full of antioxidants. "A blueberry" is singular and "blueberries are good for eyesight" is plural. Pineapples are exotic fruits. "A pineapple" is singular and "pineapples are tangy" is plural.1. “Apples are delicious.” Here “apples” is in ____ form.A. singularB. pluralC. both singular and pluralD. neither singular nor plural答案:B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数高考真题汇编
1、(2017北京文)若复数在复平面内对应的点在第二象限,则实数的取值范围是( )
(A ) (B ) (C ) (D )
2、(2017新课标Ⅱ理).
3i 1i +=+ A .12i + B .12i - C .2i + D .2i -
3、(2017新课标Ⅲ理数)设复数z 满足(1+i)z =2i ,则∣z ∣=
A .12 B
.2 C
D .2
4、(2017山东理)已知a R ∈,i
是虚数单位,若,4z a z z =⋅=,则a=
(A )1或-1 (B
(C )
(D
5、(2017新课标Ⅰ理数)设有下面四个命题
1p :若复数z 满足1z
∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为( )
A.13,p p B .14,p p C .23,p p D .24,p p 6、(2017新课标Ⅱ文).(1i)(2i)++=( )
A .1i -
B .13i +
C .3i +
D .33i +
7、(2017北京理)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是
A (–∞,1)
B (–∞,–1)
C (1,+∞)
D (–1,+∞)
8、(2017新课标Ⅲ文数)复平面内表示复数z=i(–2+i)的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 9、(2017新课标Ⅰ文数)下列各式的运算结果为纯虚数的是( ) A .i(1+i)2
B .i 2(1-i)
C .(1+i)2
D .i(1+i)
(1i)(i)a -+a (,1)-∞(,1)-∞-(1,)+∞(1,)-+∞
10、(2017山东文)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =
(A )-2i (B )2i (C )-2 (D )2
11、(2017浙江)已知(i 是虚数单位)则 ,ab = .
12、(2017天津文)已知a ∈R ,i 为虚数单位,若
i 2i a -+为实数,则a 的值为________ 13、(2017天津理)已知a ∈R ,若i 2i
a -+为实数,则a 的值为 . 14、(2017江苏)已知复数,其中i 是虚数单位,则的模是 .
15、(2016北京理数)设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴
上,则a =____-1___.
16、(2016江苏)复数(12)(3)z i i =+-,其中i 为虚数单位,则z 的实部是___5_____.
17、(2016上海理数)设32i z i
+=
,其中i 为虚数单位,则Im z =___3_____. 18、(2016上海文数)设32i z i
+=,其中i 为虚数单位,则z 的虚部等于__-3______. 19、(2016天津理数)已知,a b R ∈,i 是虚数单位,若(1)(1)i bi a +-=,则a b
的值为 2 . 20、(2016天津文数)复数z 满足(1)2i z +=,则z 的实部为 1 .
21、(2016北京文数)复数122i i
+=-( A ) .A i .B 1i + .C i - .D 1i -
22、(2016山东理数)若复数z 满足232z z i +=-,其中i 为虚数单位,则z =( B )
A .12i +
B .12i -
C .12i -+
D .12i --
23、(2016山东文数)若复数21z i
=-,其中i 为虚数单位,则z =( B ) A .1i + B .1i - C .1i -+ D .1i --
24、(2016四川理数)设i 为虚数单位,则6()x i +的展开式中含4x 的项为( A )
A .415x -
B .415x
C .420ix -
D .420ix
25、(2016四川文数)设i 为虚数单位,则复数2(1)i +=( C )
A .0
B .2
C .2i
D .22i +
26、(2016新课标I 理数)设(1)1i x yi +=+,其中x ,y 是实数,
则||x yi +=( B ) .A 1 .
B .
C .
D 2
2i 34i a b +=+()22a b +=(1i)(12i)z =++z
27、(2016新课标I 文数)设(12i)(i)a ++的实部与虚部相等,则a =( A )
.A 3- .B 2- .C 2 .D 3
28、(2016新课标II 理数)已知(3)(1)z m m i =++-在复平面内对应的点在第四
象限,则实数m 的取值范围是( A )
.A (3,1)- .B (1,3)- .C (1,)+∞ .D (,3)-∞-
29、(2016新课标II 文数)设复数z 满足3z i i +=-,则z =( C )
.A 12i -+ .B 12i - .C 32i + .D 32i - 30、(2016新课标III 理数)若12z i =+,则41
i zz =-(C ) .A 1 .B 1- .C i .D i -
31、(2016新课标III 文数)若43z i =+,则||
z z =( D ) .A 1 .B 1- .C 4355i + .D 4355
i - 32、[2015新课标Ⅰ文]已知复数z 满足(z -1)i=i +1,则z =( ) A. -2-i B. -2+i C. 2-i D. 2+i
33、[2015新课标Ⅰ理]设复数z 满足z
z -+11=i ,则|z |= A. 1 B.2 C.
3 D. 2 34、[2015新课标Ⅱ文]若为实数,且,则( ) A . B . C . D .
35、[2015新课标Ⅱ理]若a 为实数且(2+a i)(a -2i)=-4i,则a =( )
A. -1
B. 0
C. 1
D. 2
36、[2014·新课标Ⅰ文] 设z =11+i
+i ,则|z |=( ) A.12 B.22 C.32 D .2
37、[2014·新课标Ⅰ理]3
2(1)(1)
i i +-=( ) A .1i + B .1i - C .1i -+ D .1i --
38、[2014·新课标Ⅱ理]设复数1z ,
2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )
A .5-
B .5
C .4i -+
D . 4i --
a 2i 3i 1i
a +=++a =4-3-34。

相关文档
最新文档