工程电磁场大纲
电磁场与电磁波课程教学大纲

《电磁场与电磁波》课程教学大纲一、课程基本信息课程代码:课程名称:电磁场与电磁波英文名称:Electromagnetic Fields and Electromagnetic Waves课程类别:专业基础课学时:63学分:3适用对象: 电子信息专业考核方式:考试先修课程:大学物理、高等数学与工程数学(包括矢量分析,场论和数理方程等)二、课程简介电磁场与电磁波是通信技术的理论基础,是电子信息专业本科学生的知识结构中重要组成部分。
本课程使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。
使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。
培养学生正确的思维方法和分析问题的能力,使学生学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。
为后续课程打下坚实的理论基础。
Electromagnetic Field and Electromagnetic Wave is the theoretical foundation of communication technology, it is one of the most important components of the knowledge structerue for undergraduate students who major in information and electronic. Electromagnetic Field and Electromagnetic Wave make students grasp the theorem and the physical meaning of the Maxwell equations and mathematical expressions. It also make students grasp building method and analyzing method of some important mathematical model (such as wave equation,Laplace equation). This course trains students on the proper ways of thinking and ability to analyze issues, It also provides a solid theoretical foundation for following courses.三、课程性质与教学目的一切电现象,都会产生电磁场,而电磁波的辐射与传播规律,更是一切无线电活动的基础。
工程电磁场复习提纲及考点.pptx

A 和m 在不同媒介分界面上的衔接条件。会求解具有相应对称性的场分布,并字啊掌握矢
量磁位所满足的微分方程(泊松方程和拉普拉斯方程)以及标量磁位所满足的微分方程( 拉 普拉斯方程)的基础上,能写出典型恒定磁场问题所对应的数学模型——边值问题,并 能求 解出一位边值问题的解,且能运用分量变量法求解二维边值问题。 掌握恒定磁场中的镜像法。 理解磁链的概念。掌握自感 L、互感 M 的定义及其计算方法。 理解磁场能量及能量密度的概念,掌握具有对称性分布特征的磁场能量及其能量密度的计 算 方法。 会应用安培力、洛仑兹力计算公式,虚位移法及法拉第观点求解磁场力,并能根据场图分析 受力情况。 教学体系框架:
电场强度 E 与电位 的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与
路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场 强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位 分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其
示为: F (r ) (r ) A(r ) ,其中标量函数(r ) 1 'F (r ') dV ',矢量函数
4 V r r '
A(r ) 1 'F (r ') dV ' ,由此可见,无限空间中的电磁场 F (r ) 唯一地取决于其散度和
4 V r r'
旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。
《工程电磁场教案》

《工程电磁场教案》第一章:电磁场的基本概念1.1 电磁现象的发现1.2 电荷与电场1.3 电流与磁场1.4 电磁感应第二章:静电场2.1 静电场的定义与特性2.2 静电力与库仑定律2.3 电势与电势能2.4 电场强度与高斯定律第三章:稳恒电流场3.1 电流场的定义与特性3.2 欧姆定律3.3 电阻的计算3.4 电流场的分布与等势线第四章:稳恒磁场4.1 磁场的基本概念4.2 安培定律4.3 磁感应强度与磁场强度4.4 磁通量与磁通量密度第五章:电磁波5.1 电磁波的产生与传播5.2 电磁波的波动方程5.3 电磁波的极化与反射、折射5.4 电磁波的应用第六章:电磁场的数值计算方法6.1 有限差分法6.2 有限元法6.3 边界元法6.4 有限体积法第七章:电磁场的测量与检测7.1 电磁场测量的基础知识7.2 电磁场测量仪器与设备7.3 电磁兼容性测试7.4 电磁辐射的防护与控制第八章:电磁场在工程中的应用8.1 电机与变压器8.2 电磁兼容设计8.3 无线通信与雷达技术8.4 电力系统的电磁场问题第九章:电磁场相关的标准与规范9.1 国际电工委员会(IEC)标准9.2 北美电气和电子工程师协会(IEEE)标准9.3 欧洲电信标准协会(ETSI)标准9.4 我国电磁兼容性标准第十章:电磁场的环境保护与安全10.1 电磁污染与电磁干扰10.2 电磁场的生物效应10.3 电磁场的防护措施10.4 电磁场环境监测与管理重点和难点解析一、电磁场的基本概念难点解析:电磁现象的内在联系,电磁场的定量描述,电磁感应的数学表达。
二、静电场难点解析:静电场的能量分布,电势的计算,高斯定律在复杂几何形状中的应用。
三、稳恒电流场难点解析:电流场的散度,等势面的概念,复杂电路中的电流分布计算。
四、稳恒磁场难点解析:磁场的闭合性,安培定律的适用条件,磁通量的计算,磁场的能量。
五、电磁波难点解析:电磁波的麦克斯韦方程组,电磁波的产生机制,电磁波在不同介质中的传播特性。
《工程电磁场教案》

《工程电磁场教案》一、引言1. 课程背景介绍电磁场在工程技术领域的重要性和应用广泛性,如电力系统、通信、微波技术等。
2. 学习目标a. 理解电磁场的基本概念和基本定律。
b. 掌握电磁场的数学描述和计算方法。
c. 了解电磁场在工程实际中的应用。
3. 教学方法采用讲授、案例分析、数值计算、实验等多种教学方法,提高学生的学习兴趣和实际操作能力。
二、电磁场基本概念1. 电磁现象a. 静电场b. 恒定电流场c. 变化电场和磁场2. 电磁场的物理量a. 电场强度b. 磁场强度c. 电势d. 磁势3. 矢量运算a. 矢量加法b. 矢量乘法c. 平行四边形法则三、电磁场基本定律1. 库仑定律a. 点电荷间的相互作用力b. 电场强度的定义2. 安培定律a. 电流元产生的磁场b. 毕奥-萨伐尔定律3. 法拉第电磁感应定律a. 电磁感应现象b. 感应电动势和感应电流四、电磁场的数学描述1. 电场强度和电势的偏微分方程a. 拉普拉斯方程b. 泊松方程2. 磁场强度和磁势的偏微分方程a. 安培环路定律b. 麦克斯韦方程3. 边界条件a. Dirichlet边界条件b. Neumann边界条件五、电磁场的计算方法1. 有限差分法a. 网格划分b. 差分方程2. 有限元法a. 单元划分b. 能量泛函和弱形式3. 有限体积法a. 控制体积的选择b. 离散化方程六、电磁场在工程中的应用1. 电力系统a. 输电线路的电磁场分析b. 变压器的电磁场原理2. 通信技术a. 天线设计与电磁场仿真b. 微波传输中的电磁场问题3. 微波技术a. 微波器件中的电磁场分析b. 微波谐振腔的电磁场计算七、电磁兼容性与电磁干扰1. 电磁兼容性a. 电磁兼容性的基本概念b. 电磁兼容性的设计原则2. 电磁干扰a. 电磁干扰的来源与分类b. 电磁干扰的抑制方法八、电磁场的数值分析方法1. 有限元法a. 单元类型与形状函数b. 矩阵方程的求解2. 有限体积法a. 离散化方程的建立b. 数值求解技术3. 有限差分法a. 差分格式的稳定性分析b. 算法的收敛性分析九、实验与实践1. 实验目的a. 验证电磁场的基本定律b. 学习电磁场的测量技术2. 实验内容b. 电磁波的发射与接收3. 实验报告a. 数据处理与分析1. 课程回顾a. 重点知识的梳理b. 难点问题的解答2. 拓展阅读与研究a. 最新研究进展与技术动态b. 相关领域的交叉与应用3. 期末考试与评价a. 考试形式与内容b. 学习效果的评估与反馈重点和难点解析一、电磁场基本概念补充说明:电磁现象是电荷运动产生的现象,根据电荷的运动状态可分为静电场、恒定电流场和变化电场与磁场。
《电磁场》课程介绍与教学大纲

《电磁场》课程简介课程编号:06054001课程名称:中文/英文电磁场/ Electromagnetic Field学分:2.5学时:40 (实验:0 上机:0 课外实践:0)适用专业:电气工程及其自动化建议修读学期:第4学期开课单位:电气与信息工程学院电气工程系先修课程:高等数学、大学物理、复变函数与积分变换考核方式与成绩评定标准:闭卷考试百分制评定(期末考试卷面成绩占70%,平时成绩占30%)教材与主要参考书目:焦其祥,《电磁场与电磁波》,北京:科学出版社,2010年第2版。
内容概述:中文:本门课程属于电气工程及其自动化专业的专业基础课程,通过本门课程的学习,使学生在大学物理电磁学的基础上,进一步掌握电磁场基本概念;培养学生用场的观点对电气工程中的电磁现象和电磁过程进行定性分析与判断的初步能力;了解进行定量分析的基本途径,为进一步学习和应用各种较复杂的电磁场计算方法打下基础;通过电磁场理论的逻辑推理,培养学生正确思维和严谨的科学态度。
英文:This course belongs to the professional basic course of Electrical Engineering and Its Automation. The students through studying this course can be to further understand the basic concept of electromagnetic field on the basis of in the College Physics of Electromagnetism. It will cultivate the students' ability with the preliminary view of electromagnetic field to use qualitative analysis and judgment of electromagnetic phenomena and electromagnetic process in electrical engineering. The knowledge of basic understanding methods of quantitative analysis can lay the foundation for further study and application of electromagnetic method in various complex calculations. During the logic analyzing process of electromagnetic theory, the students could be cultivated with correct thinking and rigorous scientific attitude.《电磁场》教学大纲课程编号:06054001课程名称:中文/英文电磁场/ Electromagnetic Field学分:2.5学时:40 (实验:上机:课外实践:)适用专业:电气工程及其自动化建议修读学期:第4学期开课单位:电气与信息工程学院电气工程系先修课程:高等数学、大学物理、复变函数与积分变换一、课程性质、目的与任务课程性质:本门课程属于电气工程及其自动化专业的专业基础课程,通过本门课程的学习,使学生在大学物理电磁学的基础上,进一步掌握电磁场基本概念;培养学生用场的观点对电气工程中的电磁现象和电磁过程进行定性分析与判断的初步能力;了解进行定量分析的基本途径,为进一步学习和应用各种较复杂的电磁场计算方法打下基础;通过电磁场理论的逻辑推理,培养学生正确思维和严谨的科学态度。
《电磁场》课程教学大纲

《电磁场》课程教学大纲大纲执笔人:胡登宇大纲审核人:课程编号:0806145英文名称:Electric magnetic field学分:2学分总学时:32。
其中,讲授32学时。
适用专业: 电气工程及其自动化、电子信息工程等先修课程:高等教学、大学物理一、课程性质与教学目的电磁场是关于电与磁现象的一门学科,是工科电类专业的一门理论性比较强的专业课,它的任务是阐明电磁场的基本概念、基本规律和基本的分析计算方法。
本课程是学生在学习了大学物理以后再继续学习的,在内容编写上,即保证了与大学物理电磁学部分的衔接,又保证了理论的完整性,同时避免了一些不必要的重复。
本课程具体分为电场与磁场2个部分进行讲述,通过本课程的学习,可为后续课程,如电机学、高电压技术等打下良好的基础。
同时,培养学生的辨证思维能力,树立理论联系实际的科学观点;提高学生分析和解决问题的能力。
二、基本要求(一)掌握电场强度、电位、静电力、电容的计算方法。
(二)掌握绝缘电阻、接地电阻的计算方法。
(三)掌握磁通量、电感量以及磁场能量的计算。
三、重点与难点重点内容:高斯定理,镜像法,电场强度、电位、电容的计算,电流密度、绝缘电阻、接地电阻的计算,磁感应强度、磁通量、磁场的能量与电感的计算,电磁感应定律。
难点内容:高斯定理,镜像法,电流密度、绝缘电阻、电感的计算四、教学方法课堂讲授,运用启发、讨论、教学互动的多模式教学方法。
五、课程知识单元、知识点及学时分配见表1表1 课程的知识单元、知识点及学时分配知识单元知识点讲课序号描述序号描述1 静电场1 电场强度152 电位3 导体与电介质4 高斯定理5 静电场的基本方程、边界条件6 泊松方程与拉普拉斯方程7 镜象法8 部分电容2 恒定电场1 电流强度与电流密度82 恒定电场的基本方程3 分界面上的边界条件4 恒定电场静电场的比拟5 电导与接地电阻3 恒定磁场1 磁感应强度72 安培环路定理(真空)3 媒质的磁化4 恒定磁场的基本方程与边界条件5 电感6 磁场能量4 时变场1 电磁感应定理2 2 全电流定理六、实验教学内容实验单独开设七、作业要求每个知识单元后均布置一定数量的作业,要求学生独立书面完成。
技能培训专题工程电磁场讲义第一章
技能培训专题工程电磁场讲义第一章第一章入门概述1.1 工程电磁场的定义和意义工程电磁场是研究电磁现象在实际工程中的应用问题的学科,其包括电磁场的产生、传输、辐射、作用及其与其他物理现象的相互作用等方面的内容。
工程电磁场的应用范围非常广泛,如电力系统、通信系统、雷达系统、电磁兼容等领域都是工程电磁场的应用领域。
1.2 工程电磁场的基本概念电磁场是指由电荷或电流所产生的电场和磁场以及它们之间的相互作用。
电场和磁场分为静电场和静磁场和交变电场和交变磁场。
其中,静电场和静磁场是指电荷和电流不随时间变化,而交变电场和交变磁场是指电荷和电流随时间变化。
1.3 工程电磁场的数学描述工程电磁场的数学描述是通过一组方程来完成的,它们包括麦克斯韦方程组和洛伦兹力方程。
其中麦克斯韦方程组是电磁场的基本方程,它描述了电场和磁场的产生,传输和作用。
洛伦兹力方程是描述带电粒子运动时受到电磁场力作用的方程。
1.4 工程电磁场的计算方法工程电磁场的计算方法分为解析方法和数值方法。
解析方法包括解析解法和半解析解法,它们常常基于对电磁场方程的数学分析进行求解。
数值方法则通过对电磁场的离散化求解,其中常用的数值方法包括有限差分法、有限元法和时域有限差分法等。
1.5 工程电磁场的应用工程电磁场应用非常广泛,其中包括电力系统、通信系统、雷达系统、电子系统以及电磁兼容等领域。
在电力系统中,工程电磁场可用于估算高压输电线路附近的电场和磁场强度,以评估对周边环境和生态环境的潜在危害。
在通信系统中,工程电磁场可用于优化通信信号的传输质量和覆盖区域,以保证通信的可靠性和稳定性。
在电磁兼容领域中,工程电磁场可用于解决电子产品之间相互干扰和影响的问题。
1.6 工程电磁场中的注意事项在工程电磁场的计算和应用过程中需要注意以下事项:(1)要注意电磁场的安全性,防止人员和周边环境受到电磁辐射的危害;(2)要充分考虑电磁场的相互作用和复杂性,避免过度简化和假设,保证模型的准确性和可靠性;(3)应充分利用计算机技术和模拟分析手段,以提高计算效率和精度,加快问题的解决;(4)在实际应用中应充分结合相关标准和法规,遵循规范和要求,确保应用的合法性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
《工程电磁场》课程教学大纲
Engineering Electromagnetic Field
课程代码:21105620 课程性质:专业方向理论课(选修)
适用专业:电力系统及其自动化 开课学期:5
总学时数:32 总学分数:2.0
修订年月:2006年6月 执 笔:聂一雄
一、课程的性质和目的
工程电磁场课程是工科电类专业的技术基础课,是培养电气工程技术人员的主要课程。通
过本门课程的学习使学生掌握电磁场空间分布规律,为电气工程及其自动化专业后续课程准备
必要的电磁场基本知识。
二、课程教学内容及学时分配
(一) 静电场
1. 库仑定律、电场强度;静电场的守恒性、电位及电位梯度、高斯通量定理;静电场中的导
体和介质;静电场的基本方程和边界条件;泊松方程和拉普拉斯方程。
2. 场源问题、边值问题;静电场的唯一性定理、电轴法、镜象法。
3. 多导体带电系统电位和电荷关系;电容的计算。
4. 静电场能量与力。
(二) 恒定电场
1. 电流与电流密度。
2. 导电媒质中恒定电场的基本方程和边界条件。
3. 电阻的计算;接地电阻;静电比拟法。
(三) 恒定磁场
1. 磁感应强度;磁通连续性、安培环路定律;物质的磁化、磁场强度;恒定磁场的基本方程
和边界条件。
2. 标量磁位、向量磁位、镜象法;电感及其计算。
3. 磁场能量与力。
(四) 时变场
1. 电磁感应定律;全电流定律;麦克斯韦方程组、边界条件。
2. 坡印亭定理和坡印亭向量。
3. 动态位、波动方程的基本知识,电磁场与电路的关系。
总学时:32,其中:理论学时30,实验学时0,上机学时0,随堂考试学时:2。
具体分配参见表1:
表1. 教学学时分配计划表
序号 课 程 内 容 理论学时 实验学时 上机学时
1 概论* 2
2 静电场** 10
3 恒定电场 5
4 恒定磁场 8
5 时变场 5
6 随堂考试 2
2
* 注:此部分教学除介绍电磁场的一般概念等知识外,主要复习电磁场学习过程中必须掌
握的基本数学物理知识部分的内容。
**注:该学时中包含2学时的习题课,主要在静电场课程完成后,为学生讲解电磁场问题的
计算和解题技巧及学生课后作业中存在问题。由于静电场知识的掌握程度对后面课程知识的学
习非常重要,故此章内容是本门课程的重中之重。
三、课程教学的基本要求
1. 掌握静电场、恒定磁场、恒定电场的基本方程式、边界条件、电场能量、电场力、磁场能
量、磁场力,理解电场磁场中各种物理量。
2. 掌握磁场、电场分布的计算方法(场源问题、边值问题)和电容、电感、互感、电阻的计
算方法。
3. 理解麦克斯韦方程组、坡印亭向量的意义。
四、本课程与其它课程的联系与分工
先修课程:高等数学、矢量分析与场论、大学物理、电路
后续课程:电能质量控制,高电压技术,电力系统自动装置,微机继电保护
五、建议教材及教学参考书
[1]杨尔滨,杨欢红,刘蓉晖编,《工程电磁场基础与应用》,中国电力出版社,2005.8
年出版
[2]王泽忠编,《工程电磁场》,清华大学出版社,2005.6年出版
[3]倪光正编,《工程电磁场原理》,高等教育出版社,2002.6年出版
[4]冯慈璋,马西奎编,《工程电磁场导论》,高等教育出版社, 2000.6年出版
[5]马西奎编,《电磁场重点难点及典型题精解》,西安交通大学出版社,2000.9年出版