ROBUST STABILIZATION OF LINEAR UNCERTAIN SYSTEMS
Robust Control

Robust ControlRobust control is a crucial concept in the field of engineering and technology, particularly in the design and implementation of control systems for various applications. It refers to the ability of a control system to maintain stable and satisfactory performance in the presence of uncertainties and variations in the system and its environment. This is a significant challenge in engineering, asreal-world systems are often subject to disturbances, parameter variations, and other sources of uncertainty that can affect their behavior. As such, the development of robust control techniques is essential for ensuring the reliability and effectiveness of control systems in practical applications. One perspectiveon robust control is its importance in addressing the limitations anduncertainties inherent in real-world systems. In many engineering applications, such as aerospace, automotive, and industrial control, the behavior of the system can be influenced by various factors that are difficult to model and predict with absolute certainty. For example, in the design of an aircraft autopilot system,the control system must be able to maintain stable flight performance despite variations in the aircraft's aerodynamic properties, external disturbances such as wind gusts, and sensor measurement errors. Robust control techniques provide a framework for addressing these uncertainties and designing control systems thatcan adapt to varying operating conditions, thereby enhancing the safety and performance of the overall system. Another perspective on robust control is its role in ensuring the stability and performance of control systems in the face of external disturbances and internal variations. In many practical applications, control systems are required to operate in dynamic and uncertain environments, where disturbances such as changes in load, temperature, or operating conditions can affect the behavior of the system. Robust control techniques, such as robust stabilization and robust performance optimization, provide methods for designing control systems that can effectively reject disturbances and maintain stable and satisfactory performance over a wide range of operating conditions. This is particularly important in safety-critical applications, where the failure of a control system to handle disturbances and variations could have serious consequences. From a practical standpoint, the development and implementation ofrobust control techniques involve a multidisciplinary approach that draws on principles from control theory, system identification, optimization, and robustness analysis. Engineers and researchers working in this field must have a deep understanding of the underlying mathematical and theoretical concepts, aswell as practical experience in applying these concepts to real-world problems. This often requires the use of advanced mathematical tools and software for modeling and simulation, as well as access to experimental facilities for testing and validating control system designs. Furthermore, the development of robust control techniques often involves collaboration with experts in related fields, such as materials science, mechanical engineering, and computer science, in order to address the specific challenges and uncertainties associated with a given application. In addition to its technical and practical significance, robust control also has broader implications for the advancement of engineering and technology. By developing control systems that are more resilient to uncertainties and variations, robust control techniques can enable the deployment of advanced technologies in new and challenging environments. For example, in the field of robotics, robust control methods are essential for enabling robots to operate in unstructured and dynamic environments, where they may encounter obstacles, uneven terrain, and other sources of uncertainty. Similarly, in the field of autonomous vehicles, robust control techniques are crucial for ensuring the safety and reliability of self-driving cars in real-world traffic conditions. As such, the development of robust control techniques has the potential to drive innovation and progress in a wide range of engineering applications, with far-reachingimplications for society as a whole. In conclusion, robust control is a critical concept in engineering and technology, with implications for a wide range of applications and disciplines. It addresses the challenges of uncertainty and variation in real-world systems, providing methods for designing control systems that can maintain stable and satisfactory performance in dynamic and uncertain environments. The development and implementation of robust control techniques require a multidisciplinary approach, drawing on principles from control theory, system identification, optimization, and robustness analysis. Furthermore, robust control has broader implications for the advancement of engineering and technology,enabling the deployment of advanced technologies in new and challenging environments. Overall, robust control is an essential and evolving field that continues to drive innovation and progress in engineering and technology.。
国家自然基金申请成功的申请书样本2 new!

第4页
版本 1.029.231
国家自然科学基金申请书
报告正文
(一) 立论依据和研究内容
1. 项目的立项依据
对系统的某一平衡点而言,系统的镇定问题是研究如何设计一个控制器使得闭环系 统对包含该平衡点的某一区域中的任何初值,其运动轨迹都能渐近收敛到该平衡点。这 是研究系统从一个状态精确地运动到另一状态以及系统跟踪控制问题的基础。自上世纪 八十年代以来,随着机器人和自动驾驶技术的发展,迫切需要考虑受控对象与环境接触 的非完整约束下的镇定控制问题。在随后的二十多年内,这一问题成了控制理论界研究 的热点之一。国际上上世纪 80 年代至 90 年代中期,对非完整系统镇定控制的研究主要 是针对由非完整约束方程导出的非完整运动学系统进行的,并取得了如非光滑控制器、 时变控制器以及混合控制器等一大批理论结果[1]。由于实际系统是动力学系统, 在对 系统性能要求较高的情况下通常不能忽略系统的动力学部分。因此自 90 年代后期国际 上更加注重非完整动力学系统镇定的控制研究。通常采用速度跟踪的思想将对非完整运 动学系统设计的控制律推广到非完整动力学系统,这种研究一般依赖于非完整系统的准 确动力学模型[2,3,4]。考虑到非完整动力学系统控制研究具有很强的实际应用背景, 而对实际系统一般无法建立精确模型,且不可避免地受到各种干扰的影响,必须研究不 确定非完整动力学系统的有效控制方法。目前国内外在这方面的研究还刚刚起步,值得 一提的是我国学者对参数不确定非完整动力学控制系统,在镇定控制方面也做出了一定 的贡献[5,6,7]。此外,近两年来关于有外界扰动和传感器噪声情况下的非完整运动学 鲁棒镇定控制问题也有所论及[8]。
本项目就是试图利用视觉量测信息,从控制理论的角度,将量测和控制结合起来, 研究在视觉坐标系(指摄象机坐标系或图象坐标系)下非完整控制系统镇定问题的理论 和方法,为进一步从理论和实际的结合上研究非完整控制系统开拓新的思路。
时滞动力学系统的L-K稳定性条件分析

时滞动力学系统的L-K稳定性条件分析张晓艳;孙建桥;丁千【摘要】针对线性时滞动力学系统的稳定性问题,比较了3种Lyapunov-Krasovskii(L-K)泛函.以一个在时滞PD反馈控制下的二阶线性系统作为数值实例,在反馈增益的参数空间中,根据不同的L-K泛函所对应的线性矩阵不等式条件计算线性系统的稳定域,并与由特征方程计算出的结果进行比较.结果表明:L-K泛函的稳定性条件是充分且保守的;Gu的完整L-K泛函的LMI不等式中暗含无穷多的矩阵,因此保守性得到很大改善,但其计算量显著增大;当将Lyapunov稳定性理论用于控制设计时,经常使用保守的稳定性条件,但Gu的L-K泛函更有利于控制器设计.【期刊名称】《西安交通大学学报》【年(卷),期】2013(047)005【总页数】5页(P72-76)【关键词】动力学系统;时滞;稳定性;Lyapunov-Krasovskii理论【作者】张晓艳;孙建桥;丁千【作者单位】天津大学力学系,300073,天津;天津电子信息职业技术学院电子系,300132,天津;加州大学默塞得分校工学院,95343,美国加里福尼亚默塞得;天津大学力学系,300073,天津【正文语种】中文【中图分类】O317时滞现象广泛存在于航天航空、机械设计、车辆制造、建筑结构、金融工程、信息通信、生物技术及脑信息科学等众多领域,时滞动力学系统的稳定性也一直是重要的研究课题。
Lyapunov-Krasovskii(L-K)泛函方法是研究稳定性的常用方法[1-2],已有很多研究线性时滞系统稳定性的例子[3-5]。
Fan等人使用线性矩阵不等式研究了带离散和分布时滞的一类中性系统的渐近稳定性问题[6];Ivanescu等人研究了时滞无关和时滞相关的稳定性条件[7-9];Han选取时滞无关和时滞相关的L-K泛函,分析了线性时滞和中性系统的稳定性[10];Shao提出了在一定范围内变时滞系统的改进的稳定性条件[11];He等人研究了L-K泛函在已知时滞上、下限的时变系统中的应用[12]。
非线性模型预测控制_front-matter

Communications and Control Engineering For other titles published in this series,go to/series/61Series EditorsA.Isidori J.H.van Schuppen E.D.Sontag M.Thoma M.Krstic Published titles include:Stability and Stabilization of Infinite Dimensional Systems with ApplicationsZheng-Hua Luo,Bao-Zhu Guo and Omer Morgul Nonsmooth Mechanics(Second edition)Bernard BrogliatoNonlinear Control Systems IIAlberto IsidoriL2-Gain and Passivity Techniques in Nonlinear Control Arjan van der SchaftControl of Linear Systems with Regulation and Input ConstraintsAli Saberi,Anton A.Stoorvogel and Peddapullaiah SannutiRobust and H∞ControlBen M.ChenComputer Controlled SystemsEfim N.Rosenwasser and Bernhard mpeControl of Complex and Uncertain SystemsStanislav V.Emelyanov and Sergey K.Korovin Robust Control Design Using H∞MethodsIan R.Petersen,Valery A.Ugrinovski andAndrey V.SavkinModel Reduction for Control System DesignGoro Obinata and Brian D.O.AndersonControl Theory for Linear SystemsHarry L.Trentelman,Anton Stoorvogel and Malo Hautus Functional Adaptive ControlSimon G.Fabri and Visakan KadirkamanathanPositive1D and2D SystemsTadeusz KaczorekIdentification and Control Using Volterra Models Francis J.Doyle III,Ronald K.Pearson and Babatunde A.OgunnaikeNon-linear Control for Underactuated Mechanical SystemsIsabelle Fantoni and Rogelio LozanoRobust Control(Second edition)Jürgen AckermannFlow Control by FeedbackOle Morten Aamo and Miroslav KrsticLearning and Generalization(Second edition) Mathukumalli VidyasagarConstrained Control and EstimationGraham C.Goodwin,Maria M.Seron andJoséA.De DonáRandomized Algorithms for Analysis and Controlof Uncertain SystemsRoberto Tempo,Giuseppe Calafiore and Fabrizio Dabbene Switched Linear SystemsZhendong Sun and Shuzhi S.GeSubspace Methods for System IdentificationTohru KatayamaDigital Control SystemsIoan ndau and Gianluca ZitoMultivariable Computer-controlled SystemsEfim N.Rosenwasser and Bernhard mpe Dissipative Systems Analysis and Control(Second edition)Bernard Brogliato,Rogelio Lozano,Bernhard Maschke and Olav EgelandAlgebraic Methods for Nonlinear Control Systems Giuseppe Conte,Claude H.Moog and Anna M.Perdon Polynomial and Rational MatricesTadeusz KaczorekSimulation-based Algorithms for Markov Decision ProcessesHyeong Soo Chang,Michael C.Fu,Jiaqiao Hu and Steven I.MarcusIterative Learning ControlHyo-Sung Ahn,Kevin L.Moore and YangQuan Chen Distributed Consensus in Multi-vehicle Cooperative ControlWei Ren and Randal W.BeardControl of Singular Systems with Random Abrupt ChangesEl-Kébir BoukasNonlinear and Adaptive Control with Applications Alessandro Astolfi,Dimitrios Karagiannis and Romeo OrtegaStabilization,Optimal and Robust ControlAziz BelmiloudiControl of Nonlinear Dynamical SystemsFelix L.Chernous’ko,Igor M.Ananievski and Sergey A.ReshminPeriodic SystemsSergio Bittanti and Patrizio ColaneriDiscontinuous SystemsYury V.OrlovConstructions of Strict Lyapunov FunctionsMichael Malisoff and Frédéric MazencControlling ChaosHuaguang Zhang,Derong Liu and Zhiliang Wang Stabilization of Navier–Stokes FlowsViorel BarbuDistributed Control of Multi-agent NetworksWei Ren and Yongcan CaoLars Grüne Jürgen Pannek Nonlinear Model Predictive Control Theory and AlgorithmsLars Grüne Mathematisches Institut Universität Bayreuth Bayreuth95440Germanylars.gruene@uni-bayreuth.de Jürgen Pannek Mathematisches Institut Universität BayreuthBayreuth95440Germanyjuergen.pannek@uni-bayreuth.deISSN0178-5354ISBN978-0-85729-500-2e-ISBN978-0-85729-501-9DOI10.1007/978-0-85729-501-9Springer London Dordrecht Heidelberg New YorkBritish Library Cataloguing in Publication DataA catalogue record for this book is available from the British LibraryLibrary of Congress Control Number:2011926502Mathematics Subject Classification(2010):93-02,92C10,93D15,49M37©Springer-Verlag London Limited2011Apart from any fair dealing for the purposes of research or private study,or criticism or review,as per-mitted under the Copyright,Designs and Patents Act1988,this publication may only be reproduced, stored or transmitted,in any form or by any means,with the prior permission in writing of the publish-ers,or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.Enquiries concerning reproduction outside those terms should be sent to the publishers.The use of registered names,trademarks,etc.,in this publication does not imply,even in the absence of a specific statement,that such names are exempt from the relevant laws and regulations and therefore free for general use.The publisher makes no representation,express or implied,with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.Cover design:VTeX UAB,LithuaniaPrinted on acid-free paperSpringer is part of Springer Science+Business Media()For Brigitte,Florian and CarlaLGFor Sabina and AlinaJPPrefaceThe idea for this book grew out of a course given at a winter school of the In-ternational Doctoral Program“Identification,Optimization and Control with Ap-plications in Modern Technologies”in Schloss Thurnau in March2009.Initially, the main purpose of this course was to present results on stability and performance analysis of nonlinear model predictive control algorithms,which had at that time recently been obtained by ourselves and coauthors.However,we soon realized that both the course and even more the book would be inevitably incomplete without a comprehensive coverage of classical results in the area of nonlinear model pre-dictive control and without the discussion of important topics beyond stability and performance,like feasibility,robustness,and numerical methods.As a result,this book has become a mixture between a research monograph and an advanced textbook.On the one hand,the book presents original research results obtained by ourselves and coauthors during the lastfive years in a comprehensive and self contained way.On the other hand,the book also presents a number of results—both classical and more recent—of other authors.Furthermore,we have included a lot of background information from mathematical systems theory,op-timal control,numerical analysis and optimization to make the book accessible to graduate students—on PhD and Master level—from applied mathematics and con-trol engineering alike.Finally,via our web page we provide MATLAB and C++software for all examples in this book,which enables the reader to perform his or her own numerical experiments.For reading this book,we assume a basic familiarity with control systems,their state space representation as well as with concepts like feedback and stability as provided,e.g.,in undergraduate courses on control engineering or in courses on mathematical systems and control theory in an applied mathematics curriculum.However,no particular knowledge of nonlin-ear systems theory is assumed.Substantial parts of the systems theoretic chapters of the book have been used by us for a lecture on nonlinear model predictive con-trol for master students in applied mathematics and we believe that the book is well suited for this purpose.More advanced concepts like time varying formulations or peculiarities of sampled data systems can be easily skipped if only time invariant problems or discrete time systems shall be treated.viiviii PrefaceThe book centers around two main topics:systems theoretic properties of nonlin-ear model predictive control schemes on the one hand and numerical algorithms on the other hand;for a comprehensive description of the contents we refer to Sect.1.3.As such,the book is somewhat more theoretical than engineering or application ori-ented monographs on nonlinear model predictive control,which are furthermore often focused on linear methods.Within the nonlinear model predictive control literature,distinctive features of this book are the comprehensive treatment of schemes without stabilizing terminal constraints and the in depth discussion of performance issues via infinite horizon suboptimality estimates,both with and without stabilizing terminal constraints.The key for the analysis in the systems theoretic part of this book is a uniform way of interpreting both classes of schemes as relaxed versions of infinite horizon op-timal control problems.The relaxed dynamic programming framework developed in Chap.4is thus a cornerstone of this book,even though we do not use dynamic programming for actually solving nonlinear model predictive control problems;for this task we prefer direct optimization methods as described in the last chapter of this book,since they also allow for the numerical treatment of high dimensional systems.There are many people whom we have to thank for their help in one or the other way.For pleasant and fruitful collaboration within joint research projects and on joint papers—of which many have been used as the basis for this book—we are grateful to Frank Allgöwer,Nils Altmüller,Rolf Findeisen,Marcus von Lossow,Dragan Neši´c ,Anders Rantzer,Martin Seehafer,Paolo Varutti and Karl Worthmann.For enlightening talks,inspiring discussions,for organizing workshops and mini-symposia (and inviting us)and,last but not least,for pointing out valuable references to the literature we would like to thank David Angeli,Moritz Diehl,Knut Graichen,Peter Hokayem,Achim Ilchmann,Andreas Kugi,Daniel Limón,Jan Lunze,Lalo Magni,Manfred Morari,Davide Raimondo,Saša Rakovi´c ,Jörg Rambau,Jim Rawl-ings,Markus Reble,Oana Serea and Andy Teel,and we apologize to everyone who is missing in this list although he or she should have been mentioned.Without the proof reading of Nils Altmüller,Robert Baier,Thomas Jahn,Marcus von Lossow,Florian Müller and Karl Worthmann the book would contain even more typos and inaccuracies than it probably does—of course,the responsibility for all remaining errors lies entirely with us and we appreciate all comments on errors,typos,miss-ing references and the like.Beyond proof reading,we are grateful to Thomas Jahn for his help with writing the software supporting this book and to Karl Worthmann for his contributions to many results in Chaps.6and 7,most importantly the proof of Proposition 6.17.Finally,we would like to thank Oliver Jackson and Charlotte Cross from Springer-Verlag for their excellent rs Grüne Jürgen PannekBayreuth,Germany April 2011Contents1Introduction (1)1.1What Is Nonlinear Model Predictive Control? (1)1.2Where Did NMPC Come from? (3)1.3How Is This Book Organized? (5)1.4What Is Not Covered in This Book? (9)References (10)2Discrete Time and Sampled Data Systems (13)2.1Discrete Time Systems (13)2.2Sampled Data Systems (16)2.3Stability of Discrete Time Systems (28)2.4Stability of Sampled Data Systems (35)2.5Notes and Extensions (39)2.6Problems (39)References (41)3Nonlinear Model Predictive Control (43)3.1The Basic NMPC Algorithm (43)3.2Constraints (45)3.3Variants of the Basic NMPC Algorithms (50)3.4The Dynamic Programming Principle (56)3.5Notes and Extensions (62)3.6Problems (64)References (65)4Infinite Horizon Optimal Control (67)4.1Definition and Well Posedness of the Problem (67)4.2The Dynamic Programming Principle (70)4.3Relaxed Dynamic Programming (75)4.4Notes and Extensions (81)4.5Problems (83)References (84)ix5Stability and Suboptimality Using Stabilizing Constraints (87)5.1The Relaxed Dynamic Programming Approach (87)5.2Equilibrium Endpoint Constraint (88)5.3Lyapunov Function Terminal Cost (95)5.4Suboptimality and Inverse Optimality (101)5.5Notes and Extensions (109)5.6Problems (110)References (112)6Stability and Suboptimality Without Stabilizing Constraints (113)6.1Setting and Preliminaries (113)6.2Asymptotic Controllability with Respect to (116)6.3Implications of the Controllability Assumption (119)6.4Computation ofα (121)6.5Main Stability and Performance Results (125)6.6Design of Good Running Costs (133)6.7Semiglobal and Practical Asymptotic Stability (142)6.8Proof of Proposition6.17 (150)6.9Notes and Extensions (159)6.10Problems (161)References (162)7Variants and Extensions (165)7.1Mixed Constrained–Unconstrained Schemes (165)7.2Unconstrained NMPC with Terminal Weights (168)7.3Nonpositive Definite Running Cost (170)7.4Multistep NMPC-Feedback Laws (174)7.5Fast Sampling (176)7.6Compensation of Computation Times (180)7.7Online Measurement ofα (183)7.8Adaptive Optimization Horizon (191)7.9Nonoptimal NMPC (198)7.10Beyond Stabilization and Tracking (207)References (209)8Feasibility and Robustness (211)8.1The Feasibility Problem (211)8.2Feasibility of Unconstrained NMPC Using Exit Sets (214)8.3Feasibility of Unconstrained NMPC Using Stability (217)8.4Comparing Terminal Constrained vs.Unconstrained NMPC (222)8.5Robustness:Basic Definition and Concepts (225)8.6Robustness Without State Constraints (227)8.7Examples for Nonrobustness Under State Constraints (232)8.8Robustness with State Constraints via Robust-optimal Feasibility.2378.9Robustness with State Constraints via Continuity of V N (241)8.10Notes and Extensions (246)8.11Problems (249)References (249)9Numerical Discretization (251)9.1Basic Solution Methods (251)9.2Convergence Theory (256)9.3Adaptive Step Size Control (260)9.4Using the Methods Within the NMPC Algorithms (264)9.5Numerical Approximation Errors and Stability (266)9.6Notes and Extensions (269)9.7Problems (271)References (272)10Numerical Optimal Control of Nonlinear Systems (275)10.1Discretization of the NMPC Problem (275)10.2Unconstrained Optimization (288)10.3Constrained Optimization (292)10.4Implementation Issues in NMPC (315)10.5Warm Start of the NMPC Optimization (324)10.6Nonoptimal NMPC (331)10.7Notes and Extensions (335)10.8Problems (337)References (337)Appendix NMPC Software Supporting This Book (341)A.1The MATLAB NMPC Routine (341)A.2Additional MATLAB and MAPLE Routines (343)A.3The C++NMPC Software (345)Glossary (347)Index (353)。
一类纯反馈非线性系统的动态面控制

一类纯反馈非线性系统的动态面控制刘勇华【摘要】针对一类非仿射输入纯反馈非线性系统,提出了一种动态面控制算法.不同于运用中值定理,该算法通过引入一个辅助系统,将原系统转化为输入仿射系统,结合动态面控制与反推设计法,消除了反推法中“计算膨胀”问题.所设计控制器保证了闭环系统所有信号半全局一致最终有界,且通过选择合适的设计参数可使跟踪误差收敛到原点的一个小邻域内.一个仿真实例进一步验证了所提控制算法的有效性.【期刊名称】《控制理论与应用》【年(卷),期】2014(031)009【总页数】6页(P1262-1267)【关键词】纯反馈非线性系统;非线性系统;动态面控制;反推设计【作者】刘勇华【作者单位】湖南科技大学机械设备健康维护湖南省重点实验室,湖南湘潭411201【正文语种】中文【中图分类】TP273近几十年来,非线性系统控制研究受到了国内外学者的广泛关注,取得了许多卓有成效的成果,如精确线性化技术[1]、反推控制技术[2]和智能控制技术[3]等.然而,在大多数研究中,通常假定被控系统为仿射系统(如严格反馈非线性系统),但在工程实践中,很多系统都具有非仿射特性,如机械系统[4]、化学系统[5]和飞行器系统[6]等.作为一类典型的非仿射非线性系统,近年来,纯反馈系统控制受到了越来越多的关注. 纯反馈系统是一类较严格反馈系统更一般的下三角型非线性系统.由于系统的非仿射结构,传统适合于严格反馈系统的控制器设计方法很难直接用于纯反馈系统控制.文献[7]较早研究了一类仿射输入纯反馈系统的控制问题,根据反推设计思想,给出了严格反馈条件下系统全局调节和全局跟踪的自适应控制器设计方法.然而,在非仿射条件下,该方法仅能保证闭环系统局部稳定.在此基础上,文献[8]直接从仿射输入纯反馈系统本身出发,在无须进行坐标变换情况下,给出了一种保证系统全局调节或全局跟踪的控制器设计方法.文献[9]讨论了一类特殊的非仿射输入高阶非线性系统全局镇定问题,通过引入增加幂次积分器技术,提出了一个光滑状态反馈控制器.针对一类仿射输入纯反馈系统,文献[10]提出了一种新的反推控制设计方法,与标准反推法将状态xi视为第i个子系统的虚拟控制不同,为克服纯反馈系统中非仿射结构给控制器设计带来的困难,该方法将第i个子系统的非仿射光滑函数视为该子系统虚拟控制.对模型完全未知的纯反馈非线性系统控制问题,通常采用的方法是基于智能通用逼近器的反推设计法,如文献[11–14].上述基于反推法的控制方法都存在一种缺陷,即在每一步反推设计中都需要对虚拟控制律进行重复求导,使得所设计控制器的计算复杂度随着系统阶数的增加爆炸性膨胀.为克服反推法中的“计算膨胀”问题,文献[15]首先提出了一种动态面控制技术,通过在每一步设计中引入一阶低通滤波器,从而避免了对虚拟控制律的反复求导.然而,由于纯反馈系统结构的非仿射性,使得动态面控制很难直接用于纯反馈系统.目前常用的方法是利用中值定理将纯反馈系统转化为严格反馈系统,然后结合隐函数定理和动态面控制技术给出控制器设计,如文献[16–20].不同于运用中值定理的动态面控制,本文尝试直接从纯反馈系统本身来设计控制器.按文献[10]中的反推设计法,在每一步设计中引入一阶低通滤波器,给出了一个控制输入初始状态可以任意选择的动态面控制器.该控制器可保证闭环系统所有信号半全局一致最终有界,且通过适当调整设计参数可使跟踪误差收敛到原点的一个小邻域内.最后,仿真结果进一步验证了本文所提控制算法的有效性.考虑如下一类纯反馈非线性系统:其中:=(x1,···,xi)T∈ℝi,i=1,···,n; (x1,···,xn)T∈ℝn为系统状态向量;u和y分别为系统的输入和输出;fi(·)为已知光滑函数,i=1,···,n.控制目标:设计控制器u,使系统输出y跟踪一个给定的参考轨迹yd,且保证闭环系统的所有信号一致最终有界.为了达到控制目标,对上述系统作如下假设:假设1 光滑函数满足其中:为已知正常数,xn+1=u.注1 假设1是系统(1)全局可控的一个充分条件[21]. 仅为约束正常数,不出现在后面设计的控制器中.假设2 参考轨迹yd连续有界,且存在二阶有界导数.即,其中:紧集 B0为已知正常数. 引理1 若光滑函数满足假设1且有界,则xi+1亦有界,i=1,···,n.证为光滑函数,由中值定理,至少存在一点ζ(ζ∈(min(0,xi+1),max(0,xi+1))),使得由假设1可知,存在>0,使得由于为有界光滑函数,则等式(3)左边亦有界.故xi+1有界.为解决系统(1)控制器设计中的非仿射输入问题,引入辅助子系统=v,则增广系统可表示为其中v为辅助控制输入.不同于标准反推法设计[2],本文采用如下坐标变换[10]:其中si−1为第i−1个子系统的虚拟控制律.结合动态面控制技术,引入如下一阶低通滤波器:且定义边界层误差为其中:αi为第i个子系统实际需设计的虚拟控制律, τi为滤波时间常数,i=1,···,n.步骤1 由式(5)(7)−(8)和式(10),可得选择实际虚拟控制律α1为其中c1为正的设计常数.由式(11)−(12),可得其中c1为正的设计常数.步骤2 对z2=f1−s1沿时间t求导,可得选择实际虚拟控制律α2为其中c2为正的设计常数.根据式(14)−(15)可得步骤i(3≤i≤n) 对zi=fi−1−si−1求导,可得选择实际虚拟控制律αi为其中ci为正的设计常数.根据式(17)−(18)可得步骤n+1 这一步将得到实际控制输入u.对zn+1=fn−αn求导,可得选择辅助控制律v为其中cn+1为正的设计常数.选择任意初始控制输入u(0),将式(21)代入式(6),可得到实际控制律u.注2 初始控制输入u(0)可以任意给出或按要求选定,这可视为本文所提控制算法的一个优势.根据式(20)−(21)可得根据式(9)−(10)和式(12),可得其中B1(z1,e1,yd,)=是一个连续函数.类似地,可得其中Bi(·)==2,···,n是连续函数.为估计闭环系统的稳定性,选择如下Lyapunov函数:定理1 在假设1和2条件下,考虑由非线性系统(1),一阶低通滤波器(9)、控制律(6)和(21)组成的闭环系统,对任意给定的正常数p,如果V(0)≤p,则存在正的设计参数c1,···,cn+1,τ1,···,τn,使得闭环系统的所有信号半全局一致最终有界,且通过适当调整设计参数,可以使系统跟踪误差收敛到原点附近的一个小邻域内.证对V沿时间t求导,可得定义集合由假设2和定理1条件知,对任意B0>0和p>0,集合Ωd和Ωi分别是ℝ3和ℝ2i+1内的紧集,则Ωd×Ωi亦是ℝ2i+4内的紧集,故连续函数Bi(·)在集合Ωd×Ωi 内存在一个最大值Mi,则由式(24)可得根据Young不等式,可得则其中:α0为可任意选取的正常数,设计参数满足当V(t)=p时,若α0>∆/p,则有≤0,因此, V(t)≤p为一个不变集,即当初始条件V(0)≤p时, V(t)≤p,∀t≥0.将式(30)两边同时乘以eα0t,可得式(32)两边沿[0,t]积分可得则有因此,z1,···,zn+1,e1,···,en都是半全局一致最终有界的.同时,由式(7)−(8)和式(10),z1,e1有界可得x1,s1,α1,f1有界,由引理1可得x2亦有界,随之f1的各个偏导数亦有界;结合z2,e2有界可得到s2,α2有界,从而f2亦有界,由引理1可推得x3有界,进而f2的各个偏导数亦有界.以此类推,可得x1,···,xn,α1,···, αn,v,u,s1,···,sn均是半全局一致最终有界的.另外,由|y−yd|2=≤2V可知,通过适当调整设计参数(增大α0),可使系统跟踪误差收敛到原点附近的一个小邻域内.注3 上述控制器设计中要求设计参数满足式(31).显然,假设1中正常数仅起到了约束设计参数的作用.注4 与文献[10]中反推设计法相比,本文采用动态面控制技术,无须每一步对所得到的虚拟控制进行求导,使得控制算法的计算量大为减少,易于在工程中实现.缺点是进一步要求(文献[10]中仅需≤且仅能保证闭环系统半全局稳定.注5 本文所提控制算法同样适合于严格反馈非线性系统控制器设计,相较于文献[15]中的动态面控制,其优点是可以任意选择控制输入初始值u(0).注6 与文献[20]中方法相比,本文第i步中剩余项zizi−1均由第i+1步进行补偿,减小了设计参数ci的取值,从而降低了所需的控制代价.此外,文献[20]中控制器设计参数含有正常数而本文所得控制器设计参数仅受限于正常数注7 文献[20]中控制器要求Mi为已知常数,然而,由于Mi为连续函数Bi(·)在紧集Ωd×Ωi内的一个最大值,在实际中很难取得.本文通过合理的不等式放缩,避免了这一问题.考虑如下二阶SISO非线性系统:其中:系统初始条件期望参考轨迹选择设计参数c1=3,c2=2,c3=4,初始控制输入u(0)=2,滤波时间参数τ1=τ2=0.01.所得仿真结果如图1−2,图1为系统输出跟踪误差,图2为系统输入u;图3−4分别为不同滤波时间条件下系统输出跟踪误差与输入;图5−6分别为不同初始控制输入u(0)条件下系统输出跟踪误差与输入.本文解决了一类非仿射输入纯反馈系统的动态面控制问题.通过引入一个积分辅助系统,将原系统转化为n+1维的仿射输入增广系统,结合动态面控制技术和文献[10]中的反推设计法,克服了反推法中所固有的“计算膨胀”问题.理论分析与仿真结果表明,该控制器保证了闭环系统所有信号半全局一致最终有界,通过选择合适的设计参数,可使系统跟踪误差收敛到原点的一个小邻域内.刘勇华 (1986–),男,博士,研究方向为非线性控制及其在机电系统中的应用,E-mail:***********************.【相关文献】[1]ISIDORI V.Nonlinear Control Systems[M].New York:Springer-Verlag,1989.[2]KRSTIC M,KANELLAKOPOULOS I,KOKOTOVIC P V.Nonlinear and Adaptive Control Design[M].New York:John Wiley& Sons,1995.[3]FARRELL J A,POLYCARPOU M M.Adaptive Approximation Based Control:Unifying Neural,Fuzzy,and Traditional Adaptive Approximation Approaches[M].NewJersey:Wiley,2006.[4]FERRARA A,GIACOMINI L.Control of a class of mechanical systemswithuncertaintiesviaaconstructiveadaptive/secondorderVSC approach[J].Journal of Dynamic Systems,Measurement,and Control,2000,122(1):33–39.[5]GE S S,HANG C C,ZHANG T.Nonlinear adaptive control using neural networks and its application to CSTR systems[J].Journal of Process Control,1998,9(4):313–323.[6]HUNT L R,MEYER G.Stable inversion for nonlinear systems[J].Automatica,1997,33(8):1549–1554.[7]KANELLAKOPOULOS I,KOKOTOVIC P V,MORSE A S.Systematic design of adaptive controllers for feedback linearizable systems[J].IEEE Transactions on Automatic Control,1991,36(11): 1241–1253.[8]SETO D,ANNASWAMY A M,BAILLIEUL J.Adaptive control of nonlinear systems with a triangular structure[J].IEEE Transactions on Automatic Control,1994,39(7):1411–1428. [9]LIN W,QIAN C.Adding one power integrator:a tool for global stabilization of high-order lower-triangular systems[J].Systems&Control Letters,2000,39(5):339–351.[10]刘勇华.一类纯反馈非线性系统的反推控制[J].控制理论与应用, 2014,31(6):801–804. (LIU Yonghua.Backstepping control for a class of pure-feedback nonlinear systems[J].Control Theory&Applications,2014,31(6): 801–804.)[11]WANG D,HUANG J.Adaptive neural network control for a class of uncertain nonlinear systems in pure-feedback form[J].Automatica, 2002,38(8):1365–1372.[12]WANG C,HILL D J,CHEN G.An ISS-modular approach for adaptive neural control of pure-feedback systems[J].Automatica,2006, 42(5):723–731.[13]DU H,SHAO H,YAO P.Adaptive neural network control for a class of low-triangular-structured nonlinear systems[J].IEEE Transactions on Neural Networks,2006,17(2):509–514.[14]REN B,GE S S,SU C Y,et al.Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input[J].IEEE Transactions onSystems,Mans,and Cybernetics, Part B:Cybernetics,2009,39(2):431–443.[15]SWAROOP D,HEDRICK J K,YIP P P,et al.Dynamic surface control for a class of nonlinear systems[J].IEEE Transactions on Automatic Control,2000,45(10):1893–1899.[16]ZHANG T P,GE S S.Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form[J].Automatica,2008,44(7):1895–1903.[17]WANG M,LIU X,SHI P.Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2011,41(6):1681–1692.[18]ZHANG X Y,LIN Y.Adaptive tracking control for a class of purefeedback non-linear systems including actuator hysteresis and dynamic uncertainties[J].IET Control Theory and Applications,2011, 5(16):1868–1880.[19]ZHANG T P,ZHU Q,YANG Y Q.Adaptive neural control of nonaffne pure-feedback non-linear systems with input nonlinearity and perturbed uncertainties[J].International Journal of Systems Science, 2012,43(4):691–706.[20]GAO D X,SUN Z Q,LIU J H.Dynamic inversion control for a class of pure-feedback systems[J].Asian Journal of Control,2012,14(2): 605–611.[21]KOROBOV V I.Controllability and stability of certain nonlinearsystems[J].Differentsial’nye Uravneniya,1973,4(4):614–619.。
Robust Control

Robust ControlRobust control is a critical aspect of engineering that focuses on designing systems that can withstand various uncertainties and disturbances. It involves developing control strategies that can adapt to changing conditions and maintain stability and performance. Robust control plays a crucial role in ensuring the reliability and safety of complex systems, such as aircraft, automotive systems, and industrial processes. One of the key challenges in robust control is dealing with uncertainties in the system model. Real-world systems are often subject to variations and disturbances that are difficult to predict or quantify. Robust control techniques aim to account for these uncertainties by designing controllers that can provide satisfactory performance under a wide range of operating conditions. This requires a deep understanding of system dynamics and the ability to develop control strategies that are resilient to variations in the system parameters. Another important aspect of robust control is the trade-off between performance and robustness. In many cases, increasing the robustness of a control system can come at the cost of reduced performance. Designing a robust controller that can maintain stability while also achieving desired performance criteria is a complex optimization problem that requires careful consideration of trade-offs. Engineers must strike a balance between robustness and performance to ensure that the control system meets the requirements of the application. Robust control techniques can be classified into two main categories: robust stabilization and robust performance. Robust stabilization focuses on ensuring that the system remains stable in the presence of uncertainties, while robust performance aims to achieve specific performance criteria, such as tracking accuracy or disturbance rejection, under uncertain conditions. Both aspects are essential for designing control systems that can operate effectively in real-world environments. One common approach to robust control is H-infinity control, which is based on the H-infinity norm of a transfer function. H-infinity control is a powerful technique for designing controllers that can provide robust performance guarantees in the presence of uncertainties. By optimizing the H-infinity norm of the system, engineers can design controllers that are robust to variations in the system parameters and disturbances. H-infinity control has been successfully applied to awide range of applications, including aerospace, automotive, and industrialcontrol systems. Overall, robust control is a critical aspect of engineering that plays a vital role in ensuring the reliability and performance of complex systems. By developing control strategies that can adapt to uncertainties and disturbances, engineers can design systems that are robust and resilient to changing conditions. Robust control techniques, such as H-infinity control, provide powerful tools for designing controllers that can meet the requirements of modern engineering applications. By considering the trade-offs between performance and robustness, engineers can design control systems that achieve the desired balance between stability and performance.。
离散时滞系统的渐近稳定性判据
离散时滞系统的渐近稳定性判据谭聚龙;张志维;杨德彬;高翔宇;张显【摘要】在已有文献的基础上,进一步研究离散时滞系统的渐近稳定性问题,通过选择合适的扩展李亚雅诺夫泛函,获得了基于线性矩阵不等式的时滞相关的稳定性判据.对现有的方法进行了改进,即将时滞区间进行了划分,在小的区间上对李雅普诺夫泛函进行处理.通过比较可知,所给出的稳定性判据比存在的稳定性判据具有更弱的保守性.通过数值实例验证了所得结论的有效性.【期刊名称】《黑龙江大学自然科学学报》【年(卷),期】2015(032)006【总页数】7页(P753-759)【关键词】离散时滞系统;渐近稳定性;李雅普诺夫泛函【作者】谭聚龙;张志维;杨德彬;高翔宇;张显【作者单位】黑龙江大学数学科学学院,哈尔滨150080;哈尔滨华德学院电子与信息工程学院,哈尔滨150025;哈尔滨华德学院通识教育学院,哈尔滨150025;黑龙江大学数学科学学院,哈尔滨150080;黑龙江大学数学科学学院,哈尔滨150080【正文语种】中文【中图分类】TP13时滞现象经常出现在通信系统、生物系统、过程控制系统中[1-2],几乎所有的实际问题都是在系统稳定的前提下来研究其性能的。
稳定性是时滞系统的一个重要性质,稳定性分析成为研究时滞系统的首要任务,已经取得了一些成果[3-11]。
许多文献给出了不同方法来分析时滞系统的稳定性,主要目的是扩大使得时滞系统稳定的时滞变化区间,从而降低稳定性判据的保守性。
许多学者已经提出了获得时滞相关的稳定性判据的各种方法,主要包括Jensen不等式方法、自由权矩阵方法、时滞分解方法、扩展Lyapunov-Krasovskii泛函方法、凸组合方法、离散Lyapunov泛函方法、倒凸组合方法等,其中Jensen不等式方法、自由权矩阵方法、时滞分解方法已经被广泛使用。
文献[4-6]结合自由权矩阵方法和积分不等式方法,给出了时滞系统的稳定性判据,并且较以往的文献具有更弱的保守性。
随机反应扩散神经网络的鲁棒稳定性
随机反应扩散神经网络的鲁棒稳定性张晓;徐瑞【摘要】研究一类具有分布时滞和反应扩散的随机细胞神经网络,通过构造Lyapunov泛函,并利用It(o)公式以及线性矩阵不等式(LMI),得到不确定系统鲁棒稳定的充分条件.【期刊名称】《北华大学学报(自然科学版)》【年(卷),期】2011(012)002【总页数】5页(P158-162)【关键词】反应扩散;随机神经网络;鲁棒稳定性;分布时滞【作者】张晓;徐瑞【作者单位】军械工程学院应用数学研究所,河北石家庄050003;军械工程学院应用数学研究所,河北石家庄050003【正文语种】中文【中图分类】O1751 引言在神经网络的电子实现中,由于建模误差的存在、外部干扰和参数波动等不可避免的不确定性因素,使得神经网络的权参数不可避免地存在不确定性.而参数的不确定性将会导致神经网络动力学行为产生变化,为了防备这些误差和波动,研究神经网络的鲁棒稳定性就显得非常重要了.目前神经网络的鲁棒稳定性研究已经获得了很丰富的成果(见文献[1-6]).神经网络是通过电子电路实现的,然而,严格地讲电子在不均匀的电磁场中运行时,扩散现象是不可避免的,是不能忽视的.王林山等[2]研究了变时滞反应扩散区间神经网络的鲁棒指数稳定性,通过拓扑度理论证明了系统平衡点的存在唯一性,并用Lyapunov泛函证明了鲁棒稳定性.事实上,在神经网络的运行过程中,随机干扰是无法避免的,也是不可忽视的,因此考虑随机反应扩散系统的鲁棒稳定性更具有实际意义.目前为止,关于随机反应扩散系统的鲁棒稳定性的研究还不多见.因此本文研究如下细胞神经网络的鲁棒稳定性:dui(t)=fjKij(t-s)uj(s,x)d sdt+σij(uj(t,x))dωj(t),(1.1)>ui(s,x)=ξi(s,x),s∈(-∞,0],x∈X,其中:ui(t,x)表示时刻t细胞神经元i的状态变量;Dik是扩散算子;和是连接系数;fi(·)表示非线性输出函数;σij(t)是扩散系数;ω(t)=(ω1(t),…,ωn(t))T为带有自然滤波{Ft}t≥0的完备的概率空间(Ω,F,P)上的一个n维标准Brownian运动,且满足E{dω(t)}=0,E{dω2(t)}=dt;X是具有光滑边界的紧集且测度mesX>0.系统(1.1)可写成如下矩阵形式:du(t)=▽·(D∘▽u)dt-Au(t,x)dt+Bf(u(t,x))dt+ Cfdt+σ(u(t,x))dω(t),(1.2)其中:不确定参数矩阵A,B,C满足n×n为已知常数矩阵,ΔA,ΔB,ΔC为具有适当维数和形式的时变不确定矩阵,可用下面表达式来描述:[ΔA,ΔB,ΔC]=DF(t)[E1,E2,E3],其中:D和Ei(i=1,2,3)为具有适当维数的已知实矩阵;F(t)为满足FT(t)F(t)≤I 的未知时变矩阵.在本节中,我们总假定:H1) fj有界且是Lipschitz连续的,有Lipschitz常数Li>0,i=1,…,n.H2)核函数kij满足H3) trace[σT(u)σ(u)]≤uTMTMu.2 预备知识定义2.1 如果系统(1.2)的任意解u(t,x)满足u(t,x)2=0,则称神经网络(1.2)在均方意义下是全局渐近鲁棒指数稳定的.引理2.1[7] 假设A,D,E,F为适当维数的实矩阵,且满足FTF≤I,对任意的对称矩阵P>0及标量ε>0,下述结论都成立:1)如果有εI-EPET>0,则(A+DFE)P(A+DFE)T≤APAT+APET(εI-EPET)-1EPAT+εDDT.2)如果有P-εDDT>0,则(A+DFE)TP-1(A+DFE)≤AT(P-εDDT)-1A+ε-1ETE.引理2.2[8] 给定具有适当维数的常矩阵Ω1,Ω2,Ω3满足和则当且仅当或时有引理2.3[9] 对给定的满足FTF≤I的矩阵D,E,F以及标量ε>0,有DFE+ETFTDT≤εDDT+ε-1ETE.引理2.4[9] 假设Ω1,Ω2,Ω3为适当维数的实矩阵,且满足Ω3>0,x和y是适当维数的向量,则下述不等式成立:引理2.5(Cauchy-Schwartz不等式) 若f(x),g(x)在E上可积,则Ef(x)g(x)dμ2≤Ef(x)2dμEg(x)2dμ.3 主要结论定理3.1 假设H1)~H3)成立,如果存在正定对称矩阵P和正标量ε,ε1,ε2,λ,δ使得下面的线性矩阵不等式成立(3.1)其中:;则神经网络(1.2)在均方意义下是全局渐近鲁棒指数稳定的.证明我们构造一个Lyapunov泛函(3.2)由It公式可知dV(u,t)=LV(u,t)dt+Vu(u,t)σ(u)dω(t),(3.3)其中:LV(u,t)=Vi(u,t)+Vu(u,t)F(t)+trace[σT(u)Vuu(u,t)σ(u)];;;;F(t)=▽·(D∘▽u)-Au(t,x)+Bf(u(t,x))+CfK(t-s)u(s,x)ds .因此,我们有LV(u(t),t)=uTLTLu-kij(s)(t-s)ds+2uTPF(t)+trace[σT(u)Pσ(u)]=uTLTLu-kij(s)(t-s)ds+2uTP▽·(D∘▽u)-2uTPAu+2uTPBf+2uTPCfK(t-s)u(s,x)ds+trace[σT(u)Pσ(u)].(3.4)根据边界条件,我们可以得出.(3.5)又trace[σT(u)Pσ(u)]≤λtrace[σT(u)σ(u)]≤λuTMTMu,(3.6)因此,由引理2.4可得2uTPBf≤uTPPTu+fT(u)BTBf(u).同样2uTPCfK(t-s)u(s)ds≤uTPCCTPTu+fTK(t-s)u(s)ds·fK(t-s)u(s)ds≤uTPCCTPTu+kij(s)(t-s)ds2.又由引理2.5可得由引理2.1可知,存在标量ε1,ε2使得下式成立同样综上LV(u(t),t)≤uTLTLu-2uTPAu+uTPPTu+λmax(P)uTMTMu+其中:ξT=[uT(t), fT(u(t))];.注意到fj(x)≤ljx,我们有fT(u(t))f(u(t))-uTLTLu≤0.对任意的正标量δ,有-δ[fT(u(t))f(u(t))-uTLTLu]≥0.因此,我们有LV(u(t),t)≤ξTΩ1ξ,其中:.由引理2.3可知,存在正标量ε使得如下不等式成立注意到Ω<0,由引理2.2可知.因此,Ω1=Ω2+Ω3<0.由式(3.3)可知dV(u,t)≤ξTΩ1ξdt+2uTPσ(u)dω(t).显然,存在标量η>0,使得Ω1+diag{ηI,0}<0.因此,dV(u,t)≤-ηu(t,x)2dt+2uTPσ(u)dω(t).两边取数学期望可得x(t)2.由Lyapunov稳定性理论可知,神经网络(1.2)在均方意义下是全局渐近鲁棒指数稳定的.【相关文献】[1] Linshan Wang,Yuying Gao.On Global Robust Stability for Interval Hopfield Neural Networks with Delay[J].Ann Diff Eqas,2003,19(3):421-426.[2] Linshan Wang,Yuying Gao.Global Exponential Robust Stability of Reaction-diffusionInterval Neural Networks with Time-varying Delays[J].Physics Letters A,2006,350:342-348.[3] Xiaofeng Liao,Jeubang Yu.Robust Stability for Interval Hopfield Neural Networks with Time Delay[J].IEEE,Transactions on Neural Networks,1998,9:1042-1045.[4] Xiaofeng Liao,K Wang.Novel Robust Stability for Interval Hopfield Neural Networks[J].IEEE.Transactions on Circuits and Systems,2001,48:1355-1359.[5] T P Chen,L B Rong.Robust Global Exponential Stability of Cohen-Grossberg Neural Networks with Time Delays[J].IEEE Trans Neural Networks,2004,15:203-206.[6] Chen Yu Lu,TeJen Su,Jason ShengHong.On Robust Stabilization of Uncertain Stochastic Time-delay Systems-an LMI Based Approach[J].J Franklin Inst,2005,342:473-487.[7] Wang Y,Xie L,Souza E.Robust Control of Uncertain Nonlinear Systems[J].Systems & Control Letters,1992,19:139-149.[8] Boyd S,Ghaoui L EI,Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia:SIAM,1994.[9] Wang Y,Xie L,Souza E.Robust Control of a Class of Uncertain NonlinearSystem[J].Syst Control Lett,1992,19(2):139-149.。
离散随机奇异系统的零和博弈及H∞控制
离散随机奇异系统的零和博弈及H∞控制周海英【摘要】针对噪声依赖于状态的It(o)型离散随机奇异系统,讨论其在有限时域下的零和博弈及基于博弈方法的H..控制问题.在最优控制(单人博弈)的基础上,利用配方法,得到了离散随机奇异系统鞍点均衡策略的存在等价于相应的耦合Riccati代数方程存在解,并给出了最优解的形式.进一步地,根据博弈方法应用于鲁棒控制问题的思路,得到离散随机奇异系统H∞控制问题的最优策略,最后根据动态投入产出问题的特性,建立相应的博弈模型,得到动态投入产出问题的均衡策略.【期刊名称】《南昌大学学报(理科版)》【年(卷),期】2017(041)006【总页数】5页(P519-523)【关键词】离散随机奇异系统;零和博弈;耦合Riccati代数方程;鞍点均衡策略【作者】周海英【作者单位】广州航海学院港口与航运管理系,广东广州 510725【正文语种】中文【中图分类】F224.32奇异系统由于其广泛的应用背景,自产生以来,得到了广泛研究 [1-4]。
随着研究的深入,随机奇异系统由于能更好的模拟现实实际,近年来,引起了众多研究者的兴趣。
在随机奇异系统的稳定性、最优控制及鲁棒控制方面都有不少成果。
Yan Z等研究了伊腾型随机广义系统的稳定性问题[5]。
Zhang W等研究了广义随机线性系统的稳定性问题[6];Jin H等研究了随机奇异系统的虑波问题[7]。
文献[8]把神经网络法应用于随机奇异系统不定线性二次控制问题中,得到了相应的Riccati微分方程;高明等研究了离散随机Markov跳跃系统的广义Lyapunov方程解的性质[9];张庆灵等在研究随机奇异系统的稳定性的基础上,得到了连续随机奇异系统线性二次最优控制的Riccati方程[10]。
Xing等研究了不确定广义随机线性系统的H∞鲁棒控制问题[11]。
Zhang和Zhao Y等研究了广义随机线性系统的H∞鲁棒控制问题[12-13] ;Shu Y等研究不确定连续时间奇异系统的稳定性和最优控制问题 [14]。
T-S模糊系统非脆弱跟踪控制器设计
T-S模糊系统非脆弱跟踪控制器设计程权成;常晓恒【摘要】针对T-S模糊系统,研究了非脆弱H∞跟踪控制器的设计问题.目的是通过设计跟踪控制器使得被控闭环系统满足给定的H∞跟踪控制性能指标.本文采用线性矩阵不等式(LMI)方法,求解过程不必通过二次迭代的两步算法,所设计的控制器在一定的加性参数变化情况下,仍能保证系统的渐进稳定性.最后,通过单关节刚性机械臂系统的仿真实验表明了该方法的有效性.【期刊名称】《电子设计工程》【年(卷),期】2014(022)017【总页数】4页(P1-4)【关键词】T-S模糊系统;非脆弱;H∞跟踪控制;LMI【作者】程权成;常晓恒【作者单位】渤海大学工学院,辽宁锦州121013;渤海大学工学院,辽宁锦州121013【正文语种】中文【中图分类】TN964跟踪控制作为控制理论活跃的研究领域之一,被广泛应用于机器人轨迹跟踪、飞行器轨迹跟踪、高精度机械加工等领域。
实现系统的稳定和跟踪是控制理论的两类典型问题,然而对于非线性系统而言,其跟踪控制问题比稳定性问题更加复杂。
早在1997年,Kung就曾针对离散系统通过反馈线性化方法设计了模糊跟踪控制器[1],然而得到的模糊控制器并不能保证非最小相位系统的稳定性。
Lam研究了连续模糊系统的模型跟踪控制问题,在假定状态变量可测的前提下,分析了模糊控制器设计的鲁棒性问题[2]。
为解决[1]中可能存在的不稳定性和[2]中状态变量不可测时的局限性,Tseng针对T-S模糊模型提出了对于所有输入有界参考信号的跟踪控制性能指标,不必通过反馈线性化和复杂的自适应算法便可达到系统性能要求[3],但其研究的T-S模糊模型中并没有考虑实际系统中可能存在的不确定性,于是Mansouri在Tseng的研究基础上用含有不确定性的T-S模糊模型来描述非线性系统[4],增强了系统的鲁棒性。
在控制方法和控制性能指标上也有很多改进[5-7],这些方法均为跟踪控制问题提供了更加宽泛的理论分析方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract-This paper studies the problem of robust stabilization for linear uncertain systems via logarithmic quantized feedback. Our work is based on a new method for the analysis of quantized feedback. Mom specifically, we characterize the quantization error using a simple sector bound. It is shown in our previous work that this method yields the same result on the coarsest quantization density as in the work of Elia and Mitter, when the system does not involve uncertainties. The advantage of this new method is that it is applicable to multi-input-multioutput systems and to performance control problems. In this paper, we apply this method to robust stabilization of linear uncertain systems. We give conditions under which there exists a quadratic stabilizing controller for a given quantization density. Both state feedback and output feedback are considered. For output feedback, we consider two cases: 1) quantization occurs at the control input; and 2) quantization occurs at the measured output.
I. INTRODUCTION Control using quantized feedback can be traced back to the work of Kalman [l] in 1956 which studied the limit cycle behavior of a system with a finite-alphabet quantizer in the control loop. Since then, a lot of research has been done on understanding and mitigation of quantization effects; see, e.g., 121, 131, HI. Recently, there is a surge of interest on quantized feedback control, with the aim to understand the required quantization density or information rate for control purposes. Noticeable works include [7], [SI, 191, [lo], [ll]. The most pertinent reference to this paper is the work by Elia and Mitter [l 11. In [ 1I], the problem of quadratic stabilization of discrete-time single-input-single-output (SISO) linear time-invariant (LTI) systems using quantized feedback is studied. The quantizer is assumed to be static and time-invariant (i.e. memoryless and with fixed quantization levels). It is proved in [ 111 that for a quadratically stabilizable system, the quantizer needs to be logarithmic (i.e.. the quantization levels are linear in logarithmic scale). Further, the coarsest quantization density is given explicitly in terms of the system’s unstable poles. The work of [ l l ] is also generalized to some extent to guaranteed performance control [ 121, stabilization of twoinput systems [13], and multi-input systems [14]. In Fu and Xie [15], the work of [ l l ] is generalized to general multi-input-multi-output (MIMO) systems and to control problems requiring performances. This is done using the so-called sector bound method, which is based on using a simple sector bound to model the quantization error. For a SISO system with quantized state feedback (which is the
LI = {*uz,i = 0,*1,*2,.**}
U (0)
(5)
0-7803-7924-1/03/$17.00 02003 IEEE
199
Denote by #y[e] the number of quantization levels in the interval [e, 1/61. The density of the quantizer f ( . ) is defined as follows: 7% If1 vf = lim sup t + ~ h e Consider a logarithmic quantizer as in [l 11:
Proceedings of the 42nd WEE Conference on Decision and Control Maui, Hawaii USA, December 2003
TuA06-5
ROBUST STABILIZATION OF LINEAR UNCERTAIN SYSTEMS VIA QUANTIZED FEEDBACK
[AA AB] = HF(k)[Ei
-&I7
llF(k)ll I 1
(2)
for some matrices H , E1 and E2, where F ( k ) E RnlXn2 represents a norm-bounded uncertainty. This description of uncertainty is commonly used in the robust control literature; see, e.g., [17]. . Quantized state feedback requires the control input in the following form:
11. QUANTIZED STATE FEEDBACK
The uncertain system to be considered is in the following form:
~ ( k1) = ( A A A ) z ( k ) ( B
+
+
+ ( k ) E Rn is the state, u(k) E R is the (single) control input, A A and AB represent the uncertainties in the system, and they satisfy the following:
.(X-)
= f(u(k))
(3) (4)
u(k)= K z ( k )
In the above, K E RIxnis the feedback gain, and f(-)is a quantizer which is assumed to be symmetric, i.e., f ( - u ) = - f ( u ) . Note that the quantizer is static and time-invariant. The set of quantized levels is denoted by
most fundamental problem), the sector bound method gives an identical result as in [ 113. But the main advantage of the sector bound method is that it is easy to understand and easy to generalize to more complicated quantized feedback control scenarios such as those mentioned above. In this paper, we study the problem of robust stabilization for linear uncertain systems via logarithmic quantized feedback. Our work is based on the sector bound method. We give conditions under which there exists a quadratic stabilizing controller for a given quantization density. Both state feedback and output feedback are considered. For output feedback, we consider two cases: 1) quantization occurs at the control input; and 2) quantization occurs at the measured output. We also give an example to illustrate our results and to demonstrate how the required quantization density increases as the level of uncertainties increases.