统计学基础-第五章------动态数列分析
统计学第四版5动态数列

2019-2019年某国电冰箱年平均增长量:
a29273万台
4
第 五 章
统 计 学 原
理 第三节 动态数列速度分析指标
& 一、发展速度与增长速度
& 二、平均发展速度与平均增长速度
第 五 章
统 计
一、发展速度与增长速度
学
原
理
㈠发展速度
发展速度 报基告期期水水平平
环比发展速度: a1 , a2 ,..... an
产量(万台) 768 918 980 1044 1060
环比发展速度% — 119.5 106.8 106.5 101.5
定基发展速度% 100 119.5 127.6 135.9 138.0
环比增长速度% — 19.5 6.8 6.5
1.5
定基增长速度% — 19.5 27.6 35.9 38.0
定基发展速度% 100 119.5 127.6 135.9 138.0
定基发展速度与环比发展速度的关系:
⒈定基发展速度等于环比发展速度的连乘积
an a1 a2 ..... an
a0 a0 a1
an1
⒉两个相邻的定基发展速度之比等于环比发展速度
第
五 章
a a n
n1
an
a0 a0
23499.9
24133.8
26967.2
26857.7
29896.3
统
计
学 原
如果用符号a0,a1,a2,a3, ……a n-1,an代
理
表数列中各个发展水平,则在本例中,如果以
2019年作为基期水平,记为a0,则2019年、2019 年、2019年、2019年进出口总额分别用a1、 a2、 a3、 a4表示,称为报告期水平或计算期水平。
《统计学》-第五章-时间数列(补充例题)

第五章动态数列例1、“九五”时期我国国内生产总值资料如下:单位:亿元解:【分析】这是时期数列资料,可按简单算术平均数(n a)计算平均发展水平。
计算结果如下:国内生产总值平均发展水平78432.7亿元33711 83AF 莯+)31116 798C 禌22548 5814 堔23888 5D50 嵐35943 8C67 豧其中:第一产业平均发展水平14258.3亿元;第二产业平均发展水平39100.1亿元;第三产业平均发展水平25074.2亿元。
例2、我国人口自然增长情况见下表:试计算我国在“七五”时期年平均增加人口数量。
解:【分析】新增长人口是时期指标,故平均增加人口数量仍用na a ∑=计算。
年平均增加4.1696516291678172617931656=++++==∑na a (万人)例3、某商店2010年商品库存资料如下:30139 75BB 疻\22102 5656 噖36028 8CBC 貼j20316 4F5C 作$试计算第一季度、第二季度、上半年、下半年和全年的平均库存额。
解:这是一个等间隔时点数列,用“首末折半法”计算:试计算2002年该企业平均工人数。
解:【分析】这是不等间隔时点数列,用间隔月数进行加权的公式计算平均工人数:12111232121)(21)(21)(21---+++++++++=n n n n f f f f a a f a a f a a a 133221124124123241241432414408224083352233533012330326+++++⨯++⨯++⨯++⨯++⨯++⨯+==385(人) 例5、某企业2002年各季度计划利润和利润计划完成程度的资料如下:试计算该企业年度利润计划平均完成百分比。
解:【分析】应该按两个时期数列对比组成的相对指标动态数列计算序时平均数的算式计算: 该企业利润年平均计划完成百分比(%)%132898875887860%125898%138875%135887%130860=+++⨯+⨯+⨯+⨯=例6、1995-2000年各年底某企业职工工人数和工程技术人员数资料如下:解:【分析】这是由两个时点数列对比所组成的相对指标动态数列计算序时平均数的问题。
统计基础第五章动态数列分析

(2)由两个时点数列对比形成的相对数或平均数动 态数列计算序时平均数
ca
a1 2
a2
an1
an 2
n 1
a1 2
a2
an1
an 2
b
b1 2
b2
bn1
bn 2
b1 2
b2
bn1
bn 2
n 1
【例5.7】根据下列资料计算某地区第四季度就业人口数占劳动力资源
135822.8 159878.3 183217.4 211923.5
年底人口数(万人)
129227.0 129988.0 130756.0 131448.0
农林牧副渔总产值(亿元)
城乡居民人民币储蓄存款年底余额 (亿元)
29691.8 36239.0 39450.9 103617.3 119555.4 141051.0
a
n
n
式中:代表平均发展水平 ai代表各期发展水平 n代表时期指标项数
灵活性原则
【例5.1】某商场2006年各月商品销售额动态资料如表5-1所示, 试计算月平均销售额及全年月平均销售额。
月份
1月 2月 3月 4月 5月 6月
表5-1 某商场2006年各月商品销售额
销售额(万元)
300 360 380 410 440 480
f
76864
计算结果表明:该企业7月份平均库存量为13.03吨。
2)由间断时点数列计算序时平均数
间断时点数列是指按月末、季末 或年末登记取得资料的时点数列。它 有两种情况,一是数列中的各项指标 表现为逐期期末登记排列,二是数列 中各项指标表现非均衡的期末登记排 列。通常将前者称为间隔相等的间断 时点数列,后者称为间断不等的间断 时点数列。
统计学动态数列

第一节 动态数列的编制 第二节 动态数列水平分析指标 第三节 动态数列速度分析指标 第四节 长期趋势的测定与预测
第五章动态数列
1
第一节 动态数列的编制
一、动态数列的概念与种类(P127-P130)
绝对数动态数列
时期数列 时点数列
种类
相对数动态数列
平均数动态数列
二、动态数列的编制原则
序时平均数
不同时期的同一指标上数值的平均数
一般平均数
不同单位的同一指标数值的平均数
第五章动态数列
16
㈡平均发展水平
计算
时期数列
绝对数动态数列
连续时点数列(图例)
时点数列
间断时点数列(图例) 相对数、平均数动态数列
第五章动态数列
返回本节首页
17
⒈ 绝对数动态数列的序时平均数
(1)时期数列
a a1 a2 .... an a
在本例中,如果以1995年作为 基期水平,记为a0,
则1996年、1997年、1998年、1999年进出口总额分别用
a1、 a2、 a3、 a4表示,称为 报告期或计算期水平。
返回本节首页
第五章动态数列
13
先看一例
例 :某商场一周的销售额纪录如下表:
日期
1
销售额 (万元)
1.2
2
3
4
5
6
7
1.4 1.32 1.54 1.26 1.34 1.42
该商场本周的平均销售额:
第五章动态数列
14
先看一例
例 :某企业4月份职工人数纪录如下表:
日期 职工人数
1~10 300
11~15 309
16~30 305
统计学原理第五章 动态数列分析

1 .由总量指标动态数列计算平均发展水平
(1)时点数列计算平均发展水平
(b) 间断时点数列
间隔相等的间断时点数列平均发展水平
a1 a2 an
=
a2
2
n 1
公式中:a-——表示平均发展水平 ai——表示各项时点指标数值 n——表示时点指标数值的项数。
13
§5.2 动态研究的水平指标
间隔不等的间断时点数列计算平均发展水平
2
导入案例
飞达公司每年的利润情况如下表: 表5-1 飞达公司每年利润情况单位:万元
年份 1997 1998 1999 2000 2001 2002 2003
2004
利润 95.4 102.5 102.8 120.7 128.5 145.9 155.6 180.3
这就是个动态数列,通过这个数列反映了飞达公司近八年来的利润 变化情况。所谓动态数列,就是指将同一统计指标的数值按时间先后顺 序排列而成的数列。这个公司过去的情况如上表,本章的主要内容就是 通过对过去的回顾,用统计分析方法总结发展规律,分析发展趋势进而 预测未来。
a1 a2
Байду номын сангаас
f1
a2 a3
f
2
an
a 1
n
fn
1
a= 2
2
2
f
例: 某企业2004年各时点的职工人数如下表。计算平均职工人数。 某企业2004年职工人数资料
日/月 1/1 1/4 1/7 1/9 1/12 31/12 职工人数 300 400 380 420 500 600
3
§5.1 动态数列的意义和种类
一、动态数列的意义和构成 (一)动态数列的意义 动态数列是将现象发展在各个时间的指标数值按照时间先后顺序排列而
《动态数列分析》课件

时间序列数据的图表展示
折线图
用折线图展示时间序列数据的趋势和变 化规律,可以直观地看出数据随时间的
变化情况。
散点图
用散点图展示时间序列数据的相关性 ,可以发现数据之间的潜在关系和规
律。
柱状图
用柱状图展示时间序列数据的分布情 况,可以比较不同时间段或不同数据 点的数值大小。
面积图
用面积图展示时间序列数据的累积变 化情况,可以清晰地看出数据随时间 的累积效应。
会、专业机构等。
确定数据采集的频率和时间点
03
根据需要,确定数据采集的频率和时间点,以确保数据的连续
性和准确性。
时间序列数据的预处理
数据清洗
对收集到的数据进行清洗,去除异常值、缺失值和重复值,确保 数据的准确性和可靠性。
数据转换
将数据转换成适合分析的格式或单位,以便进行后续的分析处理 。
数据整合
将多个来源的数据进行整合,形成一个完整的时间序列数据集, 便于统一分析和处理。
03
动态数列的预测方法
线性回归模型
01
线性回归模型是一种经典的预测模型,通过建立因 变量与自变量之间的线性关系来预测未来值。
02
在动态数列分析中,线性回归模型可用于分析时间 序列数据,预测未来的发展趋势。
03
线性回归模型简单易懂,但在处理非线性数据时可 能表现不佳。
指数平滑模型
指数平滑模型是一种时间序列预测方法,通过赋予不同时间的数据不同的 权重来计算预测值。
案例四:电商销售预测
总结词
电商销售预测是动态数列分析在电子商务领 域的应用,通过对历史销售数据进行分析, 可以预测未来的电商销售趋势。
详细描述
电商销售预测主要基于历史销售数据,如商 品销量、销售额、用户行为等,通过时间序 列分析、回归分析等方法,建立预测模型, 对未来的电商销售趋势进行预测。在预测过 程中,需要考虑多种因素,如季节性、节假 日、促销活动等。
5.2动态数列水平指标 课件(共20张PPT)-《基础统计第六版》同步教学(高教版).ppt

平均增长量
逐期增长量之和 逐期增长量项数
累计增长量 数列项数1
例9 根据表5.10的资料计算,我国社会消费品零售总额在2011~2015年期间平均每年 增长量为:
5年期间平均增长量 29198 27227 28410 29053 29035 5
142923 28584.6(亿元) 6 -1
5-02 讲授完毕
商品流转次数动态数列是由商品销 售额时期数列和月末库存额时点数 列(分段平均)对比所得到。
例7 某企业第一季度各月销售额、库存额和商品流 转次数资料如表5.9所示。
c 300 400 280 980 4.84(次)
70 2
75
55
75 2
202.5
第二节
二、平均发展水平
(三)根据平均数动态数列计算
第二节
二、平均发展水平
(二)根据相对数动态数列计算
2. 形成相对数动态数列的 分子与分母均为时点数列
c
a b
(a1 / 2 a2 (b1 / 2 b2
a3 b3
an1 an / 2) /(n 1) bn1 bn / 2) (n 1)
a1 b1
/ 2 a2 / 2 b2
a3 b3
时间
工人数 (人)
1月 1日
1200
4月 30日
1230
7月 31日
1280
11月 30日
12月 31日
1275 1270
a
1 2001 230 2
4
1 2301 280 2
3
1 2801 275 2
4
1 2751 270 2
1
12
15 007.5 1 250.6人
统计学基础第五章动态数列分析

统计学基础第五章动态数列分析【教学目的】1.区分不同种类的动态数列2.熟练掌握计算平均发展水平的各种方法3.掌握发展速度、增长速度的种类,运用它们之间的数量关系进行动态指标的相互推算4.理解趋势的意义,运用长期趋势测定方法对长期趋势进行测定5.计算季节比率,并且深刻理解季节比率的经济含义【教学重点】1.总量指标动态数列的种类和特点2.动态比较指标和动态平均指标的计算3.动态数列的分析方法【教学难点】1.绝对数时间数列中的时点数列平均指标的计算2.相对数、平均数时间数列动态平均指标的计算3.动态数列分析方法中的季节变动分析方法【教学时数】教学学时为12课时【教学内容参考】第一节动态数列的意义和种类一、动态数列的概念将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列,就形成了一个动态数列,也叫做时间数列。
动态数列一般由两个基本要素构成:一是被研究现象所属的时间;二是反映该现象的统计指标数值。
通过编制和分析动态数列,首先可以从现象的量变过程中反映其发展变化的方向、程度和趋势,研究其质量变化的规律性。
其次,通过对动态数列资料的研究,可以对某些社会经济现象进行预测。
第三,利用动态数列,可以在不同地区或国家之间进行对比分析。
编制和分析动态数列具有非常重要的作用,这种方法已成为对社会经济现象进行统计分析的一种重要方法。
【案例】下面图表列举了我国2004~2007年若干经济指标的动态数列。
表5-1 我国2004-2007年若干经济指标二、动态数列的种类按照构成动态数列的基本要素———统计指标的表现形式不同,动态数列可分为绝对数动态数列、相对数动态数列和平均数动态数列三种类型。
其中绝对数动态数列是基本的数列,相对数和平均数动态数列是派生数列。
(一)绝对数动态数列在这种动态数列中,统计指标值表现为总量指标。
根据指标值的时间特点,又可分为时期数列和时点数列。
国内生产总值就是时期数列,年底人口数就是时点数列。
1.时期数列时期数列中,每一指标值反映在一段时期内发展的结果,即“过程总量”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学基础第五章动态数列分析【教学目的】1.区分不同种类的动态数列2.熟练掌握计算平均发展水平的各种方法3.掌握发展速度、增长速度的种类,运用它们之间的数量关系进行动态指标的相互推算4.理解趋势的意义,运用长期趋势测定方法对长期趋势进行测定5.计算季节比率,并且深刻理解季节比率的经济含义【教学重点】1.总量指标动态数列的种类和特点2.动态比较指标和动态平均指标的计算【教学难点】1.绝对数时间数列中的时点数列平均指标的计算2.相对数、平均数时间数列动态平均指标的计算【教学时数】教学学时为12课时【教学内容参考】第一节动态数列的意义和种类一、动态数列的概念将某一个统计指标在不同时间上的各个数值,按时间先后顺序排列,就形成了一个动态数列,也叫做时间数列。
动态数列一般由两个基本要素构成:一是被研究现象所属的时间;二是反映该现象的统计指标数值。
通过编制和分析动态数列,首先可以从现象的量变过程中反映其发展变化的方向、程度和趋势,研究其质量变化的规律性。
其次,通过对动态数列资料的研究,可以对某些社会经济现象进行预测。
第三,利用动态数列,可以在不同地区或国家之间进行比照分析。
编制和分析动态数列具有非常重要的作用,这种方法已成为对社会经济现象进行统计分析的一种重要方法。
【案例】下面图表列举了我国2004~2007年假设干经济指标的动态数列。
表5-1 我国2004-2007年假设干经济指标二、动态数列的种类按照构成动态数列的基本要素———统计指标的表现形式不同,动态数列可分为绝对数动态数列、相对数动态数列和平均数动态数列三种类型。
其中绝对数动态数列是基本的数列,相对数和平均数动态数列是派生数列。
(一)绝对数动态数列在这种动态数列中,统计指标值表现为总量指标。
根据指标值的时间特点,又可分为时期数列和时点数列。
国内生产总值就是时期数列,年底人口数就是时点数列。
时期数列中,每一指标值反映在一段时期内发展的结果,即“过程总量”。
其主要特点是:第一,可加性。
时期数列中,各个时间上的指标值可以相加,结果表示现象在较长一段时间的“过程总量”。
如全年的国内生产总值是一年中每个月国内生产总值相加的结果,各月份的国内生产总值又是月份内每天的国内生产总值之和。
第二,指标值的大小与其所属的时间长短有直接关系。
由于时间数列具有可加性,故每一指标值所属的时间越长,指标值越大;反之,指标值则越小。
第三,指标值采用连续登记的方式取得。
在时期数列中,各指标值反映现象在一段时间内发展的结果,因而必须把该时段内现象所发生的数量逐一登记,并进行累计,这样才能得到所需的指标值。
时点数列中,每一指标值反映现象在一定时点上的瞬间水平。
如年底人口数的动态数列中,各个指标值说明在各年年末这一时点上人口数所到达的水平。
其主要特点是:第一,不可加性。
时点数列中,不同时点上的指标值不能相加,因为各时点上的指标值只说明现象在该时点上所处的状态,相加后的数值并不能代表现象在这几个时点上的状态,故相加是没有意义的。
第二,指标值的大小与其时点间隔的长短没有直接联系。
在时点数列中,两个相邻指标值所属时点的差距称为时点间隔。
时点数列不具有可加性,时点间隔的长短对指标值大小没有直接影响,例如,年末的人口数未必比某月底的人口数大。
编制时点数列时决定时点间隔长短的因素是现象的变动状态,变动较大或较快的现象,间隔应短些;否则间隔可以长些,确定时点间隔时,以能反映现象的变化过程为宜。
第三,指标值采用间断登记的方式获得。
依照时点数列的性质,只要在某一时点进行统计,取得的资料就代表现象在该时点上的数量水平;不同时点上的资料用来反映现象的发展过程,无须对两个时点间现象所发生的数量逐一登记。
(二)相对数的动态数列在这种动态数列中,统计指标值表现为相对指标,它可以反映相互联系的现象之间的发展变化过程。
例如,不同时间的城镇居民家庭年人均可支配收入就是相对数的动态数列。
在相对数动态数列中,由于各个指标值比照的基数不同,所以不具有可加性。
(三)平均数的动态数列在这种动态数列中,统计指标值表现为平均指标,它可以反映现象一般水平的发展趋势。
例如,不同时间的职工年平均货币工资就是平均数动态数列。
平均数动态数列中的各个指标值也不能相加,因为相加所得的数值没有实际的经济意义。
三、动态数列的编制原则编制动态数列的目的是通过对数列中的一系列指标数值进行动态分析来研究社会经济现象的发展变化及其规律性。
因此,保证动态数列中各指标值的可比性是编制动态数列的基本原则,具体来说编制动态数列时应遵守以下几条原则:1.时间长短要相等。
对于时期数列此原则是指各指标值涵盖的时间长度要相同,因为此时时期的长短直接决定了指标值的大小,时期长短不同指标值便不可比,例如,一个月的销售额和一年的销售额就不能比较。
对于时点数列此原则是指各指标值对应的时点间隔要相同,虽然时点数列指标值的大小与时点间隔长短没有直接联系,但保持相同的时点间隔才能准确地反映现象的变化状况。
2.总体范围要一致。
无论是时期数列还是时点数列,指标值的大小都与现象总体范围有关系。
如果随着时间的推移,现象总体范围发生了变化,如地区的行政区域划分或部门隶属关系变更,那么在变化发生前后,指标的计算范围不同,指标值就不能直接比照。
只有经过适当调整保持了总体范围的一致性,进行动态比较才有意义。
3.经济内容要一致。
指标的经济内容是由其理论内涵所决定的,随着社会经济条件的变化,同一名称的指标,其经济内容也会发生改变。
编制动态数列时不注意这一问题,对经济内容已发生变化的指标值不加区别和调整,就可能导致错误的分析结论。
例如,1993年以前产品成本是指生产产品的完全成本,而1993年以后产品成本是指产品的制造成本。
4.计算方法要统一。
对于指标名称、总体范围和经济内容都相同的指标,计算方法不同也会导致极大的数值差异,如按生产法、支出法和分配法计算的国内生产总值,结果就有很大差异。
因此,同一动态数列中,各个时期〔时点〕指标的计算方法要统一。
第二节动态数列的水平指标一、发展水平发展水平是指动态数列中的各项指标数值,它反映现象在一定时期内或时点上所到达的规模或水平,是计算动态分析指标的基础。
发展水平一般是时期或时点总量指标,如:国内生产总值、在册工人数等;也可以是平均指标,如:单位产品成本、平均库存额等;还可以是相对指标,如:流动资金周转次数等。
设动态数列各项指标数值为:a0,a1,a2,a3,…,a n。
用符号a代表发展水平,下标0,1,2,3,…,n表示时间序号,a0为最初水平,a n为最末水平,在最初水平和最末水平之间的称为中间水平。
在动态分析中,将所要研究时期的指标数值称为报告期水平,将作为比较基础时期的指标数值称为基期水平。
发展水平在文字上习惯用“增加到”、“增加为”、“降低到”、“降低为”来表述。
如2007年某地区普通高校在校生人数29.77万人,2008年增加到45.05万人。
二、平均发展水平平均发展水平是一种序时平均数或动态平均数,是对动态数列中各时间上的发展水平计算的平均数。
序时平均数与一般平均数〔静态平均数〕既有共同之处,又有区别。
共同之处是二者都抽象了现象的个别差异,以反映现象总体的一般水平。
【案例】2008年某地区农村居民年人均纯收入为4513元,它就是把各农村居民的收入差异抽象化了,反映全体农村居民收入的一般水平;再如,第四次人口普查到第五次人口普查的十年零四个月中我国大陆人口平均每年增加1279万人,它是把人口增加数在不同年份上的差异抽象化了,反映人口增长的一般水平。
二者的区别在于:一般平均数抽象的是总体各单位的某一数量标志值在同一时间上的差异,从静态上说明现象总体各单位的一般水平;序时平均数抽象的是现象在不同时间上的数量差异,从动态上说明现象在一定时期内发展变化的一般趋势。
由于发展水平可以是绝对数、相对数或平均数,而绝对数又有时期指标和时点指标,因此,用它们计算序时平均数时方法各不相同。
(一)由绝对数动态数列计算序时平均数时期数列具有可加性,其计算序时平均数的方法就比较简单,常用简单算术平均法,将各时期指标数值的总和除以时期项数。
其计算公式为n aa∑=要精确计算时点数列的序时平均数,就应掌握每一时点的资料,但实际上这是不可能的。
在社会经济统计中一般是把一天看做一个时点,即以“天”作为最小时间单位。
这样便有连续时点数列和间断时点数列的区别。
资料逐日登记且逐日排列的是连续时点数列;资料不是逐日登记,而是间隔较长一段时间〔月、季或年〕后再登记一次,然后依次排列的是间断时点数列。
这两种数列的类型不同,计算序时平均数的方法也不同。
(1)由连续时点数列计算序时平均数。
连续时点数列有两种登记方式:第一种是时点数列的资料是逐日登记且逐日排列的,即已掌握了整个考察期内连续性的时点数据,因此可以采用简单算术平均法来计算序时平均数,即以各时点指标值之和除以时点项数。
其计算公式为na a ∑=【案例】某系学生星期一至星期五出勤人数资料见表5-4.计算该系学生本星期五天平均出勤人数。
(人)2455150249242244240=++++==∑na a第二种是时点数列资料登记的时间仍是一天,只是在指标值发生变动时才记录一次。
此时就要用每次资料持续不变的时间长度为权数进行加权平均。
其计算公式为 ∑∑=faf a 【案例】某企业2008年11月份产品库存额资料见表5-5,计算该企业11月份平均产品库存额。
)(73.105868754千克=++++=a(3)由间断时点数列计算序时平均数。
间断时点数列也有两种登记方式:第一种是每隔一定的时间登记一次,每次登记的时间间隔相等。
下面以一个具体的例子来说明在这种情况下序时平均数的计算。
【案例】某企业2008年第一季度职工人数资料见表5-6。
计算该企业第一季度平均职工人数。
表5-6 某企业2008年第一季度职工人数资料解决这一问题的思路是:首先求出各月的平均职工人数,然后再对各月平均职工人数计算平均数。
求各月平均职工人数时,按理应该计算该月内平均每天的职工人数,但由于未能掌握该月内每天的职工人数资料,所以只能在一定的假设条件下推算。
即把下月初的职工人数看成是本月末的职工人数,并假定各月内职工人数的变动是均匀的,每月的平均职工人数就等于月初数加月末数除以2,这样,可计算出2005年该企业第一季度平均每月职工人数为)(14303214401450214501420214201400人=+++++=a经过上述讨论,可以得出间隔相等的间断时点数列序时平均数的计算公式为122121-++⋅⋅⋅++=-n a a a a a nn 这种方法也称做“首末折半法”,它便于应用,实际计算中主要采用这一形式。
第二种是登记的时间间隔不相等。