磁控电抗器基本原理

磁控电抗器基本原理
磁控电抗器基本原理

基本原理

磁阀式可控电抗器,简称磁控电抗器(MCR),是基于磁放大器原理来工作的,它是一种交直流同时磁化的可控其饱和度的铁芯电抗器,工作时,可以用极小的直流功率(约为电抗器额定功率的0.1%~0.5%)来改变控制铁芯的工作点(即铁芯的饱和度或者说改变铁芯的导磁率μ),来改变其感抗值,从而达到调节电抗电流的大小并平滑调节无功功率的目的。其突出的优点是:稳定、可靠、体积小、成本较低、控制灵活、维护管理简便。

图 1 磁控电抗器的原理示意图及工作时的磁化曲线

图 2 磁控电抗器工作原理图

如上图所示,磁控电抗器的主铁心分裂为两半(即铁心1和铁心2),截面积为A,每一半铁心截面积具有减小的一段,四个匝数为N/2的线圈分别对称地绕在两个半铁心柱上(半铁心柱上的线圈总匝数为N),每一半铁心柱的上下两绕组各有一抽头比为δ=N2/N的抽头,它们之间接有晶闸管K1(K2),不同铁心上的上下两个绕组交叉连接后,并联至电网电源,续流二极管则横跨在交叉端点上。在整个容量调节范围内,只有小面积段的磁路饱和,其余段均处于未饱和的线性状态,通过改变小截面段磁路的饱和程度来改变电抗器的容量。MCR制造工艺简单,结构稳定,对于提高电网的输电能力、调整电网电压、补偿无功功率以及限制过电压都有非常大的应用潜力。

图 3 MCR电路结构图

由上图可以看出,若K1、K2不导通,根据绕组结构的对称性可知,MCR 相当于一个空载变压器。假设电源e处于正半周,晶闸管K1承受正向电压,K2承受反向电压。若K1被触发导通(即a、b两点等电位),电源e经变比为δ的线圈自耦变压后由匝数为N2的线圈向电路提供直流控制电压(δEm sin ωt)和电流iy′、iy′′。不难得出K1导通时的等效电路如下图(a)所示。同理,若K2在电源的负半周导通(即c、d两点等电位),则可以得出如下图(b)所示的等效电路。

图 4 晶闸管导通的等效电路图

由图可见,K2导通所产生的控制电流iy′和iy′′的方向与K1导通时所产生的一致,也就是说在电源的一个工频周期内,晶闸管K1、K2的轮流导通起了全波整流的作用,二极管起着续流作用。改变K1、K2的触发角便可改变控制电流的大小,从而改变电抗器铁心的饱和度,以平滑连续地调节电抗器的容量。

互感器与电抗器标准精选(最新)

互感器与电抗器标准精选(最新) G1207《GB1207-2006电磁式电压互感器》 G1208《GB1208-2006电流互感器》 G16847《GB/T16847-1997保护用电流互感器暂态特性技术要求》 G17201《GB17201-2007组合互感器》 G17443《GB/T17443-1998500KV电流互感器技术参数和要求》 G20836《GB/T20836-2007高压直流输电用油浸式平波电抗器》 G20837《GB/T20837-2007高压直流输电用油浸式平波电抗器技术参数和要求》G20840.1《GB20840.1-2010互感器第1部分:通用技术要求》 G20840.3《GB20840.3-2013互感器第3部分:电磁式电压互感器的补充技术要求》 G20840.5《GB/T20840.5-2013互感器第5部分:电容式电压互感器的补充技术要求》 G20840.7《GB/T20840.7-2007互感器第7部分:电子式电压互感器》 G20840.8《GB/T20840.8-2007互感器第8部分:电子式电流互感器》 G22071.1《GB/T22071.1-2008互感器试验导则第1部分:电流互感器》 G22071.2《GB/T22071.2-2008互感器试验导则第2部分:电磁式电压互感器》G23753《GB/T23753-2009330kV及500kV油浸式并联电抗器技术参数和要求》G24841《GB/Z24841-20091000kV交流系统用电容式电压互感器技术规范》 G24844《GB/Z24844-20091000kV交流系统用油浸式并联电抗器技术规范》 G29327《GB/Z29327-20121000kV电抗器保护装置技术要求》 G50774《GB50774-2012±800KV及以下换流站干式平波电抗器施工及验收规范》 GJ1864《GJB1864-1994射频固定和可变片式电感器总规范》 J5356《JB/T5356-2002电流互感器试验导则》 J5357《JB/T5357-2002电压互感器试验导则》 J6300《JB/T6300-2004控制用电压互感器》 J7068《JB/T7068-2002互感器用金属膨胀器》 J7632《JB/T7632-2006串联电抗器试验导则》 J8510.1《JB/T8510.1-2007交流电气化铁道牵引供电用互感器第1部分:电流互感器》 J8510.2《JB/T8510.2-2007交流电气化铁道牵引供电用互感器第2部分:电压互感器》 J10432《JB/T10432-2004三相组合互感器》 J10433《JB/T10433-2004三相电压互感器》 J10665《JB/T10665-2006微型电流互感器》 J10667《JB/T10667-2006微型电压互感器》 J10775《JB/T10775-20076kV~35kV级干式并联电抗器技术参数和要求》 J10779《JB/T10779-2007750kV油浸式并联电抗器技术参数和要求》 J10780《JB/T10780-2007750kV油浸式电力变压器技术参数和要求》 J10941《JB/T10941-2010合成薄膜绝缘电流互感器》 DL271《DL/T271-2012330kV~750kV油浸式并联电抗器使用技术条件》 DL278《DL/T278-2012直流电子式电流互感器技术监督导则》 DL668《DL/T668-1999测量用互感器检验装置》

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

意大利督凯提电容器电抗器产品手册

意大利督凯提电容器电抗器产品手册 07-2019 目录 公司介绍 1 PPMh/MKPh电容器新技术 2 电容器的一般性能 3 调谐滤波电抗器 4数字式REGO 系列无功功率控制器 5 REGO 接线图 7 调谐滤波器选型 8三相电容器尺寸图 10 电抗率为7%电抗器尺寸图 11电抗率为12.5%电抗器尺寸图 12电抗器温度保护接线图举例 13方案设计参考 16有源滤波器 17质量体系 19部分中国客户 20 公司介绍 博洛尼亚Bologna 1909年诺贝尔物理奖获得者、世界第一套无线电收发装置的发明者意大利人马可尼与督凯提家族于1926年共同创建的 energia 公司,至今已有85年的历史。共有 energia 发展至今已经成为一家集团性质公司,六家工厂,产品涉及九个领域:电力电容器、电子电容器、电 力仪表、高速公路的SOS 呼叫系统、车库的记费管理系统、轻燃料车、电池车、摩托车马达、铁路控制系统。其中,电容器的生产85年来从未间断。 energia 生产的电力电容器,产品电压等级齐全、种类丰富、销售机构完善、服务团队经验丰富,年销售额超过6亿欧元,是全球电容器 市场的主要供货商之一。在全球100多个国家和地区设立了分支机构。 随着中国经济的快速发展, energia 越来越重视中国市场并在中国设立了北京代表处。北京代表处负责中国地区的市场开发及技术服务工作。 北京代表处经过长期努力在中国各省建立了销售服务网络,并在北京建立了库房,从而实现了中国市场的现货供应,每月定期定量从意大利博洛尼亚补充库存。 PPMh/MKPh电容器新技术

由 energia 公司研发的具有镀特殊金属成份的聚丙烯膜PPMh/MKPh,它的目的是支持自愈性能并减少介质损耗。较于现在的其它介质及气体绝缘的电容器,PPMh 电容器以它 优越的过载能力和长寿命成为功率因数补偿系统新的目标。 由于创新的金属化处理,聚丙烯膜在卷绕期间承受较少的应力。因此介质性能能够长 期保存并且在电压和电流作用下表现相当好的性能,可以达到4 In的过载能力。 更有效的自愈性和低的介质损耗使电容器拥有长达210000小时以上的寿命,并且运 行温度大大降低。 由于封闭性和工艺的进一步改进使电容器既能获得与油式电容器一样的电压电流性能,同时明显地减少了体积。将每个电容器单元装在壳内并应用树脂介质技术极大的保证了电 容器的散热性和接地绝缘,提高了电容器的寿命。所有电容器单元都由含有特殊金属的聚 丙烯膜绕制而成,并在电容器单体外加装金属的外壳和上盖。外壳应用特殊的双重卷边工 艺组装以及新型密封剂的应用以保证完美的密封性,过压力保护使系统安全运行。 所有的电容器都用环保材料制作,符合标准E N60831-1/2. energia 公司的质量体系,其电容器部分,正如在 质量手册中描述的,是在意大利第一家获得ISO 9001(按 29002) 认证并被BSI 认证的,认证证书:N.FM22019,并有 型式试验的检测资质。 安全和保护 为了保护的可靠性,每个电容器单元都配备了过压力保护装置。 过压力保护装置的功能是当电容器的有效寿命终结并且不能自动恢复的时候断开,它 利用短路电流过热导致膜分解产生的内部压力使终端接点断开。 过压力保护装置具有确定的尺寸,以确保即使在高能量密度的情况下也能在接地保护 和消弧保护中长期保证最大的安全性。 这种保护已经依靠专门的工程技术实现:当发生故障时,接点会因为压力而断开,保 证外壳绝缘完好无损并防止电容器爆炸或膨胀。装置设计了最优化的尺寸以保证在低短路 电流和高短路电流下能够更有效迅速的操作。 电容器的一般性能 数据来自于欧洲的实验机构和中国国家电力电容器质量监督检验中心。 数字式REGO 系列无功功率控制器

电抗器技术规范书

设备/材料集中招标文件技术范本第五册电抗器招标文件技术规范范本 (DKQ - 2009) (送审稿) 2009年9月呼和浩特

设备/材料集中招标文件技术范本第五册电抗器招标文件技术规范范本 (DKQ - 2009) 批准单位:内蒙古电力(集团)有限责任公司 组织单位:内蒙古电力(集团)有限责任公司招投标管理中心 编制单位:内蒙古电力勘测设计院 内蒙古电力科学研究院 内蒙古蒙能招标有限公司 内蒙古电力(集团)有限责任公司物资供应分公司 施行日期:2009年9月 2009年9月呼和浩特

总目录 ◆设备∕材料集中招标文件商务范本 ◆设备∕材料集中招标文件技术范本 第一册变压器招标文件技术规范范本 第二册断路器招标文件技术规范范本 第三册隔离开关招标文件技术规范范本 第四册绝缘子招标文件技术规范范本 第五册电抗器招标文件技术规范范本 第六册组合电器招标文件技术规范范本 第七册互感器招标文件技术规范范本 第八册电容器招标文件技术规范范本 第九册避雷器招标文件技术规范范本 第十册导线、地线招标文件技术规范范本 第十一册光缆招标文件技术规范范本 第十二册电缆招标文件技术规范范本 第十三册输电线路铁塔招标文件技术规范范本第十四册高压开关柜招标文件技术规范范本

本册目录 电抗器范本使用说明 (1) 第一部分500kV并联电抗器及中性点接地电抗器招标文件技术规范范本 (2) 1 500kV并联电抗器及中性点接地电抗器招标文件技术规范范本通用部分 (3) 2 500kV并联电抗器及中性点接地电抗器招标文件技术规范范本专用部分 (18) 第二部分35kV干式空心电抗器招标文件技术规范范本 (30) 1 35kV干式空心电抗器招标文件技术规范范本通用部分 (31) 2 35kV干式空心并联电抗器招标文件技术规范范本专用部分 (36) 3 35kV干式空心串联、限流电抗器招标文件技术规范范本专用部分 (43) 第三部分10kV电抗器招标文件技术规范范本 (50) 1 10kV干式空心电抗器招标文件技术规范范本通用部分 (51) 2 10kV干式铁心并联电抗器招标文件技术规范范本通用部分 (57) 3 10kV油浸式并联电抗器招标文件技术规范范本通用部分 (63) 4 10kV干式空心电抗器招标文件技术规范范本专用部分 (77) 5 10kV干式铁心并联电抗器招标文件技术规范范本专用部分 (84) 6 10kV油浸式并联电抗器招标文件技术规范范本专用部分 (90) 7 10kV干式空心限流电抗器招标文件技术规范范本专用部分 (99)

磁控溅射制膜技术的原理及应用和发展-郭聪

磁控溅射制膜技术的原理及应用和发展 郭聪 (黄石理工学院机电工程学院黄石 435000) 摘要:磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。探讨了磁控溅射技术在非平衡磁场溅射、脉冲磁控溅射等方面的进步,说明利用新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:非平衡磁控溅射脉冲磁控溅射薄膜制备工艺应用 中图分类号:O484.1 0 前言 薄膜是指存在于衬底上的一层厚度一般为零点几个纳米到数十微米的薄层材料。薄膜材料种类很多,根据不同使用目的可以是金属、半导体硅、锗、绝缘体玻璃、陶瓷等。从导电性考虑,可以是金属、半导体、绝缘体或超导体;从结构考虑,可以是单晶、多晶、非晶或超晶格材料;从化学组成来考虑,可以是单质、化合物或无机材料、有机材料等。制备薄膜的方法有很多,归纳起来有如下几种:1)气相方法制模,包括化学气相淀积(CVD),如热、光或等离子体CVD和物理气相淀积(PVD),如真空蒸发、溅射镀膜、离子镀膜、分子束外延、离子注入成膜等; 2)液相方法制膜,包括化学镀、电镀、浸喷涂等; 3)其他方法制膜,包括喷涂、涂覆、压延、印刷、挤出等。[1] 而在溅射镀膜的发展过程中,新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等。辉光等离子体溅射的基本过程是负极的靶材在位于其上的辉光等离子体中的载能离子作用下,靶材原子从靶材溅射出来,然后在衬底上凝聚形成薄膜;在此过程中靶材表面同时发射二次电子,这些电子在保持等离子体稳定存在方面具有关键作用。溅射技术的出现和应用已经经历了许多阶段,最初,只是简单的二极、三极放电溅射沉积;经过30多年的发展,磁控溅射技术已经发展成为制备超硬、耐磨、低摩擦系数、耐蚀、装饰以及光学、电学等功能性薄膜的一种不可替代的方法,脉冲磁控溅射技术是该领域的另一项重大进展。利用直流反应溅射沉积致密、无缺陷绝缘薄膜尤其是陶瓷薄膜几乎难以实现,原因在于沉积速度低、靶材容易出现电弧放电并导致结构、组成及性能发生改变。利用脉冲磁控溅射技术可以克服这些缺点,脉冲频率为中频10~200kHz,可以有效防止靶材电弧放电及稳定反应溅射沉积工艺,实现高速沉积高质量反应薄膜。 1 基本原理 磁控溅射(Magnetlon Sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射镀膜采用在靶材表面设置一个平行于靶表面的横向磁场,磁场由置于靶内的磁体产生。在真空室中,基材端接阳极极,靶材端接阴极,阴极靶的下面即放置着一个强力磁铁。溅射时持续通入氩气,使之作为气体放电的载体(溅射气体),同时通入氧气,作为与被溅射出来的锌原子发生反应的反应气体。在真空室内,电子e在电场E的作用下,在加速飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子(二次电子)e。Ar+计在电场作用下加速飞向阴极靶,以高能量轰击Zn靶表面使其发生溅射,溅射出来的锌原子吸收Ar离子的动能而脱离原晶格束缚,飞往基材方向,途中与O 2 发生反应并释放部分能量,最后反应产物继续飞行最终沉积在基材表面。我们需要通过不断的实验调整工艺参数,从而 使得溅射出来的历原子能与O 2 充分反应,制得纯度较高的薄膜。另一方面,二次电子在磁场的作用下围绕靶面作回旋运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在

MCR磁控电抗器控制器说明书

MCR磁控电抗器控制器 产 品 说 明 书

目录 一、MCR磁控电抗器控制器人机界面介绍 (3) 1、运行主画面 (4) 2、密码输入画面 (4) 3、参数设定画面 (5) 4、MCR测试画面 (8) 5、开入测试 (9) 6、电压电流趋势图 (10) 7、时间设置 (11) 8、密码修改 (12) 9、选择工作模式 (13) 10、ModBus参数设置 (14) 二、无功自动补偿控制器 (15) 1、控制器技术: (15) 2、控制柜外形尺寸如下: (16) 3、可控硅箱 (16)

MCR磁控电抗器控制器使用说明书 一、MCR磁控电抗器控制器人机界面介绍 MCR磁控电抗器控制器一下简称控制器为标准6U机箱,内部装有S7200西门子PLC、各种变送器以及ALTERA FPGA脉冲输出板、DC24V电源等器件组成。 控制器前面板的人机界面HMI为西门子TP178触摸屏,所有的控制操作均在此屏幕上进行,除了6U机箱背板的端子图外,控制器的介绍主要就是对触摸屏操作及界面的操作,现介绍如下:

1、运行主画面 下面的F1-F6为快捷按钮,以后不另介绍。 F1:系统。按F1后进入触摸屏的开机模式,在此模式下可以输入触摸屏程序、校正屏幕等一系列操作,但主要是给厂家调试人员使用,其画面也就不列出。 F2:设置。按F2后进入下面画面。由于设置功能比较专业,也比较重要,所以每次进入必须经过下面的密码检验画面。 2、密码输入画面 这个画面在用户名和密码输入正确以前下面的五个按钮实际上都不可见。密码输入正确后可以按照按钮的文字提示按选并进入相应的画

面。 F6:主画面。按F6返回前面的主画面。 “参数设置”按钮:进入下面的“参数设定-0”画面; “时间设置”按钮:进入下面的“时间设置”画面; “修改密码”按钮:进入下面的“修改密码”画面; “选择工作模式”按钮:进入下面的“选择工作模式”画面;“ModBus参数设置”按钮:进入下面的“ModBus参数设置”画面。 3、参数设定画面 该画面参数由厂家人员输入。 F1:主画面; F2:下一屏。即“参数设定-1”画面;

电抗器工作原理及作用(用途)

电抗器 懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。

内容简介一:电抗器在电力系统中的作用 二:电抗器的分类 三:详细介绍及选用方法 四:各种电抗器的计算公式 五:经典问答 一:电抗器在电力系统中的作用

由于电力系统中大量使用电力电子器件,直流用电,变频用电等,产生了大量的谐波,使得看是简单的问题变得复杂了,用以补偿的电容器频繁损坏,有的甚至无法投入补偿电容器,当谐波较小时,可以用谐波抑制器,但系统中的谐波较高时,就要用串联电抗器了,放大谐波电流. 电抗率为4.5%~7%滤波电抗器,用于抑制电网中5次及以上谐波;电抗率为12%~13 %滤波电抗器,用于抑制电网中3次及以上谐波.电抗器装于柜内,应加装通风设备散热.电抗器能在额定电压的1.35倍下长期运行,常用电抗器的电抗率种类有4.5%、5%、6%、7%、12%、13%等,电抗器的温升:铁芯85K,线圈95K,绝缘水平:3kV/1min,无击穿与闪络,电抗器在1.8倍额定电流下的电抗值,其下降值不大于5%,电抗器有三相、单相之分,三相电抗器任二相电抗值之差不大于±3%,电抗器可用于400V或600V系统,电抗器噪声等级,不大于50dB,电抗器耐温等级H级以上. 信息来自:输配电设备网 电力系统中所采取的电抗器,常见的有串联电抗器和并联电抗器。串联电抗器主要用来限制短路电流,也有在滤波器中与电容器串联或并联用来限制电网中的高次谐波。并联电抗器用来吸收电网中的容性无功,如500kV电网中的高压电抗器,500kV变电站中的低压电抗器,都是用来吸收线路充电电容无功的;220kV、110kV、35kV、10kV电网中的电抗器是用来吸收电缆线路的充电容性无功的。可以通过调整并联电抗器的数量来调整运行电压。超高压并联电抗器有改善电力系统无功功率有关运行状况的多种功能,主要包括:1)轻空载或轻负荷线路上的电容效应,以降低工频暂态过电压。2)改善长输电线路上的电压分布。3)使轻负荷时线路中的无功功率尽可能就地平衡,防止无功功率不合理流动,同时也减轻了线路上的功率损失。4)在大机组与系统并列时,降低高压母线上工频稳态电压,便于发电机同期并列。5)防止发电机带长线路可能出现的自励磁谐振现象。6)当采用电抗器中性点经小电抗接地装置时,还可用小电抗器补偿线路相间及相地电容,以加速潜供电流自动熄灭,便于采用单相快速重合闸。 电力网中所采用的电抗器,实质上是一个无导磁材料的空心线圈。它可以根据需要,布置为垂直、水平和品字形三种装配形式。在电力系统发生短路时,会产生数值很大的短路电流。如果不加以限制,要保持电气设备的动态稳定和热稳定是非常困难的。因此,为了满足某些断路器遮断容量的要求,常在出线断路器处串联电抗器,增大短路阻抗,限制短路电流。 由于采用了电抗器,在发生短路时,电抗器上的电压降较大,所以也起到了维持母线电压水平的作用,使母线上的电压波动较小,保证了非故障线路上的用户电

串联电抗器标准

串联电抗器 JB 5346-1998 代替JB 5346-91 前言 本标准是根据机械工业部 1997 年标准制、修订计划号,对JB 5346-91标准修订而成。 本标准的编写格式按照GB/T标准重新编排。 本标准主要修订的内容如下: 1)修改了额定电抗率项目,由原来的 %、6%、12%、(13%)项改为%、5%、6%、12%、13%。 2)按配套并联电容的额定电压要求增加了电抗器的额定端电压、及其相关参数要求项。 3)原标准按 R10 系列数系规定了电容器组容量,再按额定电抗率导出电抗器容量系列,目的是制造厂以尽可能少的容量满足尽可能多的用户规格品种要求。但由于电容器组的容量和电容器单元系列型谱标准不尽吻合,存在匹配组合困难。而且即便如此,也还满足不了用户规格繁多的需要,故本次修订取消了原标准中的表 2 和表 3,不再规定容量的系列规格。 4)由于取消容量系列规格,也就无法再以表格形式对每一种容量规定其损耗标准值。本次修订取消了原标准中的表 6(A)、6(B)、7(A)、7(B)、8(A)、8(B),给出了损耗值计算公式并规定了损耗系数。 5)电抗值允许偏差由原来 0~15% 改为 0 +10%。 6)绝缘水平与GB311标准一致。即油浸铁心式电抗器的绝缘水平和油浸式电力变压器相同,干式空心电抗器的绝缘水平和母线支柱绝缘子相同。 7)增加了用电桥法测量电抗值内容。 8)取消了对户外式空心电抗器在淋雨状态下做绕组匝间绝缘试验的要求。 9)取消稳态过电压条款。因为对稳定过电流的规定条件,实际上已包括了对稳态过电压的要求。 本标准由全国变压器标准化技术委员会提出并归口。 本标准主要起草单位:沈阳变压器研究所、宁波变压器厂、兴城特种变压器厂。 本标准参加起草单位:沈阳变压器有限责任公司综合电器厂,保定第二变压器厂、北京电力设备总厂、中山和泰机电厂。 本标准主要起草人:王丁元、韩庆恒。 本标准参加起草人:王辉、戈承、何见光、沈文洋。 本际准 1991 年首次发布。1997 年第一次修订。 本标准由沈阳变压器研究所负责解释。 1 范围 本标准规定了高压并联电容器用串联电抗器产品的定义、型号和分类、技术要求、试验方法、检验规则、产品标志及出厂文件、铭牌的基本内容、包装运输及贮存的基本要求等。

磁控溅射技术的基本原理

张继成吴卫东许华唐晓红 中国工程物理研究院激光聚变研究中心绵阳 材料导报, 2004, 18(4): 56-59 介绍磁控溅射技术的基本原理、装置及近年出现的新技术。 1 基本原理 磁控溅射技术是在普通直流(射频)溅射技术的基础上发展起来的。早期的直流(射频)溅射技术是利用辉光放电产生的离子轰击靶材来实现薄膜沉积的。但这种溅射技术的成膜速率较低,工作气压高(2~10Pa)。为了提高成膜速率和降低工作气压,在靶材的背面加上了磁场,这就是最初的磁控溅射技术。 磁控溅射法在阴极位极区加上与电场垂直的磁场后,电子在既与电场垂直又与磁场垂直的方向上做回旋运动,其轨迹是一圆滚线,这样增加了电子和带电粒子以及气体分子相撞的几率,提高了气体的离化率,降低了工作气压,同时,电子又被约束在靶表面附近,不会达到阴(阳)极,从而减小了电子对基片的轰击,降低了由于电子轰击而引起基片温度的升高。 2 基本装置 (1) 电源 采用直流磁控溅射时,对于制备金属薄膜没有多大的问题,但对于绝缘材料,会出现电弧放电和“微液滴溅射”现象,严重影响了系统的稳定性和膜层质量。为了解决这一问题,人们采用了射频磁控溅射技术,这样靶材和基底在射频磁控溅射过程中相当于一个电容的充放电过程,从而克服了由于电荷积累而引起的电弧放电和“微液滴溅射”现象的发生。 (2) 靶的冷却 在磁控溅射过程中,靶不断受到带电粒子的轰击,温度较高,其冷却是一个很重要的问题,一般采用水冷管间接冷却的方法。但对于传热性能较差的材料,则要在靶材与水冷系统的连接上多加考虑,同时需要考虑不同材料的热膨胀系数的差异,这对于复合靶尤为重要(可能会破裂损坏)。 (3) 磁短路现象 利用磁控溅射技术溅射高导磁率的材料时,磁力线会直接通过靶的内部,发生刺短路现象,从而使磁控放电难以进行,这时需要在装置的某些部分做些改动以产生空间凝

磁控电抗器技术协议

RMCI型SVC动态无功补偿成套装置 技术协议书

(以下简称甲方) (以下简称乙方) 通过双方真诚、友好协商,就RMC型SVC动态无功补偿成套装置的技术、供货范围等条款进行充分协商,达成共识。于_____ 年—月—日签订如 下技术协议,本技术协议作为合同不可分割的部分与合同具有同等法律效力。 1、总则 1.1本技术协议书适用于10kV磁控电抗器式动态无功补偿成套装置。本技术协议 书提出了对成套无功补偿装置(以下简称装置)的功能设计、结构性能、安装等方面的技术要求。 1.2乙方应提供符合本技术协议和有关工业标准要求的装置。 1.3如果甲方没有以书面形式对本技术协议书提出异议,则意味着乙方提供 的RMC型SVC动态无功补偿成套装置完全符合本技术协议书的要求。 1.4本技术协议书所使用的标准如与甲方执行的标准发生矛盾时,按较高标 准执行。 1.5合同规定的文件,包括图纸、计算、说明、使用手册等,均应使用中文和国 际单位制(SI)。 1.6本技术协议书经甲、乙双方确认后作为订货合同的技术附件,与合同正文具 有同等法律效力。 2、工作范围 2.1乙方的工作范围 2.1.1乙方应提供满足本技术协议要求所必须的成套装置和各项服务。其 中包括下列内容: 2.1.1.1按照系统运行要求、本技术协议规定和适用的工业标准,设计生产完整 的RMC型SVC动态无功补偿成套装置; 2.1.1.2提供构成动态补偿装置所必需的全部硬件,并负责装置内的接线; 2.1.1.3达到本装置技术协议所规定的全部功能要求,并向甲方提供最终图 纸资料; 2.1.1.4按照合同规定的进度要求,按时发运电容器装置全套设备;

电气装置安装工程电力变压器 油浸电抗器 互感器施工及验收规范

电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 中华人民共和国国家标中华人民共和国国家标准 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GBJ148—90 中华人民共和国国家标准 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范 GBJ148—90 主编部门:中华人民共和国原水利电力部 批准部门:中华人民共和国建设部 施行日期:1991年10月1日 关于发布国家标准《电气装置安装工程高压电器施工及验收规范》等三项规范的通知 (90)建标字第698号 根据原国家计委计综〔1986〕2630号文的要求,由原水利电力部组织修订的《电气装置安装工程高压电器施工及验收规范》等三项规范,已经有关部门会审,现批准《电气装置安装工程高压电器施工及验收规范》GBJ147—90;《电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规范》GBJ148—90;《电气装置安装工程母线装置施工及验收规范》GBJ149—90为国家标准。 自1991年10月1日起施行。 原国家标准《电气装置安装工程施工及验收规范》GBJ23—82中的高压电器篇,电力变压器、互感器篇,母线装置篇同时废止。 该三项规范由能源部负责管理,其具体解释等工作,由能源部电力建设研究所负责。出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 1990年12月30日 修订说明 本规范是根据原国家计委计综(1986)2630号文的要求,由原水利电力部负责主编,具体由能源部电力建设研究所会同有关单位共同编制而成。 在修订过程中,规范组进行了广泛的调查研究,认真总结了原规范执行以来的经验,吸取了部分科研成果,广泛征求了全国有关单位的意见,最后由我部会同有关部门审查定稿。 本规范共分三章和两个附录,这次修订的主要内容为: 1.根据我国电力工业发展需要及实际情况,增加了电压等级为50kV的电力变压器、互感器的施工及验收的相关内容,使本规范的适用范围由330kV扩大到500kV及以下。 2.由于油浸电抗器在330kV及500kV系统中大量采用,故将油浸电抗器的相关内容纳入本规范内。

(完整版)磁控电抗器技术规范书

10kV磁控电抗器(MCR)技术规范书 1 概述 本项目高压动态无功补偿装置,包括动态无功补偿装置控制器、磁控电抗器及附属设备。未述及的技术细节尚应符合以下现行有关国家标准、行业标准的规定。 2 使用环境 系统标称电压: 10kV 安装场所:户内 海拔高度:≤1000m 运行环境温度:-25℃~+50℃ 运行环境湿度:日平均相对湿度不大于95%,月平均相对湿度不大于90% 周围空气没有明显地受到尘埃、烟、腐蚀性或可燃性气体、蒸汽或盐雾的污染; 地震烈度:不超过8度。 系统频率:50Hz 中性点接地方式:电阻接地。 3 采用标准 3.1 应满足下列标准,但不限于下列全部法规和标准: GB191 包装贮运标志 GB311.1 高压输变电设备的绝缘配合 GB1094.1 电力变压器第一部分总则 GB1094.2 电力变压器第二部分温升 GB1094.3 电力变压器第三部分绝缘水平、绝缘试验和外绝缘空气间隙 GB1094.5 电力变压器第五部分承受短路的能力 GB1094.10 电力变压器第十部分声级测定 GB1094.11 电力变压器第十一部分干式变压器 GB/T2900.15 电工名词术语变压器、互感器、调压器和电抗器 GB/T3837 变压器类产品型号编制办法 GB/T4109 高压套管技术条件 GB4208 外壳防护等级 GB/T5582 高压电力设备外绝缘污秽等级 GB5273 变压器、高压电器和套管的接线端子 GB6450 干式电力变压器 GB7328 变压器和电抗器的声级测定 GB7354 局部放电测量 GB7449 电力变压器和电抗器的雷电冲击和操作冲击试验导则GB/T10228 干式电力变压器技术参数和要求 GB10229 电抗器 GB10237 电力变压器绝缘水平和绝缘试验外绝缘的空气间隙 GB/T11021 电气绝缘的耐热性评定和分级

MNG型油浸式磁控电抗器使用说明书

MNG型油浸式磁控电抗器 使用说明书 山东思达电气有限公司 (山东米诺电力科技有限公司)

一、磁控电抗器装置概述 1.1工作原理 磁控电抗器是利用直流助磁的原理,即利用附加直流励磁磁化电抗器铁心,通过调节磁控电抗器铁心的磁饱和程度,改变铁心的磁导率,实现电抗值的连续可调。电抗器铁心上设置由不饱和区域铁心和饱和区域铁心交错排列组成并联磁路;通过调节可控硅触发导通角来控制附加直流励磁电流对铁心的励磁磁化;通过调整不饱和区域铁心和饱和区域铁心的面积或磁阻,以改变并联磁路中不饱和区域铁心的磁化程度和饱和区域铁心的磁饱和程度,从而实现电抗值1~100%的连续、快速可调。与电容器组合,就可以提供正负连续可调的无功功率,从而可以更精密、更快速地控制系统电压和无功。由于没有或者极少有电容投切带来的冲击和涌流,可以大大提高装置的可靠性和寿命。可以对三相分别补偿,尤其适应于三相功率不平衡的情况。 1.2 三相磁控电抗器接线原理 三相磁控电抗器每相由二个支路并联,三相绕组三角形联结,具体见下图。

1.3 磁控电抗器的结构设计 采用磁路并联漏磁自屏蔽磁路和自藕式直流助磁电路的设计技术,铁心采用磁密不饱和的对称分裂结构,绕组采用上下并联左右对称结构。 应用大型变压器的结构技术,高压电流互感器(CT)、电压互感器(PT)、电容式电压互感器(CVT)的绝缘技术,通过多年研发创立的新技术;真正实现了磁控电抗器的产品化;与磁阀式可控电抗技术比较,真正达到了损耗小、噪音低,接近于低损耗电力变压器水平;结构合理,生产工艺成熟,可以批量生产;质量可靠,运行安全免维护,成本低。 铁心不饱和设计,加上对称结构互相不干扰,铁心损耗小,噪音低;伏安特性近似直线(硅钢片磁化曲线的线性段);本体基本上不产生谐波,控制回路产生的少量谐波,由于采用Δ接线,不向系统输出; 主要的漏磁通在铁心内得到有效屏蔽,线圈和油箱中的漏磁通小,附加损耗小,总损耗小;按照容量大小,自身有功损耗占容量的0.5%~2%,是磁阀式可控电抗器或SVC中相控电抗器(TCR)的50%以下; 方便安装,占地面积小,基本上不需要维护;电抗器容量调节范围大:1%~98%(接近100%); 1.4 磁控电抗器特点 使用《磁路并联漏磁自屏蔽式可控电抗器》专利技术,使磁控电抗器真正实现了:结构可靠、制造工艺简单、产品性能先进,自身损耗小、成本低等优良的技术经济指标,解决了目前各类可控电抗器成本高、生产效率低、温升高、噪音大、难以在实际生产中应用等问题。 应用CT、PT、CVT等超高压绝缘技术,实现了磁控电抗器在110、220、

交流电抗器样本

输入交流电抗器(CAL 4%压降) 产品编号:1517465716 产品名称:输入交流电抗器(CAL 4%压降) 规格: 产品备注: 产品类别:电抗器 产品说明 CAL输入交流电抗器在变频调速系统中为防止因操作交流进线开关产生的过电压和浪涌电流对变频器的冲击,同时亦可以减少它产生的谐波对电网的污染,使之符合相关法规与标准。因此熟悉与变频器配套用的各类电抗器的作用和容量的选择等问题是有必要的。与变频器相配用的有交流输入电抗器、直流电抗器、交流输出电抗器、零序电抗器、正弦波滤波器。 ▍额定工作电压:3/380V/50Hz ▍电抗器噪音:小于65dB(电抗器水平距离点1米测试) ▍额定绝缘水平:5KV/min F级 ▍抗电强度:铁芯-绕组3000VAC/50Hz/10mA/60s无飞弧击穿 ▍产品执行标准:IEC289:1987电抗器 GB10229-88电抗器(eqv IEC289:1987) JB9644-1999半导体电气传动用电抗器

输入交流电抗器(CAL 2%压降) 产品编号:1092351816 产品名称:输入交流电抗器(CAL 2%压降) 规格: 产品备注: 产品类别:电抗器 产品说明 CAL输入交流电抗器在变频调速系统中为防止因操作交流进线开关产生的过电压和浪涌电流对变频器的冲击,同时亦可以减少它产生的谐波对电网的污染,使之符合相关法规与标准。因此熟悉与变频器配套用的各类电抗器的作用和容量的选择等问题是有必要的。与变频器相配用的有交流输入电抗器、直流电抗器、交流输出电抗器、零序电抗器、正弦波滤波器。 ▍额定工作电压:3/380V/50Hz ▍电抗器噪音:小于65dB(电抗器水平距离点1米测试) ▍额定绝缘水平:5KV/min F级 ▍抗电强度:铁芯-绕组3000VAC/50Hz/10mA/60s无飞弧击穿 ▍产品执行标准:IEC289:1987电抗器 GB10229-88电抗器(eqv IEC289:1987) JB9644-1999半导体电气传动用电抗器

银湖电气磁控电抗器使用说明书

磁控电抗器 电压无功补偿装置使用说明书 杭州银湖电气设备有限公司 二○○七年八月

电压无功补偿装置使用说明书 一、可控电抗器工作原理 无功补偿设备采用直流助磁式可控电抗器,其原理是利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,其内部为全静态结构,无运动部件,工作可靠性高。图一为单相可控电抗器的铁心、线圈结构示意图。 图1 单相可控电抗器铁心、线圈示意图 单相可控电抗器采用如图四柱铁心结构,在中间两工作铁心柱上分布着多个小截面段,在电抗器的整个容量调节范围内,仅有小截面段铁心磁路工作在饱和区,而大截面段始终工作于未饱和线性区,其上套有线圈。可控电抗器原理接线图如图2所示。 K N 2 N 2 N 2

图2 磁控电抗器原理接线图 在可控电抗器的工作铁心柱上分别对称地绕有匝数为/2N 的两个线圈,其上有抽头比为2/N N δ=的抽头,它们之间接有可控硅1T 、2T ,不同铁心的上下两个主绕组交叉连接后并联至电源,续流二极管接在两个线圈的中间。 当电抗器绕组接至电源电压时, 在可控硅1T 、2T 两端感应出1%左右电源电压的电压。电源电压正半周触发导通可控硅1T ,形成图3(a)所示的等效电路,其中12N N N =-,在回路中产生直流控制电流k i '和k i '';电源电压负半周期触发导通可控硅2T ,形成图3(b)所示的等效电路,在回路中形成直流控制电流k i '和 k i ''。一个工频周期轮流导通1T 和2T ,产生的直流控制电流k i '和k i '',使电抗器工 作铁心饱和,输出电流增加。可控电抗器输出电流大小取决于晶闸管控制角α, α越小,产生的控制电流越强,从而电抗器工作铁心磁饱和程度越高,输出电 流越大。因此,改变晶闸管控制角,可平滑调节电抗器容量。 (a )1T 导通 (b )2T 导通 图3 晶闸管导通等效电路 二、电压无功综合补偿系统连接图 本自动跟踪电压无功自动补偿装置采用固定电容器配合磁控电抗器的控制方式,自动调节电抗器的输出容量,使系统在电压满足要求的前题下,动态跟踪调节磁控电抗器容量使系统的整体功率因数达到最优。 图4为电压无功自动跟踪补偿装置总系统图,三个单相可控电抗器分别接在6kV (或35kV 、10kV )相间,组成三角形接线,固定电容器也接于6kV 相间,

10KV-66KV干式电抗器运行规范

10kV~66kV干式电抗器运行规范 目录 第一章总则 1 第二章引用标准 1 第三章设备的验收 2 第四章设备运行维护管理 4 第五章运行巡视检查项目及要求 5 第六章缺陷管理及异常处理 7 第七章事故处理预案 8 第八章培训要求 9 第九章设备的技术管理 10 第十章备品备件管理 12 第十一章更新改造 12 低压干式电抗器运行管理规范编制说明 13 第一章总则 第一条为完善干式电抗器设备管理机制,使其达到制度化、规范化,保证设备安全、可靠和经济运行,特制定本规范。 第二条本规范是依据国家和行业有关标准、规程、制度及《国家电网公司变电站管理规范》,并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备运行经验而制定。 第三条本规范提出了对10kV~66kV干式电抗器在设备投产、验收、检修、运行巡视和维护、缺陷和事故处理、运行和检修评估分析、改造和更新、培训以及

技术资料档案的建立与管理等提出了具体规定。 第四条本规范适用于国家电网公司所属范围内10kV~66kV干式电抗器的运行管理工作。 本规范适用于10kV~66kV的单相干式电抗器,以下简称干式电抗器。 第二章引用标准 第五条以下为本规范引用的标准、规程和导则,但不限于此。 DL408-1991 《电业安全工作规程》(发电厂和变电所电气部分)DL/T596-1996 《电气设备预防性试验规程》 DL5014-1992 《330-500kV变电所无功补偿装置设计技术规定》 GB 10229-88 电抗器 GB 6450-1986 干式电力变压器 GBJ147-1990 《电气装置安装工程施工及验收规范》 GB 50150-1991 电气装置安装工程电气设备交接试验标准 国电电网公司《防止电力生产重大事故的二十五项重点要求》 国家电网公司《变电站管理规范》 国家电网公司《电力生产设备评估管理办法》 国家电网公司《10kV~66kV干式电抗器技术标准》 国家电网公司《10kV~66kV干式电抗器检修规范》 国家电网公司《10kV~66kV干式电抗器技术监督规定》 国家电网公司《预防10kV~66kV干式电抗器事故措施》 第三章设备的验收 第六条运行单位应全过程的参与干式电抗器的设计图纸审核、土建安装、设备

磁控溅射镀膜技术的发展及应用_马景灵

溅射镀膜过程主要是将欲沉积成薄膜的材料制成靶材,固定在溅射沉积系统的阴极上,待沉积薄膜的基片放在正对靶面的阳极上。溅射系统抽至高真空后充入氩气等,在阴极和阳极之间加几千伏的高压,阴阳极之间会产生低压辉光放电。放电产生的等离子体中,氩气正离子在电场作用下向阴极移动,与靶材表面碰撞,受碰撞而从靶材表面溅射出的靶材原子称为溅射原子,溅射原子的能量一般在一至几十电子伏范围,溅射原子在基片表面沉积而后成膜。溅射镀膜就是利用低气压辉光放电产生的氩气正离子在电场作用下高速轰击阴极靶材,把靶材中的原子或分子等粒子溅射出而沉积到基片或者工件表面,形成所需的薄膜层。但是溅射镀膜过程中溅射出的粒子的能量很低,导致成膜速率不高。 磁控溅射技术是为了提高成膜速率在溅射镀膜基础上发展起来的,在靶材表面建立与电场正交的磁场,氩气电离率从0.3%~0.5%提高到了5%~6%,这样就解决了溅射镀膜沉积速率低的问题,是目前工业上精密镀膜的主要方法之一[1]。可制备成磁控溅射阴极靶材的原料很广,几乎所有金属、合金以及陶瓷材料都可以制备成靶材。磁控溅射镀膜在相互垂直的磁场和电场的双重作用下,沉积速度快,膜层致密且与基片附着性好,非常适合于大批量且高效率的工业化生产。 1磁控溅射的工艺流程 在磁控溅射过程中,具体工艺过程对薄膜性能影响很大,主要工艺流程如下[2]:(1)基片清洗,主要是用异丙醇蒸汽清洗,随后用乙醇、丙酮浸泡基片后快速烘干,以去除表面油污;(2)抽真空,真空须控制在2×104Pa以上,以保证薄膜的纯度;(3)加热,为了除去基片表面水分,提高膜与基片的结合力,需要对基片进行加热,温度一般选择 在150℃~200℃之间;(4)氩气分压,一般选择在0.0l~lPa范围内,以满足辉光放电的气压条件;(5)预溅射,预溅射是通过离子轰击以除去靶材表面氧化膜,以免影响薄膜质量;(6)溅射,氩气电离后形成的正离子在正交的磁场和电场的作用下,高速轰击靶材,使溅射出的靶材粒子到达基片表面沉积成膜;(7)退火,薄膜与基片的热膨胀系数有差异,结合力小,退火时薄膜与基片原子相互扩散可以有效提高粘着力。 2磁控溅射镀膜技术的发展 近年来磁控溅射技术发展非常迅速,代表性方法有非平衡磁控溅射、反应磁控溅射及高速溅射等等。 平衡磁控溅射技术:即最传统的磁控溅射技术,将永磁体或电磁线圈放到在靶材背后,在靶材表面会形成与电场方向垂直的磁场。在高压作用下氩气电离成等离子体,Ar+离子经电场加速轰击阴极靶材,靶材二次电子被溅射出,且电子在相互垂直的电场及磁场作用下,被束缚在阴极靶材表面附近,增加了电子与气体碰撞的几率,即增加了氩气电离率,使氩气在低气体下也可维持放电,因而磁控溅射既降低了溅射气体压力,同时也提高了溅射效率及沉积速率[3]。但传统磁控溅射有一些缺点,比如:低气压放电产生的电子和溅射出的靶材二次电子都被束缚在靶面附近大约60mm的区域内,这样工件只能被安放在靶表面50~100mm的范围内。这样小的镀膜区间限制了待镀工件的尺寸,较大的工件或装炉量不适合传统方法。 非平衡磁控溅射技术:这种磁控溅射方法部分解决了平衡磁控溅射的不足,是将靶面的等离子体引到靶前200~300mm的范围内,使阳极基片沉浸在等离子体中,减少了粒子移动的距离,离子束起到辅助沉积的作用[4]。然而单独的非平衡磁控靶在基片上很难沉积出均匀的薄膜层, 为此研究人员开发出了多靶非平衡磁控溅射镀膜系统,弥补了单靶非平衡磁控溅射的不足。 反应磁控溅射:随着表面工程技术的发展,越来越多地用到各种化合物薄膜材料。可以直接使用化合物材料制作的靶材通过溅射来制备化合物薄膜,也可在溅射金属或合金靶材时,通入一定的反应气体,通过发生化学反应制备化合物薄膜,后者被称为反应磁控溅射。一般来说纯金属作为靶材和气体反应较容易得到高质量的化合物薄膜,因而大多数化合物薄膜是用纯金属为靶材的反应溅磁控射来制备的[5]。 中频磁控溅射:这种镀膜方法是将磁控溅射电源由传统的直流改为中频交流电源。在溅射过程中,当系统所加电压处在交流电负半周期时,靶材被正离子轰击而溅射,而处于正半周期时,靶材表面被等离子体中的电子轰击而溅射,同时靶材表面累积的正电荷被中和,打弧现象得到抑制。中频磁控溅射电源的频率通常在10~80kHz之间,频率高,正离子被加速的时间就短,轰击靶材时的能量就低,溅射沉积速率随之下降。中频磁控溅射系统一般有两个靶,这两个靶周期性轮流作为阴极和阳极,一方面减小了基片溅伤;另一方面也消除了打弧现象。 高速溅射与自溅射:随着工业发展和表面工程的需求,高速溅射与自溅射等新型磁控溅射成膜方法成为镀膜领域新的发展趋势。高速溅射能够缩短镀膜时间,提高沉积速率,当溅射速率非常高,以至于在没有惰性气体氩气的情况下也能维持辉光放电,这种溅射方法称为自溅射[6]。高速溅射与自溅射中,被溅射材料的离子、电子化以及减少甚至取消惰性气体,都明显影响薄膜的形成机理,因此,可以制备出特殊性能的薄膜材料。 ①基金项目:河南科技大学实验技术开发基金(SY1112008); 科研创新能力培育基金(2012ZCX017)。  作者简介:马景灵(1970—),女,河南科技大学副教授,博士,E-mail:majingling.student@sina.com。 磁控溅射镀膜技术的发展及应用① 马景灵 任风章 孙浩亮 (河南科技大学材料科学与工程学院 河南洛阳 471023) 摘 要:近年来,随着新材料的开发,尤其是薄膜材料的发展和应用,带动磁控溅射沉积技术的飞速发展,在科学研究领域和工业生产中有着不可替代的重要作用。本文主要介绍了磁控溅射沉积技术的工艺过程及其发展情况,各种主要磁控溅射镀膜技术的特点,并介绍磁控溅射技术在各个领域的主要应用。关键词:磁控溅射 镀膜 辉光放电中图分类号:G4文献标识码:A文章编号:1673-9795(2013)10(b)-0136-02 (下转138页)

相关文档
最新文档