高等数学同济大学版课程讲解函数的极限
高等数学同济大学第六版1-04-极限的运算-文档资料

推论2 如果lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
求极限方法举例
例1
求
lim
x2
x
2
x3 1 3x
5
.
解
lim( x2 3x 5) lim x2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3lim x lim 5 22 3 2 5 3 0,
(2)零是可以作为无穷小的唯一的数。
2.无穷小与函数极限的关系: 定理 : lim f ( x) A f (x) A (x),
其中( x)是自变量变化时的无穷小.
意义: 将一般极限问题转化为特殊极 限 — 无穷小 —的问题。
3.无穷小的运算性质:
定理. 在同一自变量的变化过程中,有限个无 穷小的代数和仍是无穷小.
n n
n
lim sin x 0, 函数sin x是当x 0时的无穷小. x0
又如,
函数 x2 1当 x2 1
x 时的极限为 1 ,
而当x 1 时的极限为 0 ,
函数 x2 1本身不是无穷小量, x2 1
而当x
1
时函数
x2 x2
1 才是无穷小量。 1
注意 (1)无穷小是变量,不是有穷小量,不能与很 小的数混淆;
x 1
x2
2x
3
lim
x 1
(x
3)( x
1)
x 1
x1 1
lim
x1 x1 x 3 2
消去零因子
例4
求
lim
x
2x3 7x3
3x2 4x2
高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划课次序号: 03一、课 题:§1.3 函数的极限二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–3 1(2),2(3),3,6八、授课记录:九、授课效果分析: 第三节 函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1 若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A . 若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A . 例1 证明limx 0.证 0-,故∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx ?0. 例2 证明lim 100x x →-∞=. 证 ∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0. 定义2 若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A . 为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水 平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A . 例3 证明2lim 1x x x →∞--?1.证 ∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim 1x x x →∞-+?1. 二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3 设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )? A ,或f (x )→A (x →x 0). 研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域 (x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )?A |<ε,或 A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4 证明211lim 1x x x →--?2. 证 函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2. 例5 证明0lim x x →sin x ?sin x 0. 证 由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cos sin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得0lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4 设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ- (或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ). 由定义3和定义4可得下面的结论.定理2 0lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A . 例6 设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ). 解 x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而 0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1. 例7 设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ). 解 由于 0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ),故0lim x →f (x )不存在. 三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3 若lim f (x )存在,则必唯一.2.局部有界性定义5 在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时,|f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量.证 我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界.注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在. 3.局部保号性定理5 若0lim x x →f (x )?A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0 (f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0). 该定理通常称为保号性定理,在理论上有着较为重要的作用.推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4. 函数极限与数列极限的关系定理6 0lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞. 定理6 常被用于证明某些极限不存在. 例1 证明极限01limcos x x→不存在. 证 取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1. 又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于 lim n →∞cos 1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在. 课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。
高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
同济大学《高等数学》(第四版)1-6节 极限的运算法则

3
x→2
小结: 小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 + ⋯ + a n , 则有
x → x0
lim f ( x ) = a 0 ( lim x ) n + a1 ( lim x ) n −1 + ⋯ + a n
x → x0
n
x → x0
= a 0 x 0 + a1 x 0
n −1
+ ⋯ + a n = f ( x 0 ).
P( x) 2. 设 f ( x ) = , 且Q( x 0 ) ≠ 0, 则有 Q( x )
P ( x0 ) lim f ( x ) = = f ( x 0 ). = x → x0 lim Q ( x ) Q( x0 )
x → x0 x → x0
由无穷小与无穷大的关系,得 由无穷小与无穷大的关系 得
4x − 1 lim 2 = ∞. x →1 x + 2 x − 3
x −1 例3 求 lim 2 . x →1 x + 2 x − 3
2
0 解 x → 1时, 分子 , 分母的极限都是零 . ( 型) 0
先约去不为零的无穷小 因子 x − 1后再求极限 . 后再求极限
1 2 n 1+ 2 +⋯+ n lim ( 2 + 2 + ⋯ + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
sin x 例6 求 lim . x→∞ x
同济大学高等数学第七版1-3函数极限

如何用精确的数学数学语言刻划函数“无 限接近”.
f ( x ) A 表示 f ( x ) A 任意小; x X 表示x (不论它多么小), 总存在着正数 X ,使得 x 满足不等式 x X 时,所对应 的函数值 f ( x ) 都满足不等式
x x0
证明 lim4 x 1 9
x2
证 0, 由于 4 x 1 9 4 x 2 要使 4 x 1 9 解不等式, 解出 x 2 ( ) 只要 x 2 , 可取 4 4 当0 x 2 时, 有
4 x 1 9 ,
lim 4 x 1 9
x2
3. 左、右极限(单侧极限) 例如,
y 1 x y
y x2 1
1 x, x 0 设 f ( x) 2 x 1, x 0
lim f ( x ) 1.
x0
1
O
x
分x 0和x 0 两种情况分别讨论!
y
y x 1
x
lim f ( x) lim ( x 1) 1
x0
lim f ( x) lim ( x 1) 1
x 0 x 0
显然 f (0 ) f (0 ) , 所以 lim f ( x) 不存在 .
x2 x 1 1 求 f ( x) x 1 在 x = 1 处的左、右极限. 2 x 1 x 1
f ( x) A ,
那么常数 A 就叫函数 f ( x ) 当 x 时的极限,记作
lim f ( x ) A 或
同济大学高等数学第六版上第一章第五节 极限运算法则

3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)
高等数学-第一章-函数与极限-函数的极限-同济大学

经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,
且
lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o
证
设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,
则
lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,
但
lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )
有
lim
2x 2(x2 1)
1 x
同济高数第4章课件第三节

目
CONTENCT
录
• 引言 • 知识点一:极限的定义与性质 • 知识点二:连续函数的概念与性质 • 知识点三:导数的概念与性质 • 知识点四:微积分基本定理
01
引言
背景介绍
本节内容是同济大学高等数学教材第4章的第三节, 主题是导数的概念及其几何意义。
导数作为微积分的基本概念之一,是研究函数变化 率的重要工具。
极限的性质
唯一性
若 $lim_{x to x_0} f(x)$ 存在,则极限值唯一。
有界性
若 $lim_{x to x_0} f(x) = A$,则函数 $f(x)$ 在 $x_0$ 的去心邻域内有界。
局部保号性
若 $lim_{x to x_0} f(x) = A$ 且 $A > 0$,则存在 $x_0$ 的去心邻域,在该邻域内 $f(x) > 0$。
极限的计算方法
四则运算法则
若 $lim_{x to x_0} f(x) = A$ 和 $lim_{x to x_0} g(x) = B$,则 $lim_{x to x_0} [f(x) pm g(x)] = A pm B$。
等价无穷小替换
在求极限过程中,当两个无穷小量在一定条件下可以相互替换时,可以使用等价无穷小替换 简化计算。例如,当 $x to 0$ 时,$sin x approx x$,$tan x approx x$ 等。
知识点二:连续函数的概念与性质
连续函数的定义
函数在某点连续是指,当自变 量在该点处接近时,因变量的 极限值等于函数值。
具体来说,如果函数在某点的 极限值等于该点的函数值,则 称函数在该点连续。
数学表达式为:$lim_{{x to a}} f(x) = f(a)$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 时 授 课 计 划课次序号:03一、课 题:§1.3函数的极限 二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–31(2),2(3),3,6 八、授课记录:九、授课效果分析:第三节函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限.与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A .若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A .例1证明limx ?0.证0-∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx 0.例2证明lim 100xx →-∞=.证∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0.定义2若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A .为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A .例3证明2lim1x x x →∞--?1.证∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim1x x x →∞-+?1.二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U o(x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )?A ,或f (x )→A (x →x 0).研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域(x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式|f (x )?A |<ε,或A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4证明211lim 1x x x →--?2.证函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2.例5证明0lim x x →sin x ?sin x 0.证由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cossin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ-o(或x ∈0(,)U x δ+o)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ).由定义3和定义4可得下面的结论.定理20lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A .例6设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ).解x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1.例7设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ).解由于0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ), 故0lim x →f (x )不存在.三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3若lim f (x )存在,则必唯一.2.局部有界性定义5在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U o(x 0)(或|x |>X )时, |f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4若lim f (x )存在,则f (x )是该极限过程中的有界变量. 证我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U o(x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界. 注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在.3.局部保号性定理5若0lim x x →f (x )?A ,A >0(A <0),则∃U o (x 0),当x ∈U o(x 0)时,f (x )>0(f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0).该定理通常称为保号性定理,在理论上有着较为重要的作用. 推论在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4.函数极限与数列极限的关系定理60lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞.定理6常被用于证明某些极限不存在. 例1证明极限01limcosx x→不存在. 证取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1.又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于lim n →∞cos1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在.课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。