电力系统-电压稳定性分析ppt
电力系统分析第十七章《电力系统暂态稳定性》课件

右边展开
(tn
t
)
(tn
)
(tn
)t
1 2
(tn
)t
2
左边展开
(1)+(2
(tn )得到
t)
(tn
)
(tn
)t
1 2
(tn
)t
2
tn-1 tn tn+1
t
(1) (2)
(tn t) (tn ) (tn ) (tn t) (tn )t 2
(3)
而 所以
(tn
)
N
TJ
Pa
(n)
( n 1)
(PT
PIII )d
减速面积
Aedfg,转子 减小的动能
转子增加的动能 = 转子减小的动能
即
(P c 0 T
PII )d
max c
(PIII
PT )d
等面积定则:当加速面积和减速面积大小相等时,转子动能增量为零, 发电机重新恢复到同步速度。
保持暂态稳定的条件:最大可能的减速面积大于加速面积。
5. 对发电机等值电路用E 和 X d表示。(称之为经典模型,见5-4节)
( i. Tf 较大,f不衰减; ii. 强行励磁 )
17-2 简单电力系统暂态稳定的分析计算
假设简单电力系统在输电线路始端发生短路。
一、各种运行情况下的功率特性
系统正常运行
总电抗为
XI
X d
X T1
1 2
XL
X T2
确定短路前系统电压V0与Xd后的电势E0
二、基本假设及简化
1.
2. 只研究暂态过程的起始阶段,不考虑原动机调速器的作用;( PT=constant ) 3. 忽略定子电流的非周期分量;(PE可以突变。 i. Ta 很小,衰减快; ii. M平均=0 ) 4. 不对称故障时,不计零序和负序电流对转子运动的影响;
电分第19章提高电力系统稳定性的措施PPT课件

尽可能提高电力系统的功率极限——采用高电压等级输电线路
PXGE X qV TXLsinPmsin
XG
XG % 100
SB SGN
( p.u.)
XT
VS % 100
SB STN
( p.u.)
T-1 V1 G
E q jX d jX T1
Pm/MW
900 800 700
XL
X
L()
SB VB2
X
L()
尽可能减小发电机相对运动的振荡幅度——发电机电气制动
P
P
G
h
P0
P0
投
控制保护
Rb
切 tb
0 c
cr
0 c b m ax
P
无电气制动 暂态失稳
投电气制动
第一摇摆稳定
P0
hh0
多用于水电厂,以水为制动电阻
切电气制动 第二摇摆稳定
投切开关可用晶闸管,快速控制
0 c b m ax
m in
cr
提高电力系统稳定性的措施—提高暂态稳定性的措施
尽可能减小发电机相对运动的振荡幅度——快关汽门
提高和稳定系统电压 输电线路并联电抗补偿 采用高电压等级输电线路 串联电容器补偿/设置开关站; 减小变压器电抗 设置中继同步调相机;
抑制自发振荡的发生——选择合适
的励磁调节装置和整定参数 多参数自动励磁调节器 PSS、FACTS,HVDC
尽可能减小发电机相对运动的振荡 幅度——减小不平衡功率,减小转子
相间电容耦合——潜供电流
提高电力系统稳定性的措施—提高暂态稳定性的措施
尽可能减小发电机相对运动的振荡幅度——变压器中性点经小电阻/小电抗接地
仅对于不对称接地故障有效,Rg取值,4%STN
电力系统的稳定性

小扰动下系统的响应过程分析 单机无穷大系统的静态稳定判据
小扰动下系统的响应过程分析
以如下简单电力系统为分析模型
发电机的功角特性:
小扰动下系统的响应过程分析
稳定运行时,机组输
出电磁功率与原动机
输入功率必平衡(忽
略机组的功率损耗)
,即
;
对应一定的原动机功 率PT,由功角特性曲 线,得两个 的功率平衡点:a和b 。
强行励磁,减少发电机电动势的衰减。 降低决定转子运动的不平衡转矩:
快速汽门控制(故障时迅速关闭汽门),使原 动机功率快速配合电磁功率的变化----依赖调 速器性能的完善;
电气制动,即故障后在机端投入附加电阻负荷 (消耗多余的有功),降低转矩的不平衡。
连锁切机---严重时应用,虽丧失电源,但增大 了减速面积。
星形网络转化 为三角形网络
进而,得故障时 与无穷大系统间的电抗为:
b、扰动后单机无穷大系统等值电路
发电机电动势和无限大系统之间的联系电抗变为:
x
( xd
xT
1
)
(
xL 2
xT 2 )
( xd
xT
1
)(
xL 2
x
xT 2 )
这个电抗总是大于正常运行时的电抗;
x 如果是三相短路,则 为零,联系电抗为无限
电力系统的稳定性---功角特性
简单电力系统的等值电路
电力系统的稳定性---功角特性
机组输出的电磁功率
由 P UI cos
发电机向系统输出的电磁功率:
电力系统的稳定性---功角特性
功角的相关概念
勇于开始,才能找到成 功的路
➢发电机向受端系统输送的功率P与发电机电势超前受端母线 电压的角度δ密切相关,故称δ为“功角”或“功率角”。 ➢传输功率与功角δ的关系,称 “功角特性”或“功率特性” 。 ➢当E和U一定时,P仅是E与U间相角差δ的函数,将这一关系 绘成曲线,称为功角特性曲线。 ➢功角δ除了表征系统的电磁关系外,还表明并列运行的各发
电力系统中的电压稳定性分析

电力系统中的电压稳定性分析电力系统是由发电机、变电所、输电线路、负荷等组成的一个复杂的能源系统。
在电力系统中,保持稳定的电压是非常重要的。
因为电压的不稳定将会导致电力设备的损坏,甚至失去供电,引发重大事故。
因此,电压稳定性分析是电力系统调度和运行的重要问题之一。
一、电压稳定性的基本概念电压稳定性指电力系统的电压波动或变化的程度,通常以电压的净波动指数(NSI)描述。
NSI是电压波动的数量与系统额定电压的比值。
当NSI大于5%时,说明电网电压变化不稳定。
二、电压稳定性的原因电力系统的电压稳定性是由许多因素决定的,其中最主要的因素是电力负荷,其次是输电线路和发电机。
1. 电力负荷:电力系统中的负荷是不断变化的。
当负荷超过一定范围时,电压将出现波动甚至暂时停电,造成电网不稳定。
2. 输电线路:输电线路是电力系统中电能输送的重要部分。
输电线路的阻抗会引起电压波动。
3. 发电机:发电机的负载变化和电压调节引起的电压波动是影响电力系统电压稳定性的两个重要因素。
三、电压稳定性的分析方法电压稳定性的分析方法主要包括静态分析和动态分析两种。
1. 静态分析:通过计算得出电力系统的状态,对电网的电压稳定性进行分析。
静态分析方法主要有潮流计算、潮流灵敏度分析、潮流约束方法等。
2. 动态分析:电压稳定性的动态分析是指对电力系统的电压-功角特性进行分析,寻找系统中临界支路或节点,以及电气机械暂态过程的动态稳定性。
动态分析方法主要有转子运动方程、应用李雅普诺夫定理、频域分析等。
四、提高电压稳定性的措施通过对电力系统的电压稳定性分析,可以提出一些措施来提高电网的稳定性。
1. 选用适当的控制模式和调节参数。
2. 加强智能化的电力监控系统,及时监测电网的各种参数。
3. 增加电容器补偿以提高输电线路的功率因数,减少系统的阻抗。
4. 优化电网结构,调整负荷分布,并加强对发电机的调节。
综上所述,电力系统中的电压稳定性是保证电力系统安全稳定运行的关键之一。
6电力系统稳定性分析

e: PP在该大扰动下是暂态不稳定。
TPEP,P1cIe 0 如 切 除 故 障II较 晚I, II 在 切 除 故 障 时 ,
P II 0
转
子
加
速
已
比
较
严
重
,
运
行
点
沿
PI
I
,
I
如
1, 0 成
果 立
使 ,
得 则
到 c将达越h 点 m过ax时h 点,对 应c
(导数)大于0,即:
整步功率系数
Kp
PMP0100% P0
(7-2)
整步功率系数大小可表示系统静态稳定的程度。
整步功率系数值越小,静态稳定的程度越低。整步
功率系数等于0,则是稳定与不稳定的分界点,即静
态稳定极限点。在简单系统中静态稳定极限点所对
应的功角就是功角特性的最大功率所对应的功角。
• 静态稳定储备系数
PE
00
静态稳定性。
PUGm PEqm PEqm
PU G m
PUGm PEqm PEqm
0
c
b a
PEqm 900
PUGmPEqmPEqm 180 0
E
q
P0
PE
00
• 无自动励磁调节器时, 稳定极限由SEq=0确定, 为图中的a点。
• 安装电压偏差比例式励 磁调节器,如果Ke
(偏差放电倍数)选择
第一节 概述
一、电力系统稳定性的定义
给定运行条件下的电力系统,在受到扰动后,如果 能重新恢复到原来运行平衡状态或新的运行平衡状 态,并且系统中的多数运行参数可维持在一定的允 许范围内,使整个系统能稳定运行,即称电力系统 是稳定的。
电力系统运行稳定性的基本概念

判据:dMe/ds>0
实际: s=5 %左右
注意: IM失稳过程中 (n↓、s↑ → s=1、n=0 )
吸收大量Q——可能导致系统电压失稳!
15-6 电压稳定性的概念
定义:系统维持各节点电压在允许范围内的能力
1、单端供电系统的传输功率特性:
V
E2
1
zs zLD
TJ N
J2N SN
2 J2N SN
2
2H
2、时间意义:
d J dt Ma
MB MN SN / N
TJ N
d * dt
M a*
MT* M / M N 1 , Me 0
1
TJ N
0 d*
M a*
dt
0
V
ψ
Lqiq
α
δI
d轴 Ldid
δ
ψfd
b相轴线
c相轴线
15-2 发电机转子相对位置和电势相位——功角的概念 3、δ与(同步/功角)稳定性的关系
Eq
fd
G
v
N
V
G
正常稳定 运行状态
P P G.m
G.e
0 const
G N
扰动
过渡过程
P P G.m
G.e
G
t
——在c点附近若干次震荡后→ c
t
c点:SEPNew → PT = Pe 、ωG=ωN 、δ= δc
15-4 暂态稳定的初步概念 2、暂态稳定过程分析
(2) 不稳定情形:
运行点 过c后: c → c’, PT < Pe,—— c’ :△ω >0 → δ ↑——越过c’ ——PT > Pe → ωG ↑ 、δ ↑ ↑ → Pe ↓ ↓ → ωG ↑ ↑ →----- → 运行点“ 一去不复返” !
电力系统-第9章

根据研究的时间范畴,将电压稳定分为:暂态电压稳 定、中期电压稳定和长期电压稳定。 暂态电压稳定的时间范围为0~10s,主要研究感应电 动机和HVDC的快速负荷恢复特性所引起的电压失稳, 特别是短路后电动机由于加速引起的失稳或由于网络 弱联系引起的异步电机失步的电压稳定问题。 中期电压稳定(又称扰动后或暂态后电压稳定)的时 间范畴为1~5min,包括OLTC、电压调节器及发电 机最大电流限制的作用。 长期电压稳定的时间范畴为20~30min,其主要相关 的因素为输电线过负荷时间极限、负荷恢复特性的作 用、各种控制措施(如甩负荷等)等。
TJ 为归算到功率基准值S B的发电机组的惯性时间常数(s); T 为时间(s);
当 N 时
1,则M P 当 N 时M P PT Pe
d 2 P 2 N dt TJ
不同的形式,如 当 (rad )、t ( s)、TJ ( s)时
d , dt d d 2 dt dt 2
得转子运动机械转矩方程:
d d 2 J J J M M T Me 2 dt dt 1 2
2、 同步发电机组的基本方程式(用电气量表示的 发电机组运动方程) p 发电机转 i 机械角度→电角度 p 子轴线 电角度θ 电角速度ω 极对数p
V1 G
V1
T1
L
T2
V2
jX d
jX T 1
jX L jX L
P+jQ jX T 2
I
V1
V2
功角特性: P V1V2 sin 12 X
其中:V1、V2为送端和受端发电机电动势 1 X X d XT1 X L XT 2 2 12为V1与V2间的相角差
电力系统稳态分析(第一章)

第一节 电力系统的概念和组成
全国联网势在必行
西线:西北与川渝以直流方式相联 北部和中部三纵: 中线:华北与华中以直流背靠背相联
南部和中部:
东线:山东与华东以直流背靠背相联 提高水电利用容量,减少弃水 湖南衡阳到广东韶关500KV交直流输电 三峡到广东的远距离直流输电
第一节 电力系统的概念和组成
近年来停电事故频发
8.14美加大停电 8.28伦敦大停电 9.1悉尼和马来西亚大停电 9.28意大利大停电
频率的抖动会造成次品堆积如山,大停电造成的灾难不 压于一次强烈的地震
近年来面临严重缺电
去年缺电3500万KW,今年缺电2500万KW。电力建设滞后 于电力需求增长,电力供应总量不足,是造成电力供应逐 步紧张的根本原因。
源 三 流量: 14300m3/s
峡 可装机: 2500万kw
计划装机:70*26=1820万kw,已投980
第二节 电能变换和电源构成
三 峡 电 站
第二节 电能变换和电源构成
三 峡 电 站
第二节 电能变换和电源构成
三 峡 电 站
第二节 电能变换和电源构成
总投资603.3亿元、总工期12 年两个月、装机容量1260万千瓦的 中国第二大水站——溪洛渡水电站, 已于今春正式开工
第二节 电能变换和电源构成
三、火力发电
第二节 电能变换和电源构成
三、火力发电
第二节 电能变换和电源构成
三、火力发电
第二节 电能变换和电源构成
三、火力发电
第二节 电能变换和电源构成
四、水力发电
水 冲击水轮机旋转 带动发电机发电