一次函数训练题(提高作业)

合集下载

初二数学期末复习优选作业——一次函数

初二数学期末复习优选作业——一次函数

初二数学期末复习优选作业——一次函数一.选择题(共10小题)1.下列关系式中,y 不是x 的函数的是( ) A .4y x =B .265y x =+C .||y x =D .12y x=2.下列式子中,表示y 是x 的正比例函数的是( ) A .y x =B .1y x =+C .2y x =D .4y x=3.已知函数(3)2y m x =++是一次函数,则m 的取值范围是( ) A .3m ≠-B .1m ≠C .0m ≠D .m 为任意实数4.已知点1(3,)A y -,2(1,)B y -都在直线2(1)y m x m =++上,则1y ,2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .大小不确定5.一次函数(0)y kx b k =+≠的图象如图,则下列结论正确的是( )A .2k =-B .3k =C .2b =-D .3b =6.一次函数23y x =-+在平面直角坐标系内的大致图象是( )A .B .C .D .7.若关于x 的方程40x b -=的解是2x =-,则直线4y x b =-一定经过点( ) A .(2,0)B .(0,2)-C .(2,0)-D .(0,2)8.一次函数5(0)y kx k =+≠的图象与正比例函数(0)y mx m =≠的图象都经过点(3,2)-,则方程组5y kx y mx =+⎧⎨=⎩的解为( ) A .32x y =⎧⎨=⎩B .32x y =-⎧⎨=-⎩C .23x y =⎧⎨=-⎩D .32x y =-⎧⎨=⎩9.一次函数y kx b =+的图象如图所示,那么不等式0kx b +>的解集是( )A .2x >-B .2x <-C .1x >D .1x <10.为预防新冠肺炎,某校定期对教室进行消毒水消毒,测出药物喷洒后每立方米空气中的含药量()y mg 和时间()x min 的数据如表:时间()x min 2 4 6 8 含药量()y mg16141210则下列叙述错误的是( )A .时间为14min 时,室内每立方米空气中的含药量为4mgB .在一定范围内,时间越长,室内每立方米空气中的含药量越小C .挥发时间每增加2min ,室内每立方米空气中的含药量减少2mgD .室内每立方米空气中的含药量是自变量 二.填空题(共9小题)11.函数1y x =-自变量取值范围为 ,函数的最小值为 .12.某市出租车白天的收费起步价为6元,即路程不超过3千米时收费6元,超过部分每千米收费1.1元,如果乘客白天乘坐出租车的路程为(3)x x >千米,乘车费为y 元,那么y 与x 之间的关系为 . 13.若||2(3)5k y k x -=-+是一次函数,则k = .14.已知y 关于x 的函数2(2)4y m x m =++-是正比例函数,则m 的值是 . 15.已知直线y kx b =+,如果5k b +=-,5kb =,那么该直线不经过第 象限. 16.若一次函数y ax b =+的图象过点(2,1)A ,则1ax b +=的解是x = .17.一个弹簧不挂重物时长10cm ,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg 的物体后,弹簧伸长3cm ,则弹簧总长y (单位:)cm 关于所挂重物x (单位:)kg 的函数关系式为 (不需要写出自变量取值范围)18.若方程组23(31)2y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第 象限.19.如图,一次函数y kx bB-,下列说法:①y随x的=+的图象与坐标轴的交点坐标分别为(0,2)A,(3,0)增大而减小;②2kx bx=;④关于x的不等式0x<-.其+<的解集3 b=;③关于x的方程0kx b+=的解为2中说法正确的有(填写序号).三.解答题(共13小题)20.已知y与2y=.x-成正比例,且3x=时,2(1)求y与x之间的函数关系式;(2)当点(,4)A a在此函数图象上,求a的值.21.某企业生产并销售某种产品,整理出该商品在第(190)x x天的售价y与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(100)x-件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润.22.如图中的折线ABC表示某汽车的耗油量y(单位:/)km h之间的函数关系L km与速度x(单位:/)(30120)x,已知线段BC表示的函数关系中,该汽车的速度每增加1/L km.km h,耗油量增加0.002/(1)求当速度为50/km h时,汽车的耗油量;(2)速度是多少时,该汽车的耗油量最低?最低是多少?23.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,它们离甲地的路程()x h间的函数关系y km与客车行驶时间()如图,下列信息:(1)求出租车和客车的速度分别为多少?(2)经过多少小时,两车相遇?并求出相遇时,出租车离甲地的路程是多少?24.疫苗接种对新冠疫情防控至关重要.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务.乙地80天完成接种任务,甲、乙两地的接种人数y (万人)与接种所用时间x (天)之间的关系如图所示. (1)求乙地每天接种的人数及a 的值;(2)当甲地接种速度放缓后,求y 关于x 的函数解析式, 并写出自变量x 的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.25.如图,直线1:5l y x =+交y 轴,x 轴于A ,B 两点,直线21:12l y x =--交y 轴,x 轴于C ,D 两点,直线1l ,2l 相交于P 点.(1)方程组5112y x y x =+⎧⎪⎨=--⎪⎩的解是 ; (2)求直线1l ,2l 与x 轴围成的三角形面积;(3)过P 点的直线把PAC ∆面积两等分,直接写出这条直线的解析式.26.如图,直线y kx b =+经过点(5,0)A -,(1,4)B -. (1)求点D 的坐标;(2)求直线:24CE y x =--与直线AB 及y 轴围成图形的面积; (3)根据图象,直接写出关于x 的不等式24kx b x +>--的解集.27.如图,已知直线:l y ax b =+过点(2,0)A -,(4,3)D . (1)求直线l 的解析式;(2)若直线4y x =-+与x 轴交于点B ,且与直线l 交于点C . ①求ABC ∆的面积;②在直线l 上是否存在点P ,使ABP ∆的面积是ABC ∆面积的2倍,如果存在,求出点P 的坐标;如果不存在,请说明理由.28.如图,已知直线1l 经过点(5,6),交x 轴于点(3,0)A -,直线2:3l y x =交直线1l 于点B . (1)求直线1l 的函数表达式和点B 的坐标; (2)求AOB ∆的面积;(3)在x 轴上是否存在点C ,使得ABC ∆是直角三角形?若存在,求出点C 的坐标:若不存在,请说明理由.29.如图,已知函数1y x =+的图象与y 轴交于点A ,一次函数y kx b =+的图象经过点(0,1)B -,与x 轴以及1y x =+的图象分别交于点C 、D .(1)若点D 的横坐标为1,求四边形AOCD 的面积;(2)若点D 的横坐标为1,在x 轴上是否存在点P ,使得以点P ,C ,D 为顶点的三角形是直角三角形?若存在求出点P 的坐标;若不存在,请说明理由.30.定义:在平面直角坐标系中,对于任意两点1(A x ,1)y ,2(B x ,2)y ,如果点(,)M x y 满足1212,22x x y y x y --==,那么称点M 是点A 、B 的“双减点”. 例如:(4,5)A -,(6,1)B -、当点(,)T x y 满足465(1)5,322x y ----==-==,则称点(5,3)M -是点A 、B 的“双减点”.(1)写出点(1,3)A -,(1,4)B -的“双减点” C 的坐标;(2)点(6,4)E -,点4(,4)3F m m --,点(,)M x y 是点E 、F 的“双减点”.求y 与x 之间的函数关系式.31.大家在学完勾股定理的证明后发现运用“同一图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高BD h =,M 是底边BC 上的任意一点,M 到腰AB 的距离1ME h =,M 到腰AC 的距离2MF h =. (1)请你结合图形1来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你在图2中画出图形,并直接写出结论不必证明;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是2,求点M 的坐标.32.【探索发现】如图1,等腰直角三角形ABC 中,90ACB ∠=︒,CB CA =,直线DE 经过点C ,过A 作AD DE ⊥于点D .过B 作BE DE ⊥于点E ,则BEC CDA ∆≅∆,我们称这种全等模型为“k 型全等”.(不需要证明)【迁移应用】已知:直线3(0)y kx k =+≠的图象与x 轴、y 轴分别交于A 、B 两点.(1)如图2.当32k =-时,在第一象限构造等腰直角ABE ∆,90ABE ∠=︒;①直接写出OA = ,OB = ; ②求点E 的坐标;(2)如图3,当k 的取值变化,点A 随之在x 轴负半轴上运动时,在y 轴左侧过点B 作BN AB ⊥,并且BN AB =,连接ON ,问OBN ∆的面积是否为定值,请说明理由; (3)【拓展应用】如图4,当2k =-时,直线:2l y =-与y 轴交于点D ,点(,2)P n -、Q 分别是直线l 和直线AB 上的动点,点C 在x 轴上的坐标为(3,0),当PQC ∆是以CQ 为斜边的等腰直角三角形时,求点Q 的坐标.答案与解析一.选择题(共10小题)1.解:A 、4y x =,对于自变量x 的每一个值,因变量y 都有唯一的值与它对应,所以y 是x 的函数,故A 不符合题意;B 、265y x =+,对于自变量x 的每一个值,因变量y 都有唯一的值与它对应,所以y 是x 的函数,故B 不符合题意;C 、||y x =,对于自变量x 的每一个值,因变量不是y 都有唯一的值与它对应,所以y 不是x 的函数,故C符合题意;D 、12y x=,对于自变量x 的每一个值,因变量y 都有唯一的值与它对应,所以y 是x 的函数,故D 不符合题意; 故选:C .2.解:A 、y x =,是正比例函数,故A 符合题意;B 、1y x =+,是一次函数,但不是正比例函数,故B 不符合题意;C 、2y x =,是二次函数,故C 不符合题意;D 、4y x=,是反比例函数,故D 不符合题意;故选:A . 3.解:由题意得: 30m +≠, 3m ∴≠-,故选:A . 4.解:20m , 210k m ∴=+>, y ∴随x 的增大而增大.又点1(3,)A y -,2(1,)B y -都在直线2(1)y m x m =++上,且31-<-, 12y y ∴<.故选:B .5.解:由函数图象可知函数图象过点(2,0)-,(0,3), ∴203k b b -+=⎧⎨=⎩,解得323k b ⎧=⎪⎨⎪=⎩.故选:D .6.解:在一次函数23y x =-+中,20k =-<,30b =>,∴一次函数23y x =-+的图象经过第一、二、四象限,故选:C .7.解:由方程可知:当2x =-时,40x b -=,即当2x =-,0y =,∴直线4y x b =-的图象一定经过点(2,0)-.故选:C .8.解:一次函数5(0)y kx k =+≠的图象与正比例函数(0)y mx m =≠的图象都经过点(3,2)-,∴方程组5y kx y mx=+⎧⎨=⎩的解为32x y =-⎧⎨=⎩,故选:D .9.解:根据图象可知,不等式0kx b +<的解集是2x >-, 故选:A .10.解:根据表格数据可以得出两个变量的关系式为18y x =-+,A 、当14x min =时,14184y mg =-+=,故选项不符合题意;B 、在一定范围内,燃烧时间越长,室内每立方米空气中的含药量越小,故选项不符合题意;C 、挥发时间每增加2min ,室内每立方米空气中的含药量减少2mg ,故选项不符合题意;D 、因为室内每立方米空气中的含药量随时间的变化而变化,所以时间是自变量,每立方米空气中的含药量是因变量,故选项符合题意. 故选:D .二.填空题(共9小题) 11.解:由题意得:10x -, 解得:1x ,10,∴函数的最小值为0,故答案为:1x ,0.12.解:依据题意得:6 1.1(3) 1.1 2.7y x x =+-=+, 故答案为: 1.1 2.7y x =+. 13.解:||2(3)5k y k x -=-+是一次函数,||21k ∴-=,30k -≠, 3k ∴=-,故答案为:3-.14.解:根据题意得:20m +≠且240m -=, 解得:2m =. 故答案为:2. 15.解:50kb =>, k ∴、b 同号, 5k b +=-, k ∴、b 均为负数,y kx b ∴=+的图象经过第二、三、四象限,不经过第一象限,故答案为:一.16.解:一次函数y ax b =+的图象过点(2,1)A ,∴方程1ax b +=的解是2x =,故答案为:2.17.解:弹簧总长y (单位:)cm 关于所挂重物x (单位:)kg 的函数关系式为310y x =+, 故答案为:310y x =+18.解:方程组23(31)2y kx y k x =-⎧⎨=-+⎩,23(31)2kx k x ∴-=-+, (1)5k x ∴-=-,方程组23(31)2y kx y k x =-⎧⎨=-+⎩无解,10k ∴-=, 1k ∴=,2y kx ∴=-图象经过第一、三、四象限,不经过第二象限,故答案为:二.19.解:①如图所示:y 随x 的增大而增大,故说法错误;②由于一次函数y kx b =+的图象与y 轴交点是(0,2),所以2b =,故说法正确; ③由于一次函数y kx b =+的图象与x 轴的交点坐标是(3,0)-,所以关于x 的方程0kx b +=的解为3x =-,故说法错误;④如图所示:关于x 的不等式0kx b +<的解集3x <-,故说法正确. 综上所述,说法正确的结论是:②④.故答案是:②④.三.解答题(共13小题)20.解:(1)y 与2x - 成正比例,(2)y k x ∴=-.把3x =时,2y =代入得:2(32)k =-.2k ∴=.y ∴与x 之间的函数关系式为:24y x =-.(2)点A (,4)a 在此函数图象上,424a ∴=-.解得:4a =.a ∴的值为4.21.解:(1)当050x 时,设y 与x 的解析式为:40y kx =+,则 504090k +=,解得1k =,∴当050x 时,y 与x 的解析式为:40y x =+,∴售价y 与x 之间的函数关系式为:40(050)90(50)x x y x +⎧=⎨⎩; (2)设该商品在销售过程中的利润为w ,当050x 时,22(4030)(100)901000(45)3025w x x x x x =+--=-++=--+, 10a =-<且050x ,∴当45x =时,w 取最大值,最大值为325元;当5090x 时,(9030)(100)606000w x x =--=-+,600-<,w ∴随x 的增大而减小,∴当50x =时,该商品在销售过程中的利润最大,最大值为:(9030)(10050)3000-⨯-=(元). 30253000>,45x ∴=时,w 增大,最大值为3025元.答:第45天时,该商品在销售过程中的利润最大,最大利润为3025元.22.解:(1)设AB 的解析式为:y kx b =+,把(30,0.15)和(60,0.12)代入y kx b =+中得:300.15600.12k b k b +=⎧⎨+=⎩, 解得110000.18k b ⎧=-⎪⎨⎪=⎩,AB ∴段一次函数的解析式为:0.0010.18y x =-+,当50x =时,0.001500.180.13/y L km =-⨯+=,∴当速度为50/km h 时,汽车的耗油量0.13/L km ;(2)解:设BC 的解析式为:y mx n =+,线段BC 表示的函数关系中,该汽车的速度每增加1/km h ,耗油量增加0.002/L km ,1209030()km -=, ∴速度为120/km h 时,汽车的耗油量为0.12300.0020.18(/)L km +⨯= 把(90,0.12)和(120,0.18)代入y mx n =+中得:900.121000.14k b k b +=⎧⎨+=⎩, 解得0.0020.06k b =⎧⎨=-⎩,, BC ∴段一次函数的解析式为:0.0020.06y x =-,根据题意得0.0010.180.0020.06y x y x =-+⎧⎨=-⎩,解得800.1x y =⎧⎨=⎩, 答:速度是80/km h 时,该汽车的耗油量最低,最低是0.1/L km .23.解:(1)由图象可知,出租车的速度为6006100÷=(千米/时),客车的速度为6001060÷=(千米/时),答:出租车的速度为100千米/小时,客车的速度为60千米/小时;(2)设x 小时两车相遇,根据题意得:10060600x x +=,解得 3.75x =,此时出租车离甲地路程为600100 3.75225-⨯=(千米).答:经过多3.75小时,两车相遇,此时出租车离甲地的路程是225千米.24.解:(1)乙地接种速度为40800.5÷=(万人/天),0.5255a =-,解得40a =;(2)设y kx b =+,将(40,25),(100,40)代入解析式得:402510040k b k b +=⎧⎨+=⎩, 解得1415k b ⎧=⎪⎨⎪=⎩,y ∴关于x 的函数解析式115(40100)4y x x =+; (3)把80x =代入1154y x =+得18015354y =⨯+=, 40355-=(万人), ∴当乙地完成接种任务时,甲地未接种疫苗的人数为5万人.25.解:(1)直线1:5l y x =+和直线21:12l y x =--都经过点(4,1)-, ∴两条直线的交点(4,1)P -,∴方程组5112y x y x =+⎧⎪⎨=--⎪⎩的解是41x y =-⎧⎨=⎩,故答案为:41x y =-⎧⎨=⎩; (2)把0y =分别代入5y x =+和112y x =--, 解得5x =-和2x =-,(5,0)B ∴-,(2,0)D -,(4,1)P -,∴直线1l ,2l 与x 轴围成的三角形面积为:13(25)122⨯-+⨯=; (3)把0x =分别代入5y x =+和112y x =--, 解得5y =和1y =-,(0,5)A ∴,(0,1)C -,AC ∴的中点为(0,2),设过P 点且把PAC ∆面积两等分的直线的解析式为y kx b =+,把点(4,1)-,(0,2)代入得412k b b -+=⎧⎨=⎩, 解得142k b ⎧=⎪⎨⎪=⎩,∴这条直线的解析式为124y x =+. 26.解:(1)直线y kx b =+经过点(5,0)A -,(1,4)B -, ∴504k b k b -+=⎧⎨-+=⎩, 解得15k b =⎧⎨=⎩, 5y x ∴=+,当0x =时,5y =,∴点D 的坐标为(0,5);(2)若直线24y x =--与直线AB 相交于点C , ∴245y x y x =--⎧⎨=+⎩,解得32x y =-⎧⎨=⎩, 故点(3,2)C -,24y x =--与5y x =+分别交y 轴于点E 和点D , (0,5)D ∴,(0,4)E -,∴直线:24CE y x =--与直线AB 及y 轴围成图形的面积为:1127||93222x DE C ⋅=⨯⨯=; (3)根据图象可得3x >-.27.解:(1)由题意得:2043a b a b -+=⎧⎨+=⎩,解得121a b ⎧=⎪⎨⎪=⎩, ∴直线l 的解析式为112y x =+; (2)①112y x =+,令0y =,则2x =-, (2,0)A ∴-,直线4y x =-+与x 轴交于点B , (4,0)B ∴,解1124y x y x ⎧=+⎪⎨⎪=-+⎩得22x y =⎧⎨=⎩, (2,2)C ∴,1(42)262ABC S ∆∴=⨯+⨯=; ②设1(,1)2P m m +, 由题意得,116|1|2622ABP S m ∆=⨯⨯+=⨯, 整理得1|1|42m +=, ∴1142m +=或1142m +=-, 解得6m =或10m =-,(6,4)P ∴或(10,4)--.28.(1)解:设直线1l 的函数表达式为(0)y kx b k =+≠.图象经过点(5,6),(3,0)A -,∴5630k b k b +=⎧⎨-+=⎩,解得3494k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线1l 的函数表达式为3944y x =+. 联立39443y x y x⎧=+⎪⎨⎪=⎩,解得:13x y =⎧⎨=⎩, ∴点B 的坐标为(1,3);(2)解:(3,0)A -,(1,3)B , ∴193322AOB S ∆=⨯⨯=; (3)解:点C 在x 轴上, 90BAC ∴∠≠︒,∴当ABC ∆是直角三角形时,需分90ACB ∠=︒和90ABC ∠=︒两种情况. ①当90ACB ∠=︒时,点C 在图中1C 的位置: 点A 和点1C 均在x 轴上, 1BC x ∴⊥轴.(1,3)B ,1(1,0)C ∴;②当90ABC ∠=︒时,点C 在图中2C 的位置: 设2(,0)C m ,(0)m >(3,0)A -,(1,3)B ,1(1,0)C ,14AC ∴=,13BC =,121C C m =-,23AC m =+, ∴222211435AB AC BC =+=+=.在2Rt ABC ∆中,22222AC AB BC -=,在Rt △12BC C 中,2221122BC C C BC +=,∴22222112AC AB BC C C -=+,即2222(3)53(1)m m +-=+-, 解得134m =, ∴213(,0)4C . 综上可知,在x 轴上存在点C ,使得ABC ∆是直角三角形,点C 的坐标为(1,0)或13(,0)4. 29.解:(1)把D 坐标(1,)n 代入1y x =+中得:2n =,即(1,2)D ,把(0,1)B -与(1,2)D 代入y kx b =+中得:12b k b =-⎧⎨+=⎩, 解得:31k b =⎧⎨=-⎩, ∴直线BD 解析式为31y x =-, 对于直线1y x =+,令0y =,得到1x =-,即(1,0)E -;令0x =,得到1y =, 对于直线31y x =-,令0y =,得到13x =,即1(3C ,0), 则14152112326DEC AEO AOCD S S S ∆∆=-=⨯⨯-⨯⨯=四边形; (2)存在.如图,当90DPC ∠=︒时,(1,0)P .当90CDP ∠'=︒时,DPC ∆∽△P PD ', 2PD CP PP ∴=⋅',2223PP ∴=⨯', 6PP ∴'=,167OP OP PP ∴=+'=+=, (7,0)P ∴'.综上所述,满足条件的点P 的坐标为(1,0)或(7,0).30.解:(1)设C 的坐标为(,)C x y ,(,)C x y 是点(1,3)A -,(1,4)B -的“双减点”, 1112x --∴==-,34722y +==, 点C 坐标7(1,)2-; (2)点(,)M x y 是点(6,4)E -,点4(,4)3F m m --的“双减点”, ∴6244432m xm y -⎧=⎪⎪⎨-++⎪=⎪⎩, 消去m 得y 与x 之间的函数关系式为:443y x =-+. 31.(1)证明:连接AM ,由题意得1h ME =,2h MF =,h BD =, ABC ABM AMC S S S ∆∆∆=+,11122ABM S AB ME AB h ∆=⨯⨯=⨯⨯, 21122AMC S AC MF AC h ∆=⨯⨯=⨯⨯, 又1122ABC S AC BD AC h ∆=⨯⨯=⨯⨯,AB AC =, ∴12111222AC h AB h AC h ⨯⨯=⨯⨯+⨯⨯, 12h h h ∴+=.(2)解:如图所示: 12h h h -=.(3)解:在334y x =+中,令0x =得3y =;令0y =得4x =-, 所以(4,0)A -,(0,3)B 同理求得(1,0)C .225AB OA OB =+=,5AC =,所以AB AC =, 即ABC ∆为等腰三角形. ①当点M 在BC 边上时,由12h h h +=得:2y M OB +=,321y M =-=, 把它代入33y x =-+中求得:23x M =, 所以此时2(3M ,2). ②当点M 在CB 延长线上时,由12h h h -=得:2y M OB -=,325y M =+=,把它代入33y x =-+中求得:23x M =-, 所以此时2(3M -,5). ③当点M 在BC 的延长线上时,12h h =<,不存在;综上所述:点M 的坐标为2(3M ,2)或2(3-,4).32.解:(1)①若32k =-, 则直线3(0)y kx k =+≠为直线332y x =-+, 当0x =时,3y =, (0,3)B ∴,当0y =时,2x =, (2,0)A ∴,2OA ∴=,3OB =, 故答案为:2,3;②作ED OB⊥于D,90BDE AOB∴∠=∠=︒,2390∴∠+∠=︒,ABE∆是以B为直角顶点的等腰直角三角形,AB BE∴=,90ABE∠=︒,1290∴∠+∠=︒,13∴∠=∠,()BED ABO AAS∴∆≅∆,3DE OB∴==,2BD OA==,5OD OB BD∴=+=,∴点E的坐标为(3,5);(2)当k变化时,OBN∆的面积是定值,92OBNS∆=,理由如下:当k变化时,点A随之在x轴负半轴上运动时,0k∴>,过点N作NM OB⊥于M,90NMB AOB∴∠=∠=︒,1390∠+∠=︒,BN AB⊥,90ABN∴∠=︒,1290∴∠+∠=︒,23∴∠=∠,BN BA =,90NMB AOB ∠=∠=︒,()BMN AOB AAS ∴∆≅∆.3MN OB ∴==, ∴11933222OBN S OB MN ∆=⨯⋅=⨯⨯=, k ∴变化时,OBN ∆的面积是定值,92OBN S ∆=; (3)当3n <时,过点P 作PS x ⊥轴于S ,过点Q 作QT PS ⊥于T ,90CSP PTQ ∴∠=∠=︒,2390∠+∠=︒,90CPQ ∠=︒,1290∴∠+∠=︒,13∴∠=∠,PC PQ =,90CAP PTQ ∠=∠=︒,()PCS QPT AAS ∴∆≅∆.2QT PS ∴==,3PT SC n ==-,5ST n ∴=-,∴点Q 的坐标为(2,5)n n +-,2k =-,∴直线23y x =-+,将点Q 的坐标代入23y x =-+得,52(2)3n n -=-++, 解得:43n =,∴点Q 的坐标为1011(,)33-; 当3n >时,过点P 作PS x ⊥轴于S ,过点Q 作QT PS ⊥于T ,90CSP PTQ ∴∠=∠=︒,1390∠+∠=︒,90CPQ ∠=︒,1290∴∠+∠=︒,23∴∠=∠,PC PQ =,90CAP PTQ ∠=∠=︒,()PCS QPT AAS ∴∆≅∆.2QT PS ∴==,3PT SC n ==-,1ST n ∴=-,∴点Q 的坐标为(2,1)n n --,2k =-,∴直线23y x =-+,将点Q 的坐标代入23y x =-+得,12(2)3n n -=--+, 解得:6n =,∴点Q 的坐标为(4,5)-.综上,点Q 的坐标为1011(,)33-或(4,5)-.。

专题训练(五) 一次函数情景应用题的归类

专题训练(五) 一次函数情景应用题的归类

专题训练(五) 一次函数情景应用题的归类专题训练(五)一次函数情景应用题的归类►类型一与一次函数图象有关的行程、工作效率等情景题1.2019·辽阳甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4 min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图5-ZT-1所示.有下列结论:图5-ZT-1①A,B之间的距离为1200 m;②乙行走的速度是甲的1.5倍;③b=960;④a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④2.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备括租赁机器的费用和生产包装盒的费用)与包装盒个数x满足如图②所示的函数关系.根据图象回答下列问题:图5-ZT-3(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1,y2与x之间的函数表达式(不要求写自变量的取值范围);(4)如果你是决策者,你认为应该选择哪种方案更省钱?►类型三与一次函数相关的分段函数问题4.2019·新疆某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(时)后,到达离家y(千米)的地方,图5-ZT-4中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距________千米,小宇在活动中心的活动时间为________小时,他从活动中心返回家时,步行用了________小时;(2)求线段BC所表示的y(千米)与x(时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇能否在12:00前回到家,并说明理由.图5-ZT-45.某种铂金饰品在甲、乙两个商店销售.甲店标价为477元/克,按标价出售,不优惠;乙店标价为530元/克,但若买的铂金饰品质量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙两个商店购买该种铂金饰品所需的费用y(元)与质量x(克)之间的关系式;(2)李阿姨要买一条质量不少于4克但不超过10克的此种铂金饰品,到哪个商店购买较合算?►类型四与一次函数有关的表格信息题6.谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:收费方式月使用费(元)包时上网时间(时)超时费(元/分)A7 25 0.6B10 50 0.8设小明每月上网学习人工智能课程的时间为x 小时,方案A,B的收费金额分别为y A元,y B元.(1)当x≥50时,分别求出y A,y B与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?7.2019·宁夏为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2019户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m3) 32及其以下33 34 35 36 37户数(户) 20016182224210用户每月用水量(m3) 38 39 40 41 4243及其以上户数(户) 19010171210110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以下的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x之间的函数关系式;(3)某户家庭某月交水费80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米.详解详析1.[解析] D①当x=0时,y=1200,所以A,B之间的距离为1200 m,结论①正确;②乙的速度为1200÷(24-4)=60(m/min),甲的速度为1200÷12-60=40(m/min),60÷40=1.5,所以乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24-4-12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故选D.2.[全品导学号:47462276]解:(1)因为图象经过原点及点(6,360),所以设甲组加工零件的数量y与时间x之间的函数表达式为y=kx(k≠0),所以6k=360,解得k=60.故甲组加工零件的数量y与时间x之间的函数表达式为y =60x(0≤x≤6).(2)在未更换设备前乙组2小时加工100件,所以乙组的加工速度是每小时50件.因为乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍,所以更换设备后,乙组的工作速度是每小时加工50×2=100(件),a=100+100×(4.8-2.8)=300.即乙组加工零件的总量a的值为300.(3)①2.8小时时两人共加工60×2.8+50×2=268(件),所以加工300件的时间超过2.8小时.设加工了m小时,则100+100(m-2.8)+60m=300,解得m=3.②从3小时到4.8小时两人共加工60×(4.8-3)+100×(4.8-3)=288(件)<300件,从3小时到6小时两人共加工60×(6-3)+100×(4.8-3)=360(件)>300件,故再加工300件的时间超过4.8小时,小于6小时.设再经过n小时恰好装满第2箱,由题意列方程,得60n+100(4.8-3)=300,解得n=2.答:经过3小时恰好装满第1箱,再经过2小时恰好装满第2箱.3.解:(1)500÷100=5(元),所以方案一中每个包装盒的价格是5元.(2)根据函数的图象可以知道租赁机器的费用为20190元,生产一个包装盒的费用为(30000-20190)÷4000=2.5(元).(3)设①中的函数表达式为y1=k1x.因为图象经过点(100,500),所以500=100k1,解得k1=5,所以y1与x之间的函数表达式为y1=5x.设②中的函数表达式为y2=k2x+20190.因为图象经过点(4000,30000),所以4000k2+20190=30000,解得k2=2.5,所以y2与x之间的函数表达式为y2=2.5x +20190.(4)令5x=2.5x+20190,解得x=8000,所以当x=8000时,两种方案同样省钱;当x<8000时,选择方案一省钱;当x>8000时,选择方案二省钱.4.解:(1)因为点A的坐标为(1,22),点B 的坐标为(3,22),所以活动中心与小宇家相距22千米,小宇在活动中心的活动时间为3-1=2(时).(22-20)÷5=0.4(时).故答案为22,2,0.4.(2)根据题意得:y=22-5(x-3)=-5x+37.(3)小宇从活动中心返家所用时间为0.4+0.4=0.8(时).因为0.8<1,所以小宇12:00前能回到家.5.解:(1)y甲=477x (x ≥0);y 乙=⎩⎨⎧530x (0≤x ≤3),424x +318(x >3). (2)由y 甲=y 乙,得477x =424x +318,解得x =6,所以当x =6时,到甲、乙两个商店购买费用相同;当4≤x <6时,到甲商店购买较合算;当6<x ≤10时,到乙商店购买较合算.6.[全品导学号:47462277]解:(1)当x ≥50时,y A 与x 之间的函数关系式为:y A =7+(x -25)×0.6×60=36x -893;当x ≥50时,y B 与x 之间的函数关系式为: y B =10+(x -50)×0.8×60=48x -2390.(2)当x =60时,y A =36×60-893=1267,y B =48×60-2390=490,所以y A >y B .故选择B 方式上网学习合算.7.[解析] (1)根据统计表可得出月均用水量不超过38 m 3的居民户数占2019户的70%,由此即可得出结论;(2)分0≤x ≤38及x >38两种情况,找出y 与x 之间的函数关系式;(3)求出当x =38时,y 的值,与80.9比较后可得出该家庭当月用水量超出38 m 3,令y =2.5x -26.6=80.9求出x 的值即可.解:(1)200+160+180+220+240+210+190=1400(户),2019×70%=1400(户),所以基本用水量最低应确定为38 m 3.(2)当0≤x ≤38时,y =1.8x ;当x >38时,y =1.8×38+2.5(x -38)=2.5x -26.6.综上所述,y 与x 之间的函数关系式为y =⎩⎨⎧1.8x (0≤x ≤38),2.5x -26.6(x >38).(3)因为1.8×38=68.4(元),68.4<80.9, 所以该家庭当月用水量超出38 m 3.当y =2.5x -26.6=80.9时,解得x =43.答:该家庭当月用水量是43 m3.。

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)一、单选题1.(2019·上海普陀区·八年级期末)下列函数中,一次函数是( ).A .y x =B .y kx b =+C .11y x =+D .22y x x=-2.(2020·上海市静安区实验中学八年级课时练习)下列说法中不成立的是( )A .在y=3x ﹣1中y+1与x 成正比例B .在y=﹣2x 中y 与x 成正比例C .在y=2(x+1)中y 与x+1成正比例D .在y=x+3中y 与x 成正比例3.(2020·上海市南汇第四中学八年级月考)下列函数:(1)2y x =-;(2)8y x=-;(3)22y x =;(4)1y x =-+;(5)21y x =+,(6)y kx b =+(k 是常数),其中一次函数的个数是( )A .0个B .1个C .2个D .3个4.(2019·上海市敬业初级中学八年级月考)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数5.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( )A .m=﹣3B .m=1C .m=3D .m >﹣3二、填空题6.(2018·上海民办浦东交中初级中学八年级月考)己知一次函数2 4y x =-+的图像经过(),8m ,则m =_______.7.(2019·上海八年级课时练习)把2x ﹣y=3写成y 是x 的函数的形式为 _________ .8.(2019·上海八年级课时练习).如果函数y=(a ﹣2)x+3是一次函数,那么a _________9.(2019·上海八年级课时练习)关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。

6.3一次函数提优训练1.doc

6.3一次函数提优训练1.doc

1.2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30。

,顶点目,B2, B3 ,・・・,$和c2, c3, • • % 分别在直线y = _丄X +侖+ 1和尢轴上,则第〃阴影正方形的面积为____________________________________________ •* 22.如图,多边形OABCDE在平而直角坐标系屮,O为坐标原点,点A和点E分别在y轴和x 轴上,其中AB〃CD〃x轴,DE〃BC〃y轴,已知点B (4, 6),点D (6, 4),若直线/经过点M (2, 3),且将多边形OABCDE分割成面积相等的两部分,则直线1的函数表达式是3.已知平面直角坐标系上点A (2, 0),点P是函数y = x(x>0)图象上一点,PQ丄AP交y轴正半轴于点Q (如图).(1)试证明:AP=PQ;(2)设点P的横坐标为G,点Q的纵坐标为b,那么b关于a的函数关系是________________ ;4.如图,在平面直角坐标系中,正方形OABC的顶点为O (0, 0), A (1, 0), B (1, 1), C (0, 1)(1)判断直线y = + |与正方形OABC是否有交点,并说明理由;(2)现将直线y = -2x + |进行平移后恰好能把正方形OABC分为面积相等的两部分,请求出平移后的直线解析式.5.甲、乙两车分別从A地将--批物品运往B地,再返回A地,如图表示两车离A地的距离s (千米)随时间t (小时)变化的图象(到B地卸货等时间忽略不计),已知乙车到达B 地后以3()千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)乙车到达B地时,时间t为多少?(3)当甲车与乙车迎面相遇吋,甲车行驶了多少小吋?6.为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的政府补贴.某市农机公司筹集到资金130万元,用于一次性购进A, B两种型号的收割机30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:A型收割机B型收割机进价(万元/台) 5. 3 3. 6售价(万元/台)64设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.(1)试写出y与x的函数关系式;(2)市农机公司有哪几种购进收割机的方案可供选择?(3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的政府补贴总额W为多少万元?7.已知:如图,等边△ ABC屮,AB=1, P是AB边上一动点,作PE丄BC,垂足为E;作EF 丄AC,垂足为F;作FQ丄AB,垂足为Q.(1)设BP=x, AQ=y,求y与x之间的函数关系式;(2)当点P和点Q重合时,求线段EF的长;(3)当点P和点Q不重合,但线段PE、FQ延长线相交时,求它们与线段EF围成的三角形周长m的取值范围.8.已知一列慢车与一列快车相继从泰州开往上海,慢车先出发,一小时后快车岀发,设慢车行驶的时间为x (h),两车之间的距离为y (km),图中的折线表示y与x之间的函数关系. (1)请解释图中点C的实际意义;(2)分别求慢车和快车的速度、泰州与上海的距离;(3)如果二车都配有对讲机,并且二车相距不超过15km时,能相互通话,求二车均在行驶过程中能通话的时间.B E C9.北京时间2011年3月11日46分,日本东部海域发生9级强烈地震并引发海啸.在其灾区,某药品的需求量急增.如图所示,在平常对某种药品的需求量y (万件).供应量%(万件)与价格x (元彳牛)分别近似满足下列函数关系式:必=一兀+ 70, ^2=2X-38,需求量为0时,即停止供应.当y,=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量. (1)求该药品的稳定价格与稳定需求量.(2)价格在什么范圉内,该药品的需求量低于供应量?(3)由于该地区灾情严重,政府部门决定对药品供应方提供价格补贴来提高供货价格,以提高供应量.根据调查统汁,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.10.某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.图表示快递车距离A地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)请在图中画出货车距离A地的路程y (千米)与所用时间x (时)的函数图象;(2)求两车在途中相遇的次数(直接写出答案);(3)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?。

20.1 一次函数的概念(作业)解析版

20.1 一次函数的概念(作业)解析版

20.1 一次函数的概念(作业)一、单选题1.(2019·上海普陀区·八年级期末)下列函数中,一次函数是().A.B.C. D.【答案】A【分析】根据一次函数的定义分别进行判断即可.【详解】解:.是一次函数,故正确;.当时,、是常数)是常函数,不是一次函数,故错误;.自变量的次数为,不是一次函数,故错误;.属于二次函数,故错误.故选:.【点睛】本题主要考查了一次函数的定义,一次函数的定义条件是:、为常数,,自变量次数为1.2.(2020·上海市静安区实验中学八年级课时练习)下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例D.在y=x+3中y与x成正比例【答案】D【详解】解:A.∵y=3x−1,∴y+1=3x,∴y+1与x成正比例,故本选项正确;B.∵∴y与x成正比例,故本选项正确;C.∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D.∵y=x+3,不符合正比例函数的定义,故本选项错误.故选:D.3.(2020·上海市南汇第四中学八年级月考)下列函数:(1);(2);(3);(4);(5),(6)(是常数),其中一次函数的个数是()A.0个B.1个C.2个D.3个【答案】C【分析】根据一次函数的定义分析即可.【详解】解:(1),(4)是一次函数;(6)当k=0时,(是常数)不是一次函数;(2)的自变量在分母上,不是一次函数;(3),(5)的自变量的次数是2,不是一次函数.故选C.【点睛】本题考查了一次函数的定义,熟练掌握一次函数的定义是解答本题的关键.一般地,形如y=kx+b(k为常数,k≠0)的函数叫做一次函数.4.(2019·上海市敬业初级中学八年级月考)下列命题错误的是()A.正比例函数是一次函数B.反比例函数不是一次函数C.如果和成正比例,那么是的一次函数D.一次函数也是正比例函数【答案】D【分析】直接利用正比例函数与一次函数的定义判断得出即可.【详解】解:A、正比例函数是一次函数,此选项正确;B、反比例函数不是一次函数,故此选项正确;C、如果和成正比例,则y-1=kx,即y=kx+1,那么是的一次函数,故此选项正确;D、一次函数可能是正比例函数,也可能不是正比例函数,故此选项错误;故选:D.【点睛】此题主要考查了正比例函数与一次函数的定义,正确把握它们的区别与联系是解题关键.5.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x2+(1﹣m)x 是正比例函数,则m的值是()A.m=﹣3 B.m=1 C.m=3 D.m>﹣3【答案】A【详解】由题意可知:,∴m=-3,故选:A二、填空题6.(2018·上海民办浦东交中初级中学八年级月考)己知一次函数的图像经过,则_______.【答案】【分析】将点代入一次函数的表达式中,得到一个关于m的方程,解方程即可.【详解】∵一次函数的图像经过∴将点代入中得解得,故答案为:-2.【点睛】本题主要考查根据一次函数的表达式求图象上点的坐标,利用方程的思想是解题的关键.7.(2019·上海八年级课时练习)把2x﹣y=3写成y是x的函数的形式为_________ .【答案】y=2x﹣3【分析】通过移项即可将其变为y是x的函数的形式.【详解】解:2x﹣y=3,移项得y=2x﹣3.故答案为:y=2x﹣3.【点睛】本题主要考查函数的一般形式. y=kx+b(k≠0)是一次函数的解析式,图像是一条直线,斜率是k,截距是b.8.(2019·上海八年级课时练习).如果函数y=(a﹣2)x+3是一次函数,那么a _________ 【答案】≠2【分析】根据一次函数的定义可知自变量的系数不为零.【详解】解:∵函数y=(a﹣2)x+3是一次函数,∴a﹣2≠0,即a≠2.故答案为:≠2.【点睛】本题考点:一次函数的定义,把握定义是解题的关键.9.(2019·上海八年级课时练习)关于x的一次函数y=x+5m-5,若使其成为正比例函数,则m应取_________。

人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案

人教版八年级数学下19.2.2一次函数(4)课时作业同步练习含答案

19.2.2 一次函数第9课时【巩固提优】1.为增强居民的节水意识,某市自2014年实施“阶梯水价”.按照“阶梯水价”的收费标准,居民家庭每年应缴水费y(元)与用水量x(立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是()A.240立方米B.236立方米C.220立方米D.200立方米2.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元B.0.45 元C.约0.47元D.0.5元第1题图第2题图第5题图第7题图3.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A 地,到达A地后立即按原路返回B地.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象.下列说法中正确的个数为()①A,B两地距离是30千米;②甲的速度为15千米/时;③点M的坐标为(,20);④当甲、乙两人相距10千米时,他们的行驶时间是小时或小时.A.1个B.2个C.3个D.4个4.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1505.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.6.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中数据信息,解答下列问题(1)求摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式为;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是cm.7.某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.8.一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?9.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为m,小玲步行的速度为m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【能力拔高】10.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.11.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(3)当x取何值时,两车之间的距离为300km?12.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?参考答案1.C;2.A;3.C;4.C;5.5;6.y=1.5x+4.5(x是正整数),21;7.60≤v≤80;8.(1)y=﹣6x+60;(2)250千米;9.(1)4000,100;(2)0≤x(3)8分钟;10.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=﹣60x+540(8≤x≤9).11.(1)80,120;(2)y=200x﹣540(2.7≤x≤4.5);(3)x=1.2 h或4.2 h;12.(1)当2 000≤x≤2 600时,y=16x﹣15600;当2 600<x≤3 000时,y=2600×10=26000;(2)2 350≤x≤3000。

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

《一次函数》作业题 (1)

一、选择题1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=2x+1的图象上( )A .(2,1)B .(-2,1)C .(2,0)D .(-2,-3)3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3x C .y=2x 2 D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( )A .一、二、三B .二、三、四C .一、二、四D .一、三、四5.一次函数y =x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-127.已知正比例函数y =kx(k≠0)的图象过第二、四象限,则( )A .y 随x 的增大而减小B .y 随x 的增大而增大C .当x<0时,y 随x 的增大而增大;当x>0时,y 随x 的增大而减小D .不论x 如何变化,y 不变8.结合正比例函数y =4x 的图象回答:当x>1时,y 的取值范围是( )A .y =1B .1≤y<4C .y =4D .y >49.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<310.如果直线y =ax+b 经过第一、二、三象限,则有( )A .ab >0B .ab≥0C .ab <0D .ab≤011.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )12.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )13.表示一次函数y =mx+n 与正比例函数y =mnx(m 、n 是常数且mn≠0)图象是( )14.下列有序实数对中,是函数21y x =-中自变量x 与函数值y 的一对对应值的是( )A .( 2.54)-,B .(0.250.5)-,C .(13),D .(2.54),15. 点A (1,m )在函数y =2x 的图象上,则m 的值是 ( ) A.1 B.2 C.21 D.0 16.油箱中有油20升,油从管道中匀速流出,100分钟流完.油箱中剩油量Q (升)与流出的时间t (分)间的函数关系式是( )A .205Q t =-B .1205Q t =+C .1205Q t =-D .15Q t = 17.如果每盒圆珠笔有12支,售价为18元,那么圆珠笔的售价y (元)与支数x 之间的函数关系式为( )A .32y x =B .23y x =C .12y x =D .18y x =18.长方形的周长为24cm ,其中一边为x (其中x>0),面积为y cm2,则这样的长方形中y 与x 的关系可以写为( )A 、2x y =B 、()212x y -= C 、()x x y ⋅-=12 D 、()x y -=122 19.对于函数x y 3-=的两个确定的值1x 、2x 来说,当21x x <时,对应的函数值1y 与2y 的关系是( )(A) 21y y < (B) 21y y = (C) 21y y > (D) 无法确定20.点A (5,y 1)和B (2,y 2)都在直线y =-x 上,则y 1与y 2的关系是( )A 、y 1≥ y 2B 、 y 1= y 2C 、 y 1 <y 2D 、 y 1 >y 221.点A (5,y 1)和B (2,y 2)都在直线y =x 上,则y 1与y 2的关系是( )A 、y 1≥ y 2B 、 y 1= y 2C 、 y 1 <y 2D 、 y 1 >y 222.已知一次函数y=kx+b 的图象不过一象限,则k,b 的符号是( )(A)k>0,b>0 (B)k>0,b<0 (C)k<0,b>0 (D)k<0,b<023.直线y=kx+b 在坐标系中的位置如图,则( )A 、1,12k b =-=-B 、1,12k b =-= C 、1,12k b ==- D 、1,12k b == 24.将直线y=2x 向上平移两个单位,所得的直线是( )A .22+=x yB .22-=x yC .)2(2-=x yD .)2(2+=x y25.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( )(A)y=2x (B) y=2x -6 (C ) y=5x -3 (D )y=-x -326.下面函数图象不经过第二象限的为 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -227.过第三象限的直线是( )A 、y=-3x+4B 、y=-3xC 、y=-3x-3D 、y=-3x+728.已知一次函数y=3x -b 的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)29.直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )A.32+=x yB.232+-=x y C.23+=x y D.1-=x y 30.函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范是( )A 、34m < B 、314m -<< C 、1m <- D 、1m >- 31.函数y = k (x – k )(k <0)的图象不经过 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限32.若一个函数b kx y +=中, y 随x 的增大而增大,且0<b ,则它的图象大致是( )(A) (B) (C) (D)二、填空题33.函数21y x =-中,当4x =-时,y = ,当4y =时,x =34.点(1)A m ,在函数2y x =的图象上,则点A 的坐标是35.在一次函数35-=x y 中,已知0=x ,则=y ;若已知2=y ,则=x36.已知点P (a ,4)在函数3+=x y 的图象上,则=a37.飞船每分钟转30转,用函数解析式表示转数n 和时间t 之间的关系式是38.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.39.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.40.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.41.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.42.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.43.一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是 .44.函数2+-=x y 中,y 的值随x 值的减小而 ,且函数图像与x 轴、y 轴的交点坐标分别是 .45.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=___,•该函数的解析式为__46.若ab >0,bc <0,则直线a a y x b c=--经过第 象限。

一次函数复习题

一、一次函数的知识点:1、函数的自变量x 的取值范围2、复习正比例函数和一次函数的知识点3、下列各图给出了变量x 与y 之间的函数是: ( )4、已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为__ __.5、已知一次函数1)2(++=x m y ,函数y 的值随x 值的增大而增大,则m 的取值范围是6、已知一次函数kxk y )1(-=+3,则k = .7、已知函数y =3x -6,当x =0时,y =______;当y =0时,x =______. 8、已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.9、点P (a ,b )在第二象限,则直线y=ax+b 不经过第 象限。

10、函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

11、数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A )34m <(B )314m -<< (C )1m <- (D )1m >-12、次函数y=(2m+1)x+m -3中,y 随x 的增大而增大,则m ,若此函数为正比例函数,则m= 。

13、次函数y =kx +b 的图象经过点A 和点B .(1)写出点A 和点B 的坐标并求出k 、b 的值; (2)求出当x =32时的函数值.14、次函数)3()12(+--=n x m y ,求:(1)当m 为何值时,y 的值随x 的增加而增加;(2)当n 为何值时,此一次函数也是正比例函数;(3)若,2,1==n m求函数图像与x 轴和y 轴的交点坐标;(4)若2,1==n m ,写出函数关系式,画出图像,根据图像求x 取什么值时,0>y .ABD15、y=2x-4的图像,并根据图像回答下列问题.(1)当-2≤x≤4,求函数y的取值范围.(2)当x取何值时,y<0?y=0?y>0?16、移动公司为鼓励消费者,采用分段计费的方法来计算电话费,通话时间x(分)与相应的话费y(元)之间的函数图象如图所示。

3.10一次函数作业(含解析答案) (2)

一次函数一.选择题1.若一次函数y =kx +b (k ,b 为常数,且k ≠0)的图象经过点A (0,﹣1),B (1,1),则不等式kx +b >1的解为( ) A .x <0B .x >0C .x <1D .x >12.某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来搅收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A .9:15B .9:20C .9:25D .9:303.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的. 施工时间/天 1 2 3 4 5 6 7 8 9 累计完成施工量/米3570105140160215270325380下列说法错误的是( ) A .甲队每天修路20米 B .乙队第一天修路15米C .乙队技术改进后每天修路35米D .前七天甲,乙两队修路长度相等4.已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A.B.C.D.5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店6.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>07.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.48.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+8二.填空题9.如图△ABC,AC=BC=13,把△ABC放在平面直角坐标系中,且点A、B的坐标分别为(2,0)、(12,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣x+8上时,线段AC扫过的面积为.10.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B 1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是.三.解答题11.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.12.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.13.某中学图书室计划购买了甲、乙两种故事书.若购买7本甲种故事书和4本乙种故事书需510元;购买3本甲种故事书和5本乙种故事书需350元.(1)求甲种故事书和乙种故事书的单价;(2)学校准备购买甲、乙两种故事书共200本,且甲种故事书的数量不少于乙种故事书的数量的,请设计出最省钱的购买方案,并说明理由.14.某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)参考答案选择题1—5 DBDAC 6—8 DCA填空 9、132 10、(47,16)11、(1)蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.12、(1)l的解析式为:y=﹣x+1.1=.(2)S四边形PAOC13、(1)甲种故事书的单价是50元,乙种故事书的单价是40元(2)当a=67时,w取得最小值,此时w=8670,200﹣a=133,答:当购买甲种故事书67本,乙种故事书133本时最省钱.14、(1)日销售量w=;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.一.选择题1.若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为()A.x<0 B.x>0 C.x<1 D.x>1解:如图所示:不等式kx+b>1的解为:x>1.故选:D.2.某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来搅收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A .9:15B .9:20C .9:25D .9:30解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6, ∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4, ∴y 2=﹣4x +240, 联立,解得,∴此刻的时间为9:20. 故选:B .3.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的. 施工时间/天 1 2 3 4 5 6 7 8 9 累计完成施工量/米3570105140160215270325380下列说法错误的是( ) A .甲队每天修路20米 B .乙队第一天修路15米C .乙队技术改进后每天修路35米D .前七天甲,乙两队修路长度相等 解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A 正确; 乙队第一天修路:35﹣20=15(米),故选项B 正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C 正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D 错误; 故选:D .4.已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D .解:A 、由①可知:a >0,b >0.∴直线②经过一、二、三象限,故A 正确;B 、由①可知:a <0,b >0.∴直线②经过一、二、三象限,故B 错误;C 、由①可知:a <0,b >0.∴直线②经过一、二、四象限,交点不对,故C 错误;D 、由①可知:a <0,b <0,∴直线②经过二、三、四象限,故D 错误. 故选:A .5.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s (米)与甲出发时间t (分)之间的函数关系如图所示.下列说法错误的是( )A.乙的速度是甲速度的2.5倍B.a=15C.学校到新华书店共3800米D.甲第25分钟到达新华书店解:由图象得出甲步行720米,需要9分钟,∴甲的运动速度为:720÷9=80(m/分),∵甲19分钟运动距离为:19×80=1520(m),当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达新华书店,此时乙运动19﹣9=10(分钟),乙比甲多走480米,∴乙的运动速度为:(1520+480)÷10=200(m/分),∴200÷80=2.5,∴乙的速度是甲速度的2.5倍,故选项A说法正确;设乙x分后追上甲,根据题意得:720+80x=200x,解得x=6∴a=9+6=15,故选项B说法正确;学校到新华书店距离为:10×200=2000(m),故选项C说法错误;甲运动时间为:2000÷80=25(分钟),故甲第25分钟到达新华书店,故选项D说法正确;故选:C.6.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.7.若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1 B.0 C.3 D.4解:设经过(1,4),(2,7)两点的直线解析式为y=kx+b,∴∴,∴y=3x+1,将点(a,10)代入解析式,则a=3;故选:C.8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4 B.y=x+4 C.y=x+8 D.y=﹣x+8解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.二.填空题9.如图△ABC,AC=BC=13,把△ABC放在平面直角坐标系中,且点A、B的坐标分别为(2,0)、(12,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣x+8上时,线段AC扫过的面积为132 .解:∵A、B的坐标分别为(2,0)、(12,0),AC=BC=13,∴C(7,12),当C移动到C'(﹣4,12)时,点C'在y=﹣x+8上,∴AC扫过的图形为平行四边形,∴S=12×11=132;故答案为132;10.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B 1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=x+,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=x+,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).三.解答题11.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米.1千瓦时的电量汽车能行驶的路程为:千米;(2)设y=kx+b(k≠0),把点(150,35),(200,10)代入,得,∴,∴y=﹣0.5x+110,当x=180时,y=﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.12.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(﹣1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.解:(1)∵点P(﹣1,a)在直线l2:y=2x+4上,∴2×(﹣1)+4=a,即a=2,则P的坐标为(﹣1,2),设直线l1的解析式为:y=kx+b(k≠0),那么, 解得:.∴l 1的解析式为:y =﹣x +1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(﹣2,0),则AB =3,而S 四边形PAOC =S △PAB ﹣S △BOC ,∴S 四边形PAOC =.13.某中学图书室计划购买了甲、乙两种故事书.若购买7本甲种故事书和4本乙种故事书需510元;购买3本甲种故事书和5本乙种故事书需350元.(1)求甲种故事书和乙种故事书的单价;(2)学校准备购买甲、乙两种故事书共200本,且甲种故事书的数量不少于乙种故事书的数量的,请设计出最省钱的购买方案,并说明理由.解:(1)设甲种故事书的单价是x 元,乙种故事书的单价是y 元, ,得,答:甲种故事书的单价是50元,乙种故事书的单价是40元;(2)当购买甲种故事书67本,乙种故事书133本时最省钱,理由:设购买甲种故事书a 本,总费用为w 元,w =50a +40(200﹣a )=10a +8000,∵a ≥(200﹣a ),解得,a ,∴当a =67时,w 取得最小值,此时w =8670,200﹣a =133,答:当购买甲种故事书67本,乙种故事书133本时最省钱.14.某商场销售产品A ,第一批产品A 上市40天内全部售完.该商场对第一批产品A 上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w 与上市时间t 的关系;图②中的折线表示每件产品A 的销售利润y 与上市时间t 的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;t+b.当30<t≤40时,可设日销售量w=k1∵点(30,60)和(40,0)在图象上,∴,解得,k=﹣6,b=240,1∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数训练题作业(提高)1.①已知一次函数y=(m-2)x+m2-6的图像与y轴相交,交点的纵坐标是2,并且y随x的增大而减小,求m的值②一次函数y=(4a-10)x+2a-3的图像与y轴的交点在x轴的上方,且y随着x的减小而增大,求a的整数值③已知y=y1-y2,y1与x2成正比例,y2与1/x成正比例,并且当x=1时,y=-1;当x=3时,y=17.求当x=2时,y的值2.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1).(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2.(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0,两种园艺造型3.某市筹备10周年建市庆典,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级甲班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?4.如图,L1,L2•分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h,照明效果一样.(1)根据图像分别求出L1,L2的函数关系式,(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500h,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).5.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.下图是学生注意力指标数y随时间x (分钟)变化的函数的近似图象.(y越大表示学生注意力越集中,且图象中的三部分都是线段).(1)注意力最集中那段时间持续了几分钟?(2)当0≤x≤10时,求注意力指标数y与时间x之间的函数关系式;(3)一道数学竞赛题,需要讲解23分钟,问老师能否经过适当安排使学生在听这道题时注意力的指标数都在34以上?一次函数训练题作业(提高)答案 1.①由m 2-6=2,的m 2=8,m=22±再由m-2<0,m <2,所以m=22-②一次函数y=(4a-10)x+2a-3的图像与y 轴的交点在x 轴的上方,且y 随着x 的减小而增大,求a 的整数值 由已知得,2a-3>0,4a-10<0,解得1.5<a <2.5,因为a 为整数,所以a=2 ③设y 1=k 1x 2,y 2=k 2·x 1,则y= k 1x 2- k 2·x1,因为x=1时,y=-1,x=3时,y=17;所以-1=k1-k2,17=9k 1-32k ,解得k1=2,k2=3,所以y=2x 2-x 3,所以当x=2时,y=8-23=6.5 2.解:(1)将A 点坐标代入y1,得:2k-2=-1,即k=12;将A 点坐标代入y2,得:-6+b=-1,即b=5;∴两个函数的解析式分别为:y1=12x-2、y2=-3x+5;如图;(2)从图象可以看出:①当x <2时,y1<y2;②当x ≥2时,y1≥y2;(3)∵直线y1=12x-2与x 轴的交点为(4,0),直线y2=-3x+5与x 轴的交点为(53,0),∴从图象可知:①当x <4时,y1<0;当x >53时,y2<0;所以当53<x <4时,y1<0且y2<0.②当x >4时,y1>0;当x >53时,y2<0;∴当x >4时y1>0且y2<0.3.解:(1)设搭配A 种造型x 个,则B 种造型为(50-x )个,依题意得80x+50(50−x)≤3490,40x+90(50−x)≤2950 解这个不等式组得x ≤33x ≥31,∴31≤x ≤33,∵x 是整数,∴x 可取31,32,33,∴可设计三种搭配方案,①A 种园艺造型31个B 种园艺造型19个,②A 种园艺造型32个B 种园艺造型18个,③A 种园艺造型33个B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33×800+17×960=42720(元)方法二:方案①需成本31×800+19×960=43040(元),方案②需成本32×800+18×960=42880(元),方案③需成本33×800+17×960=42720(元),∴应选择方案③,成本最低,最低成本为42720元.4.解:(1)设L1的解析式为y1=k1x+b1,L2的解析式为y2=k2x+b2,由图可知L1过点(0,2),(500,17),∴2=b117=500k1+b1∴k1=0.03,b1=2,∴y1=0.03x+2(0≤x ≤2000),由图可知L2过点(0,20),(500,26),同理y2=0.012x+20(0≤x ≤2000);(2)若两种费用相等,即y1=y2,则0.03x+2=0.012x+20,解得x=1000,∴当x=1000时,两种灯的费用相等;(3)时间超过1000小时,故前2000h 用节能灯,剩下的500h ,用白炽灯.5.解:(1)根据函数图象可知,在第10分钟到第20分钟,注意力最集中那段时间持续了20-10=10分钟;(2)设0≤x ≤10时的函数关系式为y=kx+b ,∵图象直线过(0,20),(10,48)点,∴b =2010k+b =48,解得:b =20k =145∴y=145x+20,(0≤x ≤10).(3)由图象知,当20≤x ≤40时,直线y=ax+c 经过((20,48),(30,38)点,∴20a+c =4830a+c =38, 解得:a =−1c =68,∴y=-x+68,当0≤x ≤10时,令y=34,得34<145x+20,解得:x >5;当20≤x ≤40时,令y=34,得34<-x+68,解得x <34.∴5<x <34,∵34-5=29>23,∴老师可以通过适当的安排,在学生的注意力指标数在34以上时,讲授完这道数学综合题.一次函数训练题(提高)部分题答案6.某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题:(1)在y 轴( )内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x ≥25时,风速y (千米/时)与时间x (小时)之间的函数关系式;(4)写出4小时后沙城暴经过开阔荒漠地时的函数关系式;(5)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?解:(1)2×4=8,则8+4×(10-4)=32;(2)32÷1+25=57小时;(3)根据图象,CD 经过(25,32)(57,0),设函数解析式为y=kx+b ,∴25k+b =32,57k+b =0,解得k =−1b =57,∴y=-x+57(25≤x ≤57);(4)y=4x-8;(5)(57-20)-(20-8)÷4-4=30,∴强沙尘暴持续30小时.一次函数训练题(提高2)答案5.解:先求出各个点到终点需要的时间:∵C (4,3),∴OC==5,∵B (14,3),∴BC=14﹣4=10,∴t (Q )==,t (P )=14, (1)由题知,当x >2.5时,Q 点在CB 上运动,故横坐标为2x ﹣5+4=2x ﹣1,纵坐标为3,故坐标为(2x ﹣1,3);(2)由平行四边形的对边相等可知,2x ﹣5=x ,解得x=5;(3)当x >2.5时,四边形OPQC 是一个梯形,所以:y==,因为x 最大为7.5,而根据上面的函数式知道y 随x 的增大而增大,所以当x 为最大时y 为最大.所以,y 最大=3×=26.25.解:(1)矩形OABC中,OC∥AB,∴∠COB=∠OBA,∵将矩形折叠,使点B与O重合,∴OD=BD,在△OFD与△BED中,,∴△OFD≌△BED(ASA),∴OF=BE,∴四边形OEBF是平行四边形(一组对边平行且相等的四边形是平行四边形),∵将矩形折叠,使点B与O重合,∴BE=OE(线段垂直平分线上的点到线段两端点的距离相等),∴四边形OEBF是菱形;(2)根据中位线定理,过矩形的中心的直线L把矩形OABC的面积分成相等的两部分,∵OA=6,OC=8,∴中心的坐标是(3,4);(3)设菱形OEBF的边长为x,则AE=AB﹣x=8﹣x,在Rt△OAE中,OE2=OA2+AE2,即x2=62+(8﹣x)2,解得x=,∴四边形OEBF的周长=4x=4×=25.7.解:(1)由题意,得学校到市图书馆的路程是6千米,小聪在市图书馆查阅资料的时间为0.2小时.故答案为6,0.2;(2)由题意,得小明骑自行车的速度是:6÷0.6=10千米/小时.故答案为10;(3)设s与t函数关系式为s=kt+b,由题意,得,解得:,则s与t函数关系式为s=-30t+18.8.解:(1)对于直线AB:y=-0.5x+2当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0),∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=0.5×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),即M点的坐标是(2,0)或(﹣2,0)八年级(下)数学训练题(提高1)答案11.某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元.由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2,商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x (万元)、y (万元)、z (万元)( x,y,z都是整数).(1) 请用含x的代数式分别表示y和z;(2) 若商场预计每日的总利润为C(万元),且C满足19≤c≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?解:(1)依题意列方程组:x+y+z=60,①5x+4y+2z=190②,②-①×2得:y=35−32x ③;①×4-②得:z=25+12x ④;(2)C=0.3x+0.5y+0.2z,把③④式代入C:C=0.3x+0.5(35-32x)+0.2(25+12x)=-0.35x+22.5,∵19≤C≤19.7,∴19≤-0.35x+22.5≤19.7,解此不等式得:8≤x≤10,∴x=8、9、10,y=23、21.5、20,z=29、29.5、30,∵x,y,z都是整数.∴x,y,z的解分别为(8,23,29)或(10,20,30).答:这个商场分配日营业额方案为百货部8万元,售货员为40人,服装部23万元,售货员为92人,家电部为29万元,售货员为58人;或者是百货部营业额10万元,用人50,服装部20万元,80人,家电部30万元,60人。

相关文档
最新文档