【中考模拟2017】福建福州市 2017年九年级数学 中考模拟测试卷 二(含答案)

合集下载

2017福建省中考数学卷及答案

2017福建省中考数学卷及答案

iA B C D(第7题)2017年福建省中考数学卷一、选择题(共40分)1、 3的相反数是( ); A. B . C . D .33-31-312、 三视图。

下面三个并排正方体,压一个正方体,问左视图;3、 136000的结果是( );A .0.136×106 B .1.36×105 C .136×103D .1.36×1064、 化简的结果是( )A . B . C . D .2)2(x 4x 22x 24x x 45、 下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形;B .正三角形既是轴对称图形,又是中心对称图形 ;C .线段是轴对称图形,但不是中心对称图形 ;D .菱形是中心对称图形,但不是轴对称图形。

6、 不等式组:的解集是( )⎩⎨⎧>+≤-0302x x A . B . C . D . 23≤<-x 23<≤-x 2≥x 3-<x 7、 某校举行“汉字听写比赛”,5个班代表队的正确答题数如图。

这5个正确答题数所组成的一组数据中的中位数和众数是( );A .10,15B .13,15C .13,20D .15,158、 如图,AB 是直径,C 、D 是⊙O 上位于AB 异侧的两点,下列四个角中,一定与∠ACD 互余的角是( )A .∠ADC B .∠ABD C .∠BAC D .∠BAD9、若直线过经过点(m ,n +3)和(m +1,),1++=k kx y 12-n 且,则n 的值可以是( )20<<k A .3 B .4 C .5 D .610、如图,网格纸上正方形小格的边长为1。

图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段和B A ''点,则点所在的单位正方形区域是( )P 'P 'A .1区 B .2区C .3区D .4区二、填空题:(共24分)11、032--12、△ABC 中,E 、F 分别是AB 、AC 的中点,连线DE ,若DE=3,则BC=________;13、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球。

2017福建中考数学试题及答案

2017福建中考数学试题及答案

2017福建中考数学试题及答案(正文开始)一、选择题1. (2x + 5)(x - 3)的展开式是A. 2x^2 - x - 15B. 2x^2 - 11x - 15C. 2x^2 - 8x - 15D. 2x^2 - 11x + 15答案:B. 2x^2 - 11x - 152. 若x - y = 5,且5x + 13y = 30,则x =A. 4B. 5C. 6D. 7答案:C. 63. 半径为r的圆垫在正方形内,正方形的边长是圆的直径的4倍,则正方形的面积是A. πr^2C. 16πr^2D. 64πr^2答案:C. 16πr^24. 如图,△ABC中,∠BAC = 90°,BC = 5cm,AC = 12cm,则AB =[图略]A. 5cmB. 7cmC. 9cmD. 10cm答案:B. 7cm二、填空题1. 化简:(-a^2)^3 × (-a)^4 的结果是______。

答案:a^142. 若x = 3/4,y = -2/3,则xy的值为______。

答案:-1/23. 已知函数y = -2x + 3,当x = 4时,y的值为______。

4. 三角形ABC中,∠ABC = 60°,∠BAC = 30°,则∠BCA的度数为______。

答案:90°三、解答题1. 以下是2017福建中考数学试题的两道解答题:(1)解方程2(3x - 1) = 3(2x + 4) + 6的结果。

解答:2(3x - 1) = 3(2x + 4) + 66x - 2 = 6x + 12 + 66x - 6x = 12 + 6 + 20 = 20方程无解。

(2)三角形ABC中,∠A = 60°,AB = 8cm,AC = 6√3 cm,求BC的长度。

解答:根据余弦定理:BC^2 = AB^2 + AC^2 - 2AB × AC × cos∠ABC^2 = 8^2 + (6√3)^2 - 2 × 8 × 6√3 × cos60°BC^2 = 64 + 108 - 96√3BC^2 = 172 - 96√3BC = √(172 - 96√3)以上是题目要求的2017福建中考数学试题及答案,更多内容请参考试卷或相关资料。

2017年九年级数学中考模拟试卷

2017年九年级数学中考模拟试卷

2017 年九年级数学中考模拟试卷一、选择题:1.已知有理数 a, b, c在数轴上对应点的地点如图, 化简 : ∣ b-c ∣ -2 ∣ c+a∣-3 ∣ a-b ∣ =()A.-5a+4b-3cB.5a-2b+c2. 以下计算正确的选项是()A.2+a=2a﹣3a=﹣1 C.(﹣a)2?a3=a5÷4ab=2ab3. 若 x、 y为有理数,以下各式建立的是()A. (﹣ x)3=x3B. (﹣ x)4=﹣ x4 4=﹣ x4 D. ﹣x3=(﹣ x)34. 如图,依据三视图确立该几何体的全面积是(图中尺寸单位:cm)()222 2A. 40π cm B. 65π cm C.80π cm D. 105πcm5. 化简的结果是()A. B. C.x+1﹣16.以下运算中,正确的选项是()A.3a+2b=5abB.2a 3 +3a 2=5a 5C.3a 2 b ﹣ 3ba 2 =0D.5a 2﹣ 4a 2=17.某学校将为初一学生开设 ABCDEF共 6门选修课,现选用若干学生进行了“我最喜爱的一门选修课”检查,将检查结果绘制成如图统计图表(不完好)选修课A B C D E F 人数4060100依据图表供给的信息,以下结论错误的选项是()A.此次被检查的学生人数为 400 人B.扇形统计图中 E部分扇形的圆心角为 72°C.被检查的学生中喜爱选修课 E、F的人数分别为 80,70D.喜爱选修课 C的人数最少8.在同样时辰的物高与影长成比率,假如高为1.5 米的测竿的影长为 2.5 米,那么影长为 30 米的旗杆的高是()米米米米9.如图 1,在直角梯形 ABCD中,动点 P 从点 B 出发,沿 BC,CD运动至点 D 停止.设点 P 运动的行程为 x,△ ABP 的面积为y,假如 y 对于 x 的函数图象如图 2 所示,则△ BCD的面积是()A. 3 B . 4 C . 5 D .610. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为 ( )A.5 米 B .8米 C .7米 D . 5 米二、填空题:11.已知对于 x,y 的方程组的解为正数,则.12.分解因式: 2x3﹣4x2+2x=.13.如图,△ ABC是边长为4个等边三角形,D 为AB边中点 , 以 CD为直径画圆 , 则图中暗影部分面积为.14.如图在□ABCD中,点 E 在边 DC上, DE: EC=3: 1,连结 AE交 BD于点 F,若△ DEF的面积为 18,则□ABCD的面积为.三、计算题:15.计算 :2016 0﹣ | ﹣|++2sin45 °.16.解方程 :3x 2- 7x +4=0.四、解答题:17.如图 , 在 Rt △ ABC中 , ∠ ACB=90° , 点 D,E 分别在 AB,AC上 ,CE=BC,连结 CD,将线段 CD绕点 C按顺时针方向旋转 90°后得 CF, 连结 EF.( 1)增补达成图形;( 2)若 EF∥ CD,求证 : ∠ BDC=90°.第3页共3页18.如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,交 y 轴于 C点,此中 B 点坐标为( 3,0), C 点坐标为( 0,3),且图象对称轴为直线x=1.( 1)求此二次函数的关系式;( 2) P 为二次函数y=ax 2+bx+c 在 x 轴下方的图象上一点,且S△ABP=S△ABC,求 P 点的坐标.19.如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB的坡度为1: 2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端 B 点正上方的一点, BC⊥MN,在自动扶梯底端 A 处测得 C 点的仰角为 42°,求二楼的层高 BC(精准到 0.1 米).(参照数据: sin42 °≈ 0.67 , cos42°≈ 0.74 ,tan42 °≈ 0.90 )如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB 的坡度为 1:2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端B点正上方的一点,BC⊥ MN,在自动扶梯底端A 处测得 C点的仰角为42°,求二楼的层高BC(精准到0.1 米).(参照数据:sin42 °≈ 0.67 ,cos42 °≈ 0.74 ,tan42 °≈ 0.90 )20.一辆客车从甲地出发前去乙地,均匀速度v(千米 / 小时)与所用时间 t (小时)的函数关系以下图,此中60≤ v≤ 120.( 1)直接写出 v与t 的函数关系式;( 2)若一辆货车同时从乙地出发前去甲地,客车比货车均匀每小时多行驶20 千米, 3 小时后两车相遇.①求两车的均匀速度;②甲、乙两地间有两个加油站A、B,它们相距200 千米,当客车进入B加油站时,货车恰巧进入A加油站(两车加油的时间忽视不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲竞赛,菲菲同学将选手成绩区分为A、 B、 C、 D四个等级,绘制了两种不完好统计图.依据图中供给的信息,解答以下问题:( 1)参加演讲竞赛的学生共有人,扇形统计图中m=,n=,并把条形统计图增补完好.(2)学校欲从 A等级 2 名男生 2 名女生中随机选用两人,参加达州市举办的演讲竞赛,请利用列表法或树状图,求 A等级中一男一女参加竞赛的概率.(男生疏别用代码A 1、 A2表示,女生疏别用代码 B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax 2+bx的对称轴为 x=0.775 ,且经过点 A( 2, 1),点 P是抛物线上的动点, P的横坐标为 m( 0< m< 2),过点 P作PB⊥ x轴,垂足为 B,PB交 OA于点 C,点 O对于直线 PB的对称点为 D,连结 CD,AD,过点 A作 AE⊥x轴,垂足为 E.(1)求抛物线的分析式;(2)填空:①用含 m的式子表示点 C, D的坐标: C(,),D(,);②当 m=时,△ ACD的周长最小;( 3)若△ ACD为等腰三角形,求出全部切合条件的点P的坐标.23.如图①,△ ABC与△ CDE是等腰直角三角形,直角边AC、 CD在同一条直线上,点M、 N 分别是斜边AB、 DE的中点,点P 为 AD的中点,连结AE、 BD.(1)猜想 PM与 PN的数目关系及地点关系,请直接写出结论;(2)现将图①中的△ CDE绕着点 C顺时针旋转α(0°<α<90°),获得图②, AE与 MP、BD分别交于点 G、H.请判断( 1)中的结论能否建立?若建立,请证明;若不建立,请说明原因;(3)若图②中的等腰直角三角形变为直角三角形,使 BC=kAC,CD=kCE,如图③,写出 PM与 PN的数目关系,并加以证明.参照答案11.答案为: 7;12.答案为: 2x(x ﹣1) 2.13.答案为: 2.5 ﹣π .14.答案为: 112;15. 解: 20160 ﹣|﹣ |+ +2sin45 ° =1﹣ +( 3﹣1)﹣1+2×=1﹣ +3+ =4.16. 解: (3)x 1 =, x2=117.解:( 1)补全图形,以下图;(2)由旋转的性质得:∠ DCF=90°,∴∠ DCE+∠ ECF=90°,∵∠ ACB=90°,∴∠ DCE+∠BCD=90°,∴∠ ECF=∠ BCD,∵EF∥ DC,∴∠ EFC+∠ DCF=180°,∴∠ EFC=90°,在△ BDC和△ EFC中,,∴△BDC≌△ EFC(SAS),∴∠ BDC=∠ EFC=90°.18. 解:( 1)依据题意,得,解得.故二次函数的表达式为y=﹣ x2+2x+3.△ ABP △ABC PC P( 2)由 S =S ,得 y +y =0,得 y =﹣ 3,当 y=﹣ 3 时,﹣ x2+2x+3=﹣ 3,解得 x1=1﹣, x2=1+.故 P 点的坐标为( 1﹣,﹣ 3)或( 1+ ,﹣ 3).19.20.解:( 1)设函数关系式为 v=kt -1,-1∵ t=5 , v=120,∴ k=120 ×5=600,∴ v与 t 的函数关系式为 v=600t(5≤ t≤ 10);当 v=110 时, v﹣ 20=90.答:客车和货车的均匀速度分别为110 千米 / 小时和 90 千米 / 小时;②当 A加油站在甲地和B加油站之间时,110t ﹣( 600﹣ 90t ) =200,解得 t=4 ,此时 110t=110 ×4=440;当 B加油站在甲地和 A加油站之间时, 110t+200+90t=600 ,解得 t=2 ,此时 110t=110 ×2=220.答:甲地与 B加油站的距离为220 或 440 千米.21.22.23.解:( 1) PM=PN, PM⊥PN,原因以下:∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵点 M、N 分别是斜边AB、 DE的中点,点P 为 AD的中点,∴ PM= BD, PN= AE,∴PM=PM,∵∠ NPD=∠ EAC,∠ MPN=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠ NPC=90°,∴∠ MPN=90°,即 PM⊥PN;( 2)∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∴△ ACE≌△ BCD.∴AE=BD,∠ CAE=∠CBD.又∵∠ AOC=∠ BOE,∠ CAE=∠CBD,∴∠ BHO=∠ ACO=90°.∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PM∥ BD;PN=AE, PN∥ AE.∴ PM=PN.∴∠ MGE+∠ BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴ PM⊥ PN.(3) PM=kPN∵△ ACB和△ ECD是直角三角形,∴∠ ACB=∠ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∵ BC=kAC, CD=kCE,∴=k.∴△ BCD∽△ ACE.∴ BD=kAE。

2017福建省中考数学卷及答案

2017福建省中考数学卷及答案

A B C D(第7题) 2017年福建省中考数学卷一、选择题(共40分)1、 3的相反数是( ); A .3- B .31-C .31D .3 2、 三视图。

下面三个并排正方体,压一个正方体,问左视图;3、 用科学计数法表示136000的结果是( );A .0。

136×106B .1。

36×105C .136×103D .1。

36×106 4、 化简2)2(x 的结果是( )A .4x B .22x C .24x D .x 45、 下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形;B .正三角形既是轴对称图形,又是中心对称图形 ;C .线段是轴对称图形,但不是中心对称图形 ;D .菱形是中心对称图形,但不是轴对称图形。

6、 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .23≤<-xB .23<≤-xC .2≥xD . 3-<x 7、 某校举行“汉字听写比赛”,5个班代表队的正确答题数如图。

这5个正确答题数所组成的一组数据中的中位数和 众数是( );A .10,15B .13,15C .13,20D .15,158、 如图,AB 是直径,C 、D 是⊙O 上位于AB 异侧的两点, 下列四个角中,一定与∠ACD 互余的角是( ) A .∠ADC B .∠ABD C .∠BAC D .∠BAD 9、若直线过1++=k kx y 经过点(m ,n +3)和(m +1,12-n ), 且20<<k ,则n 的值可以是( )A .3B .4C .5D .610、如图,网格纸上正方形小格的边长为1。

图中线段AB 和 点P 绕着同一个点做相同的旋转,分别得到线段B A ''和 点P ',则点P '所在的单位正方形区域是( ) A .1区 B .2区 C .3区 D .4区正面(第8题)CA DBO(第14题)二、填空题:(共24分) 11、032--12、△ABC 中,E 、F 分别是AB 、AC 的中点,连线DE ,若DE=3,则BC=________;13、一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球。

2017年福建省中考数学试卷(后附答案解析)

2017年福建省中考数学试卷(后附答案解析)

2017年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣ C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30=.12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2017年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣ C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A.B. C.D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区 B.2区 C.3区 D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30=1.【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于6.【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A 的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP ∽△CDF ,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x +m 与抛物线y=ax 2+ax +b 有一个公共点M (1,0),且a <b .(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若﹣1≤a ≤﹣,求线段MN 长度的取值范围;(ⅱ)求△QMN 面积的最小值.【分析】(Ⅰ)把M 点坐标代入抛物线解析式可得到b 与a 的关系,可用a 表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m 的值,联立直线与抛物线解析式,消去y ,可得到关于x 的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i )由(Ⅱ)的方程,可求得N 点坐标,利用勾股定理可求得MN 2,利用二次函数性质可求得MN 长度的取值范围;(ii )设抛物线对称轴交直线与点E ,则可求得E 点坐标,利用S △QMN =S △QEN +S △QEM 可用a 表示出△QMN 的面积,再整理成关于a 的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),且a <0,设△QMN 的面积为S ,∴S=S △QEN +S △QEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a 2+(8S ﹣54)a +24=0(*),∵关于a 的方程(*)有实数根,∴△=(8S ﹣54)2﹣4×27×24≥0,即(8S ﹣54)2≥(36)2, ∵a <0,∴S=﹣﹣>, ∴8S ﹣54>0,∴8S ﹣54≥36,即S ≥+, 当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN 面积的最小值为+. 【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M 的坐标得到b 与a 的关系是解题的关键,在(2)中联立两函数解析式,得到关于x 的一元二次方程是解题的关键,在(3)中求得N 点的坐标是解题的关键,在最后一小题中用a 表示出△QMN 的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2017中考数学模拟试题含答案(精选5套).pdf

2017中考数学模拟试题含答案(精选5套).pdf

际工作效率比原计划提高了 20%,结果提前 8 天完成任务,求原计划每天修路的长度. 若设原计划每
天修路 x m,则根据题意可得方程
.
17. 在平面直角坐标系中,规定把一个三角形先沿着 x 轴翻折,再向右平移 2 个单
位称为 1 次变换. 如图,已知等边三角形 ABC 的顶点 B,C 的坐标分别是
(-1,-1),(-3,-1),把△ABC 经过连续 9 次这样的变换得到△A′B′C′,
5
10
x (1 + 20%)x
17. (16,1+ 3 ); 18. 15.5(或 31 ). 2
三、解答题
19. (1)解:原式 = 4× 2 -2 2 +1-1……2 分(每错 1 个扣 1 分,错 2 个以上不给分) 2
=0
…………………………………4 分
(2)解:原式 =( m + n - n )· m2 − n2
∠BCD = 30°, ∴DC = BC·cos30°
……………………1 分
= 6 3 × 3 = 9, ……………………2 分 2
∴DF = DC + CF = 9 + 1 = 10,…………………3 分
∴GE = DF = 10.
…………………4 分
在 Rt△BGE 中,∠BEG = 20°,
∴BG = CG·tan20°
点 Q 从点 C 出发,沿 CB 方向匀速运动到终点 B. 已知 P,Q 两点同时出发,并同时到达终点,连接 MP,
MQ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是( )
A. 一直增大
B. 一直减小
C. 先减小后增大
D. 先增大后减小

福建省厦门市2017届中考数学第二次模拟试题含答案


A . 0.35 108 B . 3.5 107 C . 35 105 D . 3.5 106
3. 若∠ A 与∠ B 互为补角,则∠ A+∠ B=( )
A.180 °
B.120
°
C.90
°
D .60
° www-2-1-cnjy-com
4.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形
量出测点 A 到旗杆底部 C的水平距离 AC为 20m,根据测量数据,求旗杆 CD的高度.(参考数据:
sin32 °≈ 0.53 ,cos32°≈ 0.85 ,tan32 °≈ 0.62 ).
19(8 分).关于 x 的方程 x2 ax a 0 有两个相等的实数根,求代数式
1 a2
a2
4a
的值.
2
20(8 分) . 如图, BD与 CE交于点 A,连接 DE, BC,若 AB=12,AC=9, AE=3, AD=4, DE=5,求 BC的
长 . 【版权所有: 21 教育】
E
D
A
B
C
21( 8 分).去年 4 月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若
干名初中生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有
一种以上不良姿势, 我们以他最突出的一种作记载) ,并将统计结果绘制成了如下两幅不完整的统计
q 2p 6
二.填空题: (共 6 小题,每题 4 分,满分 24 分)
1
11.如果分式
有意义,那么 x 的取值范围是 __________ .
x4
12.计算: ( 2x 3) 2 =

2017年福建省中考数学试卷-答案


ABC
和△
DEF
中,

AC

DF
BC EF,
∴△ ABC≌△ DEF ,∴ A D .
【提示】先求出 BC FE ,利用 SSS 证明△ ABC≌ △ DFE ,进而得到对应角相等。 【考点】全等三角形的判定和性质。
19.【答案】 BQ 就是所求作的 ABC 的平分线, P,Q 就是所求作的点。
3 是红球。 【考点】概率的计算。 14.【答案】7 【解析】∵点 A, B 表示的数分别是 1,3,∴ AB 2 ,∵ BC 2AB , BC 4 ,∵点 C 在点 B 的右侧,∴点 C 在点 B 的右侧,∴点 C 表示的数是 3+4=7。 【考点】数轴上表示数。 15.【答案】108 【解析】∵正五边形的外角和为 360 ,∴正五边形的每个外角为 360 5 72 ,∴正五边形的每个内角 为108 , AOC BOD 108 , DCO CDO 72 ,∴ CDO 36 ,∴ AOB 360 AOC BOD COD 360 108 108 36 108 。
sin2 sin2 90 sin230 sin260


1 2
2




2
3
2

1 3 1. 44
所以 sin2 sin2 90 1成立。
(2)小明的猜想成立。证明如下: 如图,△ ABC 中, C 90 ,

a2

2

a3

1 2

a4


1 2

∴可令点
B
的坐标为

2017中考会考数学卷之二(含答案)

2017九年级中考模拟(二)数学试卷说明:1.全卷共4页,考试时间100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,在选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁.考试结束时,将试卷与答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)1、下列汽车标志中,即使轴对称图形又是中心对称图形的是( )2、下列方程是一元二次方程的是( )A.(x -3)x =x 2+2B. ax 2+bx +c =0C. 3x 2-x 1+2=0 D. 2x 2=1 3、对于2)3(22+--=x y 的图象,下列叙述不正确的是( )A. 顶点坐标为(3,2)B. 对称轴为直线3=xC. 当3≥x 时,y 随x 的增大而增大D. 当3≥x 时,y 随x 的增大而减小4、已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A .40°B .100°C .40°或100°D .70°或50°5、一个小组有若干人,新年互送贺卡一张,若全组共送贺卡72张,则这个小组共有( )A. 12人B. 18人C. 9人D. 10人6、用配方法解方程x 2+2x -5=0时,原方程应变形为( )A .(x +1)2=6B .(x ﹣1)2=6C .(x +2)2=9D .(x ﹣2)2=9 7、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3等于( )A .55°B .60°C .65°D .70°A. B. C. D.8、已知2是关于x 的方程0322=+-m mx x 的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则这个三角形ABC 的周长为( )A. 10B. 14C. 10或14D. 8或109、二次函数c bx ax y ++=2的图象如图所示,给出以下结论:①0>a ,②0>b ,③0<c ,④042>-ac b .其中所有正确的序号是( )A. ②④B. ①③C. ③④D.②③10、将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n 次操作后,得到正方形的个数是( )A. 4n +1B. 4n -1C. 2n +1D.2n -1二、填空题(本大题6小题,每小题4分,共24分)11、如果关于x 的一元二次方程042=-+m x x 没有实数根,那么m 的取值范围是 .12、二次函数c bx ax y ++=2的图象的对称轴为直线1=x ,图象与x 轴的一个交点为)0,3(-A 则该图象与x 轴的另一个交点B 的坐标是 .13、抛物线c bx ax y ++=2的图象如图所示,则当0>y 时,x 的取值范围是 .第13题 第16题 14、某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价百分率是 。

2017年福建省中考数学试卷及答案解析


应用图形的对称性解决问题是关键.
三、解答题 :本题共 9 小题,共 86 分.解答应写出文字说明、证明过程或演算步骤.
17. 先化简,再求值: (1 1 ) a ,其中 a 2 1. a a2 1
12
【答案】 , .
a+1 2
【解析】
试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可.
因为 5500<5800,故收费调整后,此运营商在该校投放 A 品牌共享单车不能获利.
24.如图,矩形 ABCD 中, AB 6, AD 8 , P, E 分别是线段 AC、BC 上的点,且四边形
C
D
16. 已知矩形 ABCD 的四个顶点均在反比例函数 y 1 的图象上,且点 A 的横坐标是 2,则 x
矩形 ABCD 的面积为

【答案】7.5
5
y B
C
O
A x
D
点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线 y=±x 对称,矩
形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能
[中国教@^育*出版网#%]
sin2 29o sin2 61o 0.482 0.872 0.9873 , sin2 37o sin2 53o 0.602 0.802 1.0000 ,
sin2 45o sin2 45o ( 2 )2 ( 2 )2 1.
[中@#国教育出~&版*网]
4.化简 (2x)2 的结果是( )
A. x4
B. 2x2
C. 4x2
【答案】C 【解析】(2x)2=4x2。故选 C.
D. 4x
1
D.136 106
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 1 页 2017年九年级数学中考模拟试卷 一 、选择题: 1.某商店以每套80元的进价购进8套服装,并以90元左右的价格卖出.如果以90元为标准,超过标准的售价

记为正数,不足标准的售价记为负数,出售价格记录如下:+2,﹣3,+5,+1,﹣2,﹣1,0,﹣5(单位:元).其它收支不计,当商店卖完这8套服装后( ) A.盈利 B.亏损 C.不盈不亏 D.盈亏不明

2.如图,已知∠1=∠2,若要∠3=∠4,则须( )

A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB∥CD

3.下列运算正确的是( )

A.(x﹣2)2=x2﹣4 B.(x2)3=x6 C.x6÷x3=x2 D.x3•x4=x12

4.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、

E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )

A.18户 B.20户 C.22户 D.24户 5.如图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是( )

A.3 B.4 C.5 D.6 6.下列分式中,属于最简分式的是( )

第 2 页 共 2 页

7.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除

所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是( )

A. B. C. D.

8.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是

( ) A.80cm B.40cm C.20cm D.10cm

9.下列图形是轴对称图形的是( )

A. B. C. D.

10.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购

买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是( )

A. = B. = C. = D. =

二 、填空: 11.如图是一个数值转换器.若输入x的值是3,则输出的值是 .

12.分解因式:2x2﹣4x+2= .

13.2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,

这个数用科学记数法表示为 . 第 3 页 共 3 页

14.一个不透明的袋子中装有3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,摸出

的球是黄球的概率是 .

15.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的半径为 cm.

16.如图,AB是⊙O的直径且AB=4,点C是OA的中点,过点C作CD⊥AB交⊙O于D点,点E是⊙O上一点,连接

DE,AE交DC的延长线于点F,则AE•AF的值为 .

三 、计算题: 17.先化简,再求代数式的值,其中,.

18.解不等式组:,并把解集在如图数轴上表示出来.

四 、解答题: 19.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,

将△CDF沿DF翻折,使点C落在对角线BD上的N点. (1)求证:四边形BFDE是平行四边形; (2)若四边形BFDE是菱形,AB=3,求菱形BFDE的面积. 第 4 页 共 4 页

20.今年4月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,

并绘制了如下两种不完整的统计图.

根据图中提供的信息,回答下列问题: (1)参加朗诵比赛的学生共有 人,并把条形统计图补充完整; (2)扇形统计图中,m= ,n= ;C等级对应扇形的圆心角为 度; (3)学校准备从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率. 第 5 页 共 5 页

21.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.

22.如图,四边形BFCD为平行四边形,点E是AF的中点.

(1)求证:CF=AD; (2)若∠ACB=90°,试判断四边形BFCD的形状,并说明理由.

23.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.

(Ⅰ)求⊙O的半径; (Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案) 第 6 页 共 6 页

五 、综合题: 24.如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.

(1)求这条直线的函数关系式及点B的坐标. (2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由. (3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少? 第 7 页 共 7 页

25.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE

和DF相交于点C. (1)求证:四边形ABCD是正方形; (2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由. (3)若EG=4,GF=6,BM=3,求AG、MN的长.

参考答案 1.A 2.D 3.B 4.D 5.C 6.B 7.C 8.B 9.B 10.D 11.答案为:﹣4. 12.解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2. 13.答案为:4.51×107.

14.答案为:. 15.答案:5cm. 16.答案为:12.

17.解:原式=, 第 8 页 共 8 页

当, 原式=. 18.答案为:2<x<3 19.

20.

21.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x, ∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x, ∵BD=BC,∴∠C=∠BDC=3x, ∵AB=AC,∴∠ABC=∠C=3x, 在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.

22.(1)证明∵AE是DC边上的中线,∴AE=FE, ∵CF∥AB,∴∠ADE=∠CFE,∠DAE=∠CFE.

在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=DA. (2)解:四边形BFCD是菱形;理由如下: ∵CD是△ABC的中线,∴D是AB的中点,∴AD=BD, ∵△ADE≌△FCE,∴AD=CF,∴BD=CF,∵AB∥CF,∴BD∥CF, 第 9 页 共 9 页

∴四边形BFCD是平行四边形,∵∠ACB=90°,∴△ACB是直角三角形, ∴CD=0.5AB,∵BD=0.5AB,∴BD=CD,∴四边形BFCD是菱形. 23.解:(Ⅰ)如图1,连接OA,OC,∵∠ABC=30°,∴∠AOC=60°, ∵PC是∠APB的平分线,∴∠APC=∠BPC,∴,

∴AD=BD=,OC⊥AB,∴OA=1,∴⊙O的半径为1; (Ⅱ)如图2,∵PC平分∠APB,∴∠APC=∠BPC,∴AC=BC,由AB=cm,求得AC=BC=1, ∵S四边形PACB=S△ABC+S△PAB,S△ABC为定值,当S△PAB最大时,四边形PACB面积最大, 由图可知四边形PACB由△ABC和△PAB组成, 且△ABC面积不变,故要使四边形PACB面积最大,只需求出面积最大的△PAB即可, 在△PAB中,AB边不变,其最长的高为过圆心O与AB垂直(即AB的中垂线)与圆O交点P,此时四边形PACB面积最大.此时△PAB为等边三角形,此时PC应为圆的直径∠PAC=90°,

∵∠APC=∠BAC=30°,∴PC=2AC=2,∴四边形PACB的最大面积为×=(cm2).

24.解:(1)∵点A是直线与抛物线的交点,且横坐标为﹣2, ∴y=×(﹣2)2=1,A点的坐标为(﹣2,1),设直线的函数关系式为y=kx+b,

将(0,4),(﹣2,1)代入得,解得,∴直线y=x+4, ∵直线与抛物线相交,∴x+4=x2,解得:x=﹣2或x=8, 当x=8时,y=16,∴点B的坐标为(8,16); (2)如图1,连接AC,BC, ∵由A(﹣2,1),B(8,16)可求得AB2=325. 设点C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5, BC2=(m﹣8)2+162=m2﹣16m+320,

①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2﹣16m+320,解得:m=﹣; ②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2﹣16m+320,解得:m=0或m=6; ③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2﹣16m+320+325,解得:m=32;

∴点C的坐标为(﹣,0),(0,0),(6,0),(32,0)

(3)设M(a, a2),如图2,设MP与y轴交于点Q,

相关文档
最新文档