An ACO Look-Ahead Approach to QOS Enabled Fault- Tolerant Routing in MANETs
一种MANET中基于位置的可信路由

2 1 年9 00 月
应
用
科
学
学
报
Vl .2 No.5 0 1 8
S p. 0 0 e 2 1
J OURNA L 0F APPL ED I SCI ENCES— Elc r ni sa d I o m a i n Eng n e i g e t o c n nf r to i e rn
2 ol eo vre d ct n Na j g U iest { ssa d T l o .C lg lO esaE u ai . ni nvri o Pot n ee mmu iain 。 e o n y c nct s o
Na jn 2 0 3 n i g 1 0 ,Chna 0 i
3 ol eo o ues Najn n vri f o t a dT l o .C lg fC mp tr, nig U iest o s n e cmmu iain 。 nig 2 0 0 ,C ia e y P s e nc t s Na j 1 0 3 hn o n
A bs r t To de l wih t e s f t a n s n r ss i g a tv t a k r m a i i u o e ,t u t m e rc t ac : a t h a e y we k e s i e itn c i e a t c s fo m l o s n d s r s t i c i n r d c d t o b t t e a t c s b o di g a t u t m o e n t r p s d d s a c - a e o a i n a d d s ito u e o c m a h t a k y la n r s d lO he p o o e it n e b s d l c to — i e
一种改进的RFID动态帧时隙ALOHA算法

K y w r s l m l t ; L H l r h a t c ls n tru h u ; a i f q e c e t c t n R I ) e o d :f es t d A O A agi m; n —o i o ; ho g p t rd e u n yi n f ai ( F D a oe ot i li or d i i o 0 引 言
10 4
传感器与微 系统 ( rndcr n coytm T cnl is Tasue dMi ss ehoo e) a r e g
21 0 2年 第 3 卷 第 7期 l
一
种 改 进 的 R I 动 态 帧 时 隙 AL FD OHA算 法
潘峥 嵘 ,尚 凯
( 兰州理工大学 电气与信息工程学院 。 甘肃 兰州 7 0 5 ) 30 0
r s n e o e d ra hes m etme, c l a s lc rni a olso An e h nc d d n mi r me so td e po s ner a e tt a i whih wilc u eee to ct g c liin. n a e y a cfa lte ALOHA loihm o n ic lii n i ag rt f ra t— olso n RFI s tms i r p s d y nay i g fa so td ALOHA lo t D yse s p o o e b a lzn r me lte a g r hm. i Th sa g rtm a e h i lo h m k st e RFI s se g tte ma i m h o g p n mp o e t a src g iin f ce c y i D y tm e h x mu t r u h uta d i r v het g e o n to e in y b i e tm ai h a u b rwihn h c p ft e d ra d s ti g te be tfa el n t Si l to es lss o si tng te t g n m e t i t e s o e o her a e n etn h s r m e gh. mu ain r ut h w t a h o  ̄y o h r p e lo t m s i o e c m p r d wi r d t a h tte prpe ft e p o os d ag r h i mprv d, o a e t ta ii lALOHA l o t . i h on ag r hm i
无线传感器网络中异常读数检测算法研究

21 00年 9月
计 算 机 应 用 研 究
Ap l ai n Re e r h o o u e s pi t s a c fC mp tr c o
Vo . 7 N . 12 o 9 Sp 2 0 e . 01
无线传 感 器 网络 中异 常读 数检 测 算 法研 究 木
A b tacin lo t msi S ae o o ed s d a tg ss c sl we tc in p e i sr c u d t tte e itn u le ee to a g r h nW N r fs m ia v n a e u h a o rdee to r c— i so in,hg e o ih rc mmu i ain c mplxt nd c mp ai n lc mplxt ue t o n u h c nsdea in o h p to tmp rl n c to o e i a o utto a o y e i d o n te o g o i r to f te s ai -e o a y
An may r a i g d tc i n ag rt m n W S o l e d n e e to lo i h i N
X UE An-o g,LIMi g rn n
( colfC m ue Si c Tl o u i tnE gnen , ins n esy Z e iu mn 10 3, h a Sho o o p t c ne& e cmm nc i n ier g JaguU i rt, hna gJ  ̄u2 2 1 C i ) r e e ao i v i j n
有 算法。
关键词 :无 线传感 器网络 ;异 常检 测 ;时空关联性 ;分布计算 ;隐私 保护 中图分类号 :T 3 1 P 1 文献标 志码 :A 文 章编号 :10 —6 5 2 1 ) 9 3 5 4 0 1 39 (0 0 0 .4 2 0 di1 .9 9 ji n 10 —6 5 2 1 .9 0 7 o:0 3 6/ . s.0 13 9 .0 0 0 .6 s
考虑网络吞吐量的异构无线传感器网络分簇路由算法

第44卷第3期2022年5月沈 阳 工 业 大 学 学 报JournalofShenyangUniversityofTechnologyVol44No3May2022
收稿日期:2020-11-13.基金项目:陕西省科技计划项目(2018JM6099).作者简介:许知博(1986-),男,河南尉氏人,高级工程师,硕士,主要从事电力系统信息化及通信等方面的研究.
doi:10.7688/j.issn.1000-1646.2022.03.15考虑网络吞吐量的异构无线传感器网络分簇路由算法
许知博1,2,段 新3(1西安电子科技大学电子信息学院,西安710126;2陕西省地方电力(集团)有限公司信息化工作部,西安710075;3陕西省地方电力物资有限公司,西安710038)
摘 要:针对在异构无线传感器网络信息聚类过程中,当层数为3~5层时,存在网络吞吐量较低的问题,提出一种异构无线传感器网络分簇路由算法.分析异构无线传感器网络能耗的无线电一阶模式,构建异构无线传感器网络的能耗模型.当簇群请求节点接收到发送于簇头的码分多址编码与时分多址时隙后,转发数据并使其稳定传输;引入狼群算法建立路由路径,实现异构无线传感器网络分簇路由算法优化.结果表明,异构无线传感器网络层数为3~5时的网络吞吐量均得到提高.关 键 词:狼群算法;异构无线传感器网络;聚类路由算法;多路径衰落模型;自由空间模型;数据稳定性;多址编码;路径匹配中图分类号:TP301 文献标志码:A 文章编号:1000-1646(2022)03-0326-05
Clusteringroutingalgorithmforheterogeneouswirelesssensornetworksconsideringnetworkthroughput
XUZhibo1,2,DUANXin3(1.SchoolofElectronicEngineering,XidianUniversity,Xi’an710126,China;2.InformatizationDepartment,ShaanxiProvincialElectricPower(Group)Co.Ltd.,Xi’an710075,China;3.ShaanxiProvincialElectricPowerSuppliesCo.Ltd.,Xi’an710038,China)
QoS

生 哪 种 数 据 包 。没 有 分 类 , 网络 就 不 能 确 定 对 特 殊 数 据 包 要 进 行 的处 理 。所 有 应 用 都 会 在 数 据 包 上 留下 可
以用 来 识 别 源 应 用 的标 识 ,分 类 就 是 检 查 这 些 标 识 , 识别数据包是 由哪个应用产生 的。 2 标 注 功 能 。在 识 别 数 据 包 之 后 , 对 它 进 行 标 ) 要
维普资讯
C i d ct nl ehi e& Eu m n h aEuai a Tcn u n o q qi et p
技 术 大
观
Q S网络 功 能 与 设 计 o
目前 , 经 实 现 网 络 信 息 化 的 机 构 、 位 和 企 业 , 已 单 基 本 上 都 处 于 一 种 软 件 应 用 的 环 境 中 , 计 算 机 局 域 其 网 都 必 须 拥 有 足 够 的 带 宽 和 强 大 的 服 务 质 量 ( o ) QS , 以 便 在 任 何 条 件 下 都 能 提 供 可 靠 和 可 预 测 的 应 用 性 能 。可 想 而 知 , 如 今 应 用 多 样 化 的情 况 下 , 有 Q S 在 没 o 的 网络 会 影 响 整 个 网 络 的 运 行 。 通 常 在 是 对 关 但 键 应用 和 多媒 体 应 用 就 十 分 必 要 。尤 其 当 网络 过 载 或 拥 塞时 ,o Q S可 以 确 保 重 要 业 务 量 不 受 延 迟 或 丢弃 , 同 时保 证 网 络 的 高效 运 行 。拥 有 Q S的 网络 是 一 种 新 型 o
时 间来 实 现 。 由 于 电 子 变 焦 , 图像 像 素 间会 产 生 黑 部 分 , 用 垂 直 内插 和 水 平 内插 来 消 除 它 。 电 子 变 焦 倍 利 数 太 大 时 , 引 起 图 像 颗 粒 明 显 的 缺 点 。视 频 展 示 台 会
demonstra

QoS-Aware Cross-Layer Multicasting for Optical Packet-Switched Networks: Simulation Exploration and Test-BedDemonstrationCaroline P. Lai(1), Balagangadhar G. Bathula(2), Vinod M. Vokkarane(2), and Keren Bergman(1)(1)Dept.ofElectricalEngineering,ColumbiaUniversity,NewYork,NY;********************.edu(2) Dept. of Computer and Information Science, University of Massachusetts, Dartmouth, MAAbstract Cross-layer quality-of-service-aware packet multicasting is investigated for optical packet-switching network fabrics. We present both a numerical simulation exploration of the cross-layer routing algorithms and an experimental demonstration on an optical switching test-bed with 10×10-Gb/s wavelength-striped packets.IntroductionA novel Internet architecture will be essential toaccommodate the exploding bandwidthdemands faced by the current infrastructure.The next-generation design should leverageinnovative optical technologies to offer a moreintelligent, programmable optical layer withflexible bandwidth allocation and dynamicinteraction with higher network layers1. Weenvision an integrated platform for optical cross-layer (OCL) network communication and control(Fig. 1). OCL enhanced designs will facilitate theextraction of optical performance monitoring(OPM) measurements directly from the optical layer to optimize performance2. These OCL routing protocols must also invoke quality-of-service (QoS) classes on the optical layer. Ultimately, the OCL-optimized algorithms must provision for the data’s QoS as well as for the physical-layer performance and impairments2-5.The future Internet should also engage emerging physical-layer technologies, such as optical packet switching (OPS)6. OPS networks comprise a favourable technology approach to enable the flexible high-bandwidth, low-latency interconnections required by future Internet applications. OPS fabrics may be deployed within optical network routers to support high-bandwidth multi-wavelength packet streams between line cards. Additionally, OPS fabrics may achieve a high level of programmability to transparently route wavelength-division-multiplexed (WDM) packets entirely in the optical domain. A significant application that may leverage the greater functionality and programmable flexibility is broadband packet multicasting. We define packet multicasting as the ability to simultaneously transmit broadband multi-wavelength optical messages from a single source to multiple output destinations7. Multicasting may be advantageous in high-bandwidth applications, such as networked gaming and real-time diagnostic telemedicine.Broadband QoS-based packet multicasting constitutes an important functionality for future OPS networks. Notably, for bandwidth and latency sensitive applications, such as real-time collaboration, high-QoS packet transmission may be leveraged to provide a high-quality communication link. Here, we explore an OCL-enabled platform whereby a packet multicasting operation is realized accounting for both the message’s QoS and physical-layer degradation. The concept of cross-layer QoS-aware multicasting is investigated both in simulation and with a test-bed demonstration. We first provide a simulation-based comparative analysis between shortest distance and minimum hop routing algorithms using the NSF network. We then experimentally demonstrate the OPS fabric within one NSF node, validating the error-free operation of cross-layer QoS-based multicasting with bit-error rates (BERs) less than 10-12 and a power penalty of 2 dB. Simulation ValidationThe proposed OCL algorithms for QoS-aware packet multicasting are first investigated in simulation. One-way signaling is used to reduce the end-to-end packet transmission latency. The 14-node NSF network topology (Fig. 2) is Fig. 1: Cross-layer-optimized stack, indicating thebidirectional information flow between the application(top), network and routing (middle), and optical layers (bottom) enhanced to provide QoS guarantees.ECOC 2010, 19-23 September, 2010, Torino, Italy Th.9.A.5 978-1-4244-8534-5/10/$26.00 ©2010 IEEEnumerically simulated using a global control plane to track each node’s QoS performance. A centralized routing and wavelength assignment(RWA) scheme is realized. Packets areassumed wavelength-striped, using tenwavelength channels each at 10 Gb/s.Packets are simulated as discrete events 3. The packets follow a Poisson arrival rate and depart with exponential service times. Upon an arrival event, each packet is assigned to a request and then routed based on a minimum distance routing (MDR) or a minimum hop routing (MHR) algorithm. The necessary QoS parameters are retrieved from the application layer. Optical packets reaching the destination ensure that the threshold requirements imposed by the application layer are met 8. The QoS is embedded in the control signal and is updated as the packet propagates through the network. The QoS parameters consist of its BER, latency, priority, and the reliability of the link. At each node, the QoS of the routed packet is computed online and compared with the threshold requirement of the application. If the QoS parameters are violated, the packet is dropped or rerouted on an alternate path if available. Multicasting is initiated as required.An intelligent, efficient control plane acts as a middleware between the application and optical layers 8. Based on the control plane decision, the optical packet is routed on the link.Using the parameters in Tab. 1, the BER is estimated based on the optical-signal-to-noise-ratio (OSNR). Since the BER is a nonlinear function, we compute the link’s noise factor. The overall noise factor of the lightpath is computed as a product of the individual noise factors of the links 8. The overall latency of the packet is the sum of the individual latencies of the links. The reliability of the switch is based on the downtime and path restoration time. The priority parameter enables possible packet routing on alternate network paths.The performance of the proposed QoS-aware cross-layer multicasting is simulated using the NSF network with the distances scaled down by a factor of ten, due to the lack ofregenerators at the node’s switching fabrics. InFig. 3, we compare the performance of the NSFtopology in terms of packet loss, averagelatency of the packet, hop count, and execution time for the routing algorithm. The x-axis for all the plots in Fig. 3 is the offered network load in Erlang, defined as the ratio of the arrival rate to the departure rate. In Fig. 3(a), we observe that MHR offers lower loss compared to MDR at low network loads. This indicates that packets routed based on hopcount show a higher probability of successfully guaranteeing the QoS imposed by the application layer. The average latency (Fig. 3(b)) of MHR is higher than MDR; this may not be problematic if the latency threshold is still satisfied. Thus, the routing layer can adopt ahop-routing at lower network loads. As the load increases, the packet loss for both algorithms converges (Fig. 3(a)). In order to optimize performance, the application layer can instruct the routing layer to switch to distance routing at higher network loads. Thus, cross-layer communication helps to achieve design trade-offs and provide the necessary QoS. We also compare the average hop count for the two routing methods. It is evident that the hop countfor the MHR is lower than MDR (Fig. 3(c)). A decrease at higher loads indicates that providing QoS for optical packets that traverse longer hops is more problematic. Fig. 3(d) shows the execution time (in hours) required for the simulations using a 2.33-GHz Quad Core Xeon processor with Hyper-Threading and 8-GB RAM.Fig. 2: NSF topology with bidirectional links between thenodes, each carrying 10×10-Gb/s packets.Tab. 1: Simulation Parameters. Parameter Value Number of Packets 106BER 10-9Latency 1 msInput Optical Power -10 dBmInline Amplifier Gain 14 dBSwitch Crosstalk Ratio 25 dBStarting Wavelength 1537.4 nmWavelength Spacing 2.8 nmFig. 3:Performance of the scaled NSF network.Experimental DemonstrationThe QoS-based broadband packet multicasting operation is experimentally demonstrated on a multicast-capable OPS fabric test-bed 7 (Fig.4). The fabric test-bed represents the optical switching fabric deployed within one node of the NSF network. The multistage test-bed is implemented with 2×2 photonic switches, which use semiconductor optical amplifiers (SOAs). Wavelength-striped packets are supported, with control information (e.g. frame, address, QoS) encoded on a subset of wavelengths and the payload segmented and modulated at a high data rate (e.g. 10 Gb/s) on the rest of the band. The 2×2 switches detect the control information at the packet’s rising edge using filters and receivers. The packet’s header bits are processed electronically at each stage. The routing control logic gates the correct SOAs to provide the desired routing. No optical buffers are used. The multicast-capable fabric 7 is realized with a multistage design, using differing packet routing (PR) and packet multicasting (PM) stages. The stages have distinct control logic that depends on the recovered header bits. An SOA-based receiver is realized 4 whereby the real-time performance of optical packets can be monitored. Switching is triggered on the per-packet QoS and signal degradation (here, BER). Low-QoS/high-BER packets are detected by the cross-layer receiver and rerouted on an alternate path. The pseudo-BER signal is generated offline in place of an OPM, though a real-time packet OSNR monitor may be used 2. The QoS-aware packet multicasting is validated on the 4×4 optical fabric test-bed with two PR and three PM stages. The 10×10-Gb/s wavelength-striped packets are 120-ns long, analogous to the Ethernet MTU. The 1500-B packets are modulated by a LiNbO 3 modulator with 27-1 PRBS; the payload wavelengths range from 1537.4 to 1564.0 nm. Fig. 5 depicts the pattern of optical packets injected in the multicast-capable fabric with two QoS levels (high/low priority). The QoS and packet signal quality are assessed and a real-time decision is made to forward or reroute the message on aprotection path. At the output, we verify that error-free QoS-based packet multicasting is achieved. BERs<10-12 are obtained on all ten payload wavelengths. BER curves for the system show a 2-dB power penalty (Fig. 6). ConclusionsFuture networks will require a QoS-aware cross-layer protocol stack. This work confirms that broadband packet multicasting can be realized accounting for physical-layer access in a cross-layer-optimized approach. Numerical results and a demonstration on a fabric test-bed show that packet multicasting can be performed based on QoS and signal degradation. This exploration leverages an OCL-optimized platform and novel optical technologies to achieve performance gains for next-generation networks.We acknowledge support from the CIAN NSF ERC (subaward Y503160); BBN, GENI Project Office (agreement 1631); and the NSF SOON project (grant CNS-0626798).References1 CIAN, 2 i et al., Proc. OFC’10, OTuM2 (2010).3 F.Fidler et al., Proc. ECOC’09, 2.5.2 (2009).4 i et al., Proc. ECOC’09, 2.5.3 (2009).5 S.Azodolmolky et al., Proc. ONDM’09 (2009).6 E.W.M.Wong et al., JLT 27 (14) (2009). 7 i et al., Proc. OFC’10, OWI4 (2010).8 B.G.Bathula et al., TON 18 (1) (2010).Fig. 4: Experimentally implemented multicast-capablefabric architecture and test-bed photograph.Fig. 6: Sensitivity curves with insets of the 10-Gb/s eyediagrams (input: left, output: right).Fig. 5: Optical waveforms corresponding to the QoS-aware packet multicasting operation.。
一种简单的VOQ交换机时延确保分组调度算法_张福阳
方法的突出问题是计 采用两级交换结 构 ,
2 调度算法
在 V O Q 中提供确定性 Q o S 保障 , 必须保证任 意端口对在任意时间段中的最小服务量 . 具体体 现在两个方面 , 一是输出端口必须提供传输带宽 的保证 , 即在适当的时间与相应的输入端口匹配 ; 二是当与输出端口匹配时 , 相应输入端口中的分 组要赢得输入竞争 , 使用传输机会 . 基于流的调 度 , 还要裁决 V O Q 队列中的分组竞争 . 对于输入 、输 出竞争 , 为了算 法易于物 理实 现 , 本文采用轮询的方式 , 保证每个 V O Q 队列都 i ,j 能在 每个轮 询周期 内获 得一次 服务机 会 . 裁决 V O Q 队列的竞争采用 E D F 策略 , 即分组在到达时 被赋予一个 时限 ( d e a d l i n e ) , 该 时限用于竞 争裁 决. 本文假设所有分组都是在时隙开始后到达 , 时 隙结束前从输入端口传输到输出端口 . 调度算法 具体如下 : 1) 在 0 时刻 , 对端口匹配矩阵 Π初始化 πi ,j= 1 若 j =i 0 其它 ( 2)
DO I : 10 . 13700 / j. bh . 1001 5965 . 2008 . 11 . 027 2008 年 11 月 北京航空航天大学学报 第 34卷 第 11期 J o u r n a l o f B e i j i n gU n i v e r s i t yo f A e r o n a u t i c s a n dA s t r o n a u t i c s
S i mp l es c h e d u l i n ga l g o r i t h mf o r d e l a yg u a r a n t e e i nV O Qa r c h i t e c t u r es w i t c h e s
一种基于蚁群优化的动态节能路由选择策略
一种基于蚁群优化的动态节能路由选择策略屈巍;赵晶;洪洋【摘要】针对无线传感器网络中寻找最优路径的问题,考虑网络的节能需求,提出了一种基于蚁群优化的动态节能路由选择策略.蚁群算法在进行过一段时间后,受转移概率公式影响易于陷入局部最优解,因此在提出的基于蚁群优化的动态节能路由选择策略中设计了动态状态转移优化规则,合理的增加了新节点的搜索概率,从而达到快速有效的寻找全局最优解的目的;此外,基于蚁群优化的动态节能路由选择策略设计了奖罚机制,进一步节省搜索时间的同时增加最优路径搜索概率,极大的延长了网络生存时间.仿真实验及分析表明,通过动态状态转移优化规则及奖惩机制的动态调整极大的增加了全局最优解的搜索概率,快速有效地实现了全局最优解的获得,节省了节点能量消耗,有利于延长网络生存时间.【期刊名称】《沈阳师范大学学报(自然科学版)》【年(卷),期】2016(034)002【总页数】6页(P234-239)【关键词】无线传感器网络;蚁群算法;状态转移优化规则;奖惩机制【作者】屈巍;赵晶;洪洋【作者单位】沈阳师范大学科信软件学院,沈阳 110034;沈阳师范大学科信软件学院,沈阳 110034;巴斯大学科学学院,巴斯 BA27AY【正文语种】中文【中图分类】TP393无线传感器网络由大量具有感知能力、计算能力和通信能力的传感器节点以自组织的方式构成,被广泛的应用于军事及民用领域[1-3]。
由于一般工作在无人值守的监控环境中,网络节点电池更换成本较高,因此无线传感器网络的路由设计更多关注于节点能量消耗的最小化[4-9]。
出于这些原因,节点在较短的时间内找到最短的路径进行通信不仅利于有效降低节点能耗、延长网络生存时间,也大大提高了无线传感器网络的工作效率,这是目前传感器网络路由设计的一个重要研究方向。
由Dorigo M等在1991年首次提出的蚁群算法成为解决此问题的一类典型研究方法,近年来受到广泛研究[10-13]。
满足QoS约束的自适应Ad Hoc网络路由算法
[ s at Ab t c]AdHo ewokiatmp rr l—o i ls c mp tr o r cnt r e oaymuth pwr es o ue mmu i t nnt r a o oe f bl h s o s i e c nc i ewokt ts mp sdo i otc mmu ia n ao h ic mo e s nct g i
中提供 Q S保证 是非常困难 的。因此, Qo o 软 S和 自适 应 Q S o 是在移动 A o d H c网络中提供 Q S保证 的 2个妥协准则…。 o 基于 Qo 路 由协议 的基 本 目标 是确定满足 Qo S S需求的一条 自
附加 的参数相关 的约束 问题 。处理与附加参数相关问题 的方 法则要 困难更多 。因此 , 不失一般性 ,这里考虑附加的方法 。 定义 1多约束路径( l—o s a e a , P问题 : Mut C nt i d t MC ) i rn P h 考虑一个 网络 G(,) VE 。每条边( f ∈E与 个附加权 W ( ) k j i ≥0 i1 , K相 关联 。给定 个约束 , , , …, =2 =1 , K,问题 , …, 2
文献标识码: A
中圈分类号lT 33 2 P9. 0
满足 Qo S约束 的 自适应 A c网络路 由算法 dHo
张书奎
( 苏州大学计算机科学与技术学 院,苏州 2 0 ) 0 6 1 5
摘
一
要 :自组 网是 由一组带有无线收发装置移 动节点组成的一个能够支持多跳 的临时性计 算机通信 网络,其拓扑的动态变化是该类 网络的
wi aho e ru hwi ls n sDy a c o oo yi a y iac aatrAn w Q Sru n lo tm r blAdHo ewok , hc h t e c t r o g r es ik. nmi p lg pcl hrce. e o ot gag r h t h e l t s t i i h f i cnt rsw i i o mo e hs n me SA r efA a t eRo t gAloi m( S RA)i rp sdi ip p rIitgae emut l Qo aa tr o a i t a dQo — waeS l d pi ui g r - v n h t QA—A ,s o oe t s a e.tnerts lpe Sp mees frf ci o p nh h t i r t n
基于模糊QoS满意度的启发式多约束路由算法
第1 2期
刘 源旭等 : 于模糊 Q S 基 o 满意度 的启 发式 多约束路 由算 法
・ 3・ 5
量, 包括此 条边 上带宽 、 时延 、 时延抖动和丢包率等等 ,
估价 函数 : hx = () = () 4
其 中第 i 个参数可 以表示为 c Ⅱ ; ,) p=( ,。 : … , ( s ,,
中 图分类号 :P0 . T 316 文献标识 码 : A 文章 编号 :63 69 2 1 )2 05 — 3 17 — 2X(0 1 1— 02 0
A u itc M u t- n t an s Ro tn g rt m s d He rsi l Co sr i t u i g Alo i i h Ba e
是 N — o le问题 , P C mp t e 多数 Q S路 由算法都是根 据 o
i loim)s rgAgrh E算法 , 给定 的多个加性约束合成为 n t ] 将
个综合 非 线 性 约束 , 后 再 用最 短 路 径算 法 求 得 然 Q S路 由。还有一些智能方法 , o 如遗传算法 、 ]蚁群算
路 由算法 , 模糊 处 理 Q S约束 的基 础上 构 造基 于 在 o Q S满意度 与路径距离 相结合 的启 发式估价 函数 , o 通
过启 发式搜 索进行 寻路 , 具有时间复杂度低 、 响应 时间
[] 3 提出的算法 只针 对延迟 和带 宽两个 约束 , 剪掉 先
网络拓扑 中不符 合要求 的链 路 , 以延迟 为权重 利用 再
基金项 目: 国家" 6 ” 8 3 计划资助项 目( 09 A 1 2 2 20 A 0 Z 0 ) 作者简介 : 刘源旭( 9 8 ) 男 , 18 一 , 安徽铜陵人 , 硕士研究 生, 研究方 向 为基于 I P的下一代通信网络。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PROTOCOLS AND ALGORITHMS An ACO Look--Ahead Approach to qos Enabled Fault-- Tolerant Routing in MAN ETs
Surendran.S“.Prakash.S Professor,Department of Information Technology,Tagore Engineering College,Chennai,Tamilnadu,India Professor,Department of Electronics and Communication Engineering,Jerusalem College of Engineering,Chennai,Tamilnadu,India
Abstract:MANET routing 1S critical and routing decision should be made sooner before the node 1eaves the network.Fast decisions always compensate network performance. In additiOn,mo st MANET routing protocols assume a friendly and cooperative environment,and hence are vulnerable to various attacks.Trust and Reputation would serve as a major solution to these problems. Learning the network characteristics and choosing right routing decisions at right times would be a significant solution.In this work, we have done an extensive survey of fault tolerant protocols and ant colony algorithms applied to routing in MANETs.We propose a QoS constrained fault tolerant ant look— ahead routing algorithm which attempts to identify valid route and 1ook—ahead route pairs which might help in choosing the alternate path in case of valid route failure.The results prove that the proposed algorithm takes better routing decisions with 20-30 percent improvement compared with existing ant colony algorithms.
Keywords:routing;fault—tolerant;ant colony algorithms;MANETs;QoS;trust;reputation
I-INTRODUCTION Mobile Ad HOC Networks(MANETs)have enormous network flexibility and node mobility which makes MANET routing very challenging.Since MANET assumes a friendly environment.it iS vulnerable to attacks and malicious nodes.In such a dynamic network, it iS difficult to use multimedia and other advanced applications without quality—of_ service(QoS)constraint.QoS can be defined as a set of service requirement that a given network should satisfy while transmitting packets from source to destination.It is difficult to design a path with multiple QoS constraints as there can be conflicting parameters and race conditions among various parameters. Many of the popular protocols like ad hoc on・demand distance vector(AODV),dynamic source routing(DSR、and temporary ordered routing algorithm(TORA)are designed without considering QoS constraints for the path they generme.In MANETs,it is dificult to keep up—to date information about the 1ink owing to its dynamic nature and depletion of energy at node which causes link breakage.In addition,due to the mobility and constantly
93 China Communications・August 20 1 5 changing topology of the mobile ad hoc networks,it is very difficult to validate all the route messages.Developing an end to end secure routing protocol by encryption and decryption technique would solve this issue. In adverse MANET setup,both route establishment and data transmission are vulnerable to variety of attacks.Misbehaving nodes could disturb route discovery by impersonation,or by responding with false route information.This may indirectly transfer the entire network control into the hands of intruders.Therefore,in order to provide complete security,protocols might be helpfu1. Reliable transport protocols are plainly insufficient to serve the above purpose.The attack and the aftermath is far beyond the limit of such protocols. In this paper we propose to develop a fault tolerant routing algorithm based on ant colony optimisation with look—ahead property.The ant—like agents called forward ants(FANT) and backward ants(BANT)are used to measure various QoS parameters 1ike next hop availability(NHA),delay and bandwidth as parameters for sarisfying QoS constraints. Using these parameters we calculate path preference probability,that is,the probability to select a particular path from all the available paths.Path with higher path preference probability between source and destination gets selected for transmitting data.This way, the algorithm finds fault-prone nodes during route discovery phase so that it can skip them from selected path to sarisfy the given QoS requirement. n.RELATED WORK 2.1 Overview of manet routing algorithms Source initiated routing is the simplest among the existing MANET routing protocols. These protocols consist of two phases:route discovery and route maintenance.Upon the request of source node and hence on— demand,the neighbouring nodes do route discovery.This might end up with multiple valid routes from source to destination,and therefore chosing one among them varies one protocol from another.However,if the routes have loop(s)in between,simple on-demand MANET routing protocols simply ignore the routes containing loops and opt for other loop free routes. The classical Ad Hoc Distance Vector (AODV)routing protocol[1]uses the destination sequence number for each route entry.But it suffers from the disadvantage of stale entries causing the route to be inconsistent.AODV-BR[2]and A0DV- ABR[3]uses backup and adaptive backup routes respectively in case of route failures. Dynamic identification of back-up routes would involve more cost[4].Low—overhead dynamic route—repairing protocol[5]also deals with link failures.LBAQ[6]deals with link state determination but selects only link that have maximum QoS quality.Multi・path routing is sensible in case of link failures.MP・ AODV[7]is a plain multi-path version of existing AODV.Here,one main path and one back—up path to destination are found during route discovery.However,the protocol does not handle the routing decisions with reduced overhead.In addition,other alternate node disjoint path to destination is not attempted. Therefore,in case of link failures on backup routes,the protocol has to start again its route discovery process from the first stage. NDM—AODV[8]is an improvement to MP—AODV where all the node disjoint paths are found and stored in routing tables.But this accumulates the nodes and therefore reduces the performance as the network grows or the frequency of dynamism increases.AOMDV [9],AODVM[10]andAODVM—PES[11]also find multiple paths but instead of node disjoint paths;these protocols find the link disjoint Daths to the destination.In all these variations 0f A0DV.data transfer starts only after all the paths are discovered.NDMP-A0DV[12】 is ancIther alternate approach to A0D V.Here the source node starts transmission soon after the first node.di ̄oint route to destination is