螺旋桨设计与绘制汇总
螺旋桨概述

螺旋桨概述1.概念1.1结构图1 螺旋桨示意图图2 螺旋桨结构螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。
滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。
也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。
那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。
于是我们把P与h p之差(P-h p)称为滑失。
滑失与螺距P之比为滑失比:S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP式中V s/nP称为进距比。
从式中可以得出,当V s=nP时,S r=0。
即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。
因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。
1.2工作原理船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。
在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。
由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。
另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。
螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。
机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。
而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。
若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。
1.3推力和阻力以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。
螺旋桨设计毕业设计

螺旋桨设计毕业设计一、前言1.研究背景和意义螺旋桨是一种将旋转机械能转化为推力的装置,广泛应用于船舶、飞机、潜艇等领域。
螺旋桨的研究背景和意义如下:(1).提高推进效率:螺旋桨的设计和性能直接影响到船舶、飞机等交通工具的推进效率。
通过研究螺旋桨的流场、水动力性能等,可以优化螺旋桨的设计,提高推进效率,降低能耗。
(2).改善船舶操纵性:螺旋桨的设计和布局对船舶的操纵性有很大影响。
通过研究螺旋桨的水动力性能和流场分布,可以优化船舶的操纵性,提高船舶的航行安全性。
(3).降低噪音和振动:螺旋桨在运转过程中会产生噪音和振动,对环境和人员造成不良影响。
通过研究螺旋桨的流场和水动力性能,可以采取相应的措施降低噪音和振动,提高交通工具的舒适性。
(4).推动新技术的应用:随着计算流体力学(CFD)等新技术的发展,螺旋桨的设计和分析方法也在不断更新。
通过研究螺旋桨的设计和性能,可以推动新技术的应用,提高设计水平和效率。
2.研究目的和问题研究螺旋桨的目的主要包括提高推进效率、降低噪音和振动、改善船舶操纵性以及推动新技术的应用等。
以下是一些目前在螺旋桨研究中存在的问题:(1).效率提升:尽管现代螺旋桨的设计已经取得了很大的进步,但在某些情况下,仍然存在效率低下的问题。
提高螺旋桨的效率可以降低能耗,减少对环境的影响。
(2).噪音和振动:螺旋桨在运转过程中会产生噪音和振动,对环境和人员造成不良影响。
降低噪音和振动是螺旋桨研究中的一个重要问题。
(3).空泡现象:在高航速下,螺旋桨周围的水流可能会产生空泡,从而导致推力下降、噪音增加以及螺旋桨的损坏。
如何有效地控制空泡现象是一个亟待解决的问题。
(4).材料和制造工艺:螺旋桨在高速旋转和海水腐蚀的环境下工作,因此对材料和制造工艺的要求很高。
开发高性能材料和先进的制造工艺是提高螺旋桨性能的关键。
(5).多学科优化:螺旋桨的设计涉及到流体力学、结构力学、材料科学等多个学科领域。
如何将这些学科知识有效地整合到螺旋桨的设计过程中,实现多学科优化,是一个具有挑战性的问题。
第二章螺旋桨的几何形体与制造工艺

第二章螺旋桨几何形体与制造工艺螺旋桨是目前应用最为广泛的一种推进器,因而也就成为船舶推进”课程研究的主要对象。
要研究螺旋桨的水动力特性,首先必须对螺旋桨的几何特性有所认识和了解。
§ 2-1螺旋桨的外形和名称、螺旋桨各部分名称螺旋桨俗称车叶,其常见外观如图2-1所示。
图2-1螺旋桨通常装于船的尾部(但也有一些特殊船在首尾部都装有螺旋桨,如港口工作船及2 4A o =TT D (2-1)渡轮等),在船尾部中线处只装一只螺旋桨的船称为单螺旋桨船 ,左右各一者称为双螺旋桨船,也有三桨、四桨乃至五桨者。
螺旋桨通常由桨叶和桨毂构成(图2-2)。
螺旋桨与尾轴联接部分称为桨毂 ,桨毂是一个图2-2为毂帽。
桨叶固定在桨毂上。
普通螺旋桨常为三叶或四叶,二叶螺旋桨仅用于机帆船或小艇上 ,近来有些船舶(如大吨位大功率的油船),为避免振动而采用五叶或五叶以上的螺旋桨。
由船尾后面向前看时所见到的螺旋桨桨叶的一面称为叶面,另一面称为叶背。
桨叶与毂联接处称为叶根,桨叶的外端称为叶梢。
螺旋桨正车旋转时桨叶边缘在前面者称为导边 ,另一边称为随边螺旋桨旋转时(设无前后运动)叶梢的圆形轨迹称为梢圆。
梢圆的直径称为螺旋桨直径 以D 表示。
梢圆的面积称为螺旋桨的盘面积,以A o 表示:(b)截头的锥形体 。
为了减小水阻力 ,在桨毂后端加一整流罩,与桨毂形成一光顺流线形体x叶梢(端) (a)x£叶面参考线当螺旋桨正车旋转时,由船后向前看去所见到的旋转方向为顺时针者称为右旋桨 之,则为左旋桨。
装于船尾两侧之螺旋桨,在正车旋转时其上部向船的中线方向转动者称为 内旋桨。
反之,则为外旋桨。
二、螺旋面及螺旋线桨叶的叶面通常是螺旋面的一部分 。
为了清楚地了解螺旋桨的几何特征 ,有必要讨论一 下螺旋面的形成及其特点 。
设线段ab 与轴线oo i 成固定角度,并使ab 以等角速度绕轴 oo i 旋转的同时以等线速度 沿oo i 向上移动,则ab 线在空间所描绘的曲面即为等螺距螺旋面 ,如图2-3所示。
定螺距螺旋桨攻角算法及其3D图绘制

定螺距螺旋桨攻角算法及其3D图绘制多旋翼无人机一般采用定螺距螺旋桨,而定螺距螺旋桨在其不同半径处的截面的攻角都不相同,随着半径增大,桨叶的攻角会按一定规律逐渐变小,本文将讨论其攻角变化的规律,并介绍其3D图绘制方法。
一.首先要明确螺距和攻角的概念。
螺距指的是在理想状态下,螺旋桨旋转一周后,在轴向移动的距离。
攻角是指将桨叶水平放置,其某个半径处的截面与水平面的夹角。
二.当螺旋桨在旋转时,桨叶上的每一个点的运动轨迹都是一条螺旋线。
桨叶在旋转一周后,桨叶上的每一个点上升的距离都一样,越靠近旋转轴的点,运动轨迹线就越陡峭,攻角也就越大。
反之,离旋转轴越远的点,运动轨迹就越平缓,攻角就越小。
将一条螺旋线所在的圆柱面展平,则会得到一条斜直线,将此圆柱面的周长当做底边,螺距当做高,即可得到一个直角三角形,∠ɑ就是此处的攻角。
螺旋线的半径越大,则攻角越小。
由反正切函数∠ɑ=atan(a/b) [a为对边,b为邻边]代入本例,得出:∠ɑ=atan(p/(2*π*r)) [p为螺距,r为半径]三.在PROE中,我们可以利用上面的公式,来确定螺旋桨在任意半径上的攻角,扫描出一个角度渐变的曲面,并在此曲面的基础上,按照选定的翼形,扫描出最终桨叶。
下面,我们用一个实例来介绍具体操作方法。
1.首先在TOP平面上拉伸一个圆柱体,当做螺旋桨的旋转轴。
并沿着x轴的方向绘制一条直线a,直线长度等于桨叶的半径。
2.在TOP平面绘制两条曲线b和c,即桨叶的俯视轮廓外观线。
3.将作为迎风面的一侧的曲线b做为截面,在TOP平面上拉伸出一个曲面。
4.在此曲面上投影一条曲线d,即桨叶主视角上轮廓线。
5.以曲线a为主轨迹做可变截面扫描曲面,以曲线d为辅助轨迹,参数如图。
6.截面为一条直线,使曲线d的端点位于直线的中点,标注直线与TOP平面的夹角(sd7),如下图,并在关系中加入关系式。
在PROE的关系式中,反正切函数格式为∠ɑ=atan2(a,b) [a为对边,b为邻边]在本例中,可得:∠ɑ=atan2(p,(2*pi*r)) [p为螺距,r为半径]设螺距p为4.5英寸,即为114.3mm;螺旋桨半径为127mm;trajpar为PROE内置函数,其值从0到1匀速变化。
螺旋桨设计

螺旋桨设计计算书船舶原理·推进1.船体主要数据船型:单桨、集装箱船设计水线长L WL=215.00m垂线间长L PP=210.00m型宽B=32.00m设计吃水T=12.00m方形系数C B=0.655排水量∇=54000m3桨轴中心距基线Z P=4.00m 2.主机参数最大持续功率:32000kw转速:102r min⁄旋向:右旋3.推进因子伴流分数ω=0.24推力减额分数t=0.16相对旋转效率ηR=1.0船身效率ηH =1−t1−ω=1.1053船体有效马力曲线0.350.400.450.500.550.600.130.140.150.160.170.180.190.20τc =(T /A P )/(0.5ρV20.7R)σ0.7R =p 0/(0.5ρV20.7R)柏利尔空泡限界线图4.可以达到的最大航速的计算取功率储备15%,轴系效率 ηS =0.97螺旋桨敞水收到马力:P D =32000×0.85×ηS ×ηR =26384(kw )=35896.60hp假设有MAU5-70、MAU5-75、MAU5-80,按回归多项式以及回归系数计算。
(源代码见附表1)表1 按回归多项式以及回归系数计算表据表1中的计算结果可绘制P TE 、δ、P/D 及η0对V 的曲线,如图1所示。
图1 MAU5叶桨回归计算计算结果此处用MATLAB 求得相关曲线交点。
从P TE =f(V)曲线与船体满载有效马力曲线之交点,可获得不同盘面比所对应的设计航速及螺旋桨最佳要素P/D 、D 及η0。
如表2所列。
表2按图1设计计算的最佳要素5.空泡校核按柏利尔空泡限界线中商船上限线,计算不发生空泡之最小展开面积比。
桨轴沉深h s =T −Z P =12−4=8mP o −P v =P a +γh s −P V =10330+1025.24×8−174=18357.92kgf m 2⁄ 计算温度 t =15℃ ρ=104.63kgf ∙s 2m 4⁄ P V =174kgf m 2⁄ P D =35896.60hp图2空泡校核计算结果 表3空泡校核计算结果据表3计算结果作图2,用MATLAB 求得相关曲线交点。
浅谈船舶螺旋桨的设计资料

浅谈船舶螺旋桨的设计目录目录 (1)摘要 (2)关键词 (2)引言 (2)1 结构与计算要素 (3)1.1 结构组成 (3)1.2 计算要素 (3)2 项目设计过程及结果与分析 (5)2.1 船体估算数据 (6)2.2 螺旋桨要素选取及结果与分析 (6)2.3 推力曲线及自由航行计算及结果与分析 (7)2.4 计算总结 (9)2.5 螺旋桨模型的敞水实验 (9)3 螺旋桨设计的发展 (11)3.1 节能减排促使螺旋桨加快创新 (11)结束语 (13)参考文献 (14)致谢 (14)附录 (14)摘要螺旋桨是造船行业必备的推进部件,它的设计精度将直接影响船的推进速度,它为船的前进提供的推力。
螺旋桨设计是整个船舶设计的一个重要组成部分,它是保证船舶快速性的一个重要方面。
一般螺旋桨设计是在初步完成了船舶线型设计,并通过估算或用船模试验的方法确定了船体有效功率之后进行的。
影响螺旋桨推进性能的因素很多,在本设计过程中主要对螺旋桨的直径、螺距比、盘面比、桨叶轮廓形状等因素进行研究,并通过在工作中积累的经验,设计一艘内河A级拖船的螺旋桨。
关键词螺旋桨直径螺距比盘面比桨叶轮廓形状引言船在水面或水中的航行时遭受阻力,为了使船舶能保持一定的速度向前航行,必须供给船舶一定的推力,以克服其所承受的阻力。
作用在船上的推力是依靠专门的装置或机构通过吸收主机发出的能量并把它转换成推力而得,而这种专门吸收与转换能量的装置或转换能量的装置或机构统称为推进器。
推进器种类很多,例如风帆,民轮,直叶推进器,喷水推进器及螺旋桨等,螺旋桨构造简单,造价低廉,使用方便,效率较高,是目前应用最广的推进器。
1结构与计算1.1结构组成螺旋桨俗称车叶,通常由桨叶和浆毂组成。
螺旋桨与尾轴连接部分叫浆毂,浆毂是一个锥形体。
为了减小水的阻力,在浆毂后端加一整流罩,与浆毂形成一光顺流线形体,称为毂帽。
螺旋桨在水中产生推力的部分叫桨叶,桨叶固定在浆毂上。
普通螺旋桨常为3叶或4叶,2叶螺旋桨仅用于机帆船或小艇上,近年来有些船舶(如大吨位大功率的油船),为避免震动而采用5叶或5叶以上的螺旋桨。
螺旋桨课程设计任务书

1.船舶主要参数1)原始给定船舶数据船型:远洋散装货船,球鼻艏、球艉、单桨、半悬舵。
总长195.0 m设计水线长190.0 m垂线间长185.0 m型宽28.4 m型深15.8 m设计吃水11.0 m设计排水量48755t型排水体积347423 m方形系数0.821棱形系数0.8252)船舶有效马力曲线船体船舶的有效马力曲线是表征船体阻力特性的曲线一可通过近似估算或船模阻力试验来确定,对应于不同装载情况将有不同的有效马力曲线,一般有满载和压载之分。
此外考虑到由于风浪或污底等情况,则尚需增加一定百分数(20%左右)的有效马力裕度,通过下表可绘制附图二中的P E曲线。
2.主机与螺旋桨参数主机型号6RLB66 主机发出功率额定转速螺旋桨型号MAU 叶数4桨数旋向型柴油机1台P s 11100 hpn 124 r / min型叶单桨右旋螺旋桨材料ZQAL12-8-3-2(K=1.2)材料桨轴距基线高度 3.6 m 3. 设计工况、参数设计功率设计转速螺旋桨直径4. 推进因子的确定伴流分数推力减额分数螺旋桨直径轴系传送效率船身效率5. 可以达到的最大航速设计海水密度:船后螺旋桨敞水受到马力7.4 g / cm3按满载工况设计,P 0.85P sn 124 r / minD 5.6mw 0.36 t0.216D 5.6m0.981 t 1 0.2161.2251 w 1 0.362 4104.63 kgf s /m(取R 1.0):P D 0 P S 0.85 S R 11100 0.85 0.98 1.0hp 9246.3hpQ 75P D02 n75 9246.353431.721kgf m124 J2 3.14 -60螺旋桨转速:n 124 r min 2.067 r s 螺旋桨产生的扭矩螺旋桨转矩系数:KQ 0.0217以MAU4-40 MAU4-55 MAU4-70的敞水性征曲线进行设计一插值计算:其中:P TE P D00 H,见教材P264附录图一MAU4-40敞水性征图谱,由J、P/D 可查得K T、10K Q和n 0 o表一敞水图谱设计表其中:P TE P DO0 H见教材P264附录图一MAU4-40敞水性征图谱,由J、P/D可查得K T、10K Q和n 0由表一可绘制如教材P119图8-9所示,以V为横坐标,以P E、P/D、o和P TE为纵坐标绘制图谱设计的计算曲线,图中曲线P E和曲线P TE的交点即为所求的螺旋桨,将该交点平行纵轴与图中各取线的交点列于下表中。
用纸壳制作螺旋桨的方法

用纸壳制作螺旋桨的方法
制作纸壳螺旋桨的方法可以分为以下步骤:
1. 准备工具和材料:纸壳、铅笔、尺子、剪刀、胶水或胶带。
2. 将纸壳展开,并用铅笔和尺子在纸壳上画出一个矩形的形状。
矩形的长宽比可以根据自己的需求进行设计。
3. 使用剪刀将纸壳沿着画好的矩形剪下来。
4. 将剪好的纸壳沿着矩形的长边或宽边的一侧,由内到外卷起来。
5. 卷到纸壳的末端时,可以使用胶水或胶带将纸壳固定住,使其保持螺旋形状。
6. 根据需要可以制作多个纸壳螺旋桨。
需要注意的是,纸壳制作的螺旋桨可能不具备足够的强度和稳定性,适用于轻型的模型或装饰等用途。
如果需要更实用和功能性的螺旋桨,建议使用专业材料如塑料或金属来制作。
同时,使用纸壳制作的螺旋桨在潮湿环境下可能会失去原有的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺旋桨设计与绘制汇总
螺旋桨是一种船舶和飞机上常用的推进装置,其设计与绘制涉及到多个方面,包括几何形状、流体力学、材料力学等等。
以下是关于螺旋桨设计与绘制的汇总,详细介绍了各个方面的内容。
一、螺旋桨的几何形状设计
1.螺旋桨的基本几何形状包括螺距、叶片数、叶片截面形状等。
确定螺距时需要考虑推进效率和船舶/飞机的性能需求,叶片数的选择影响到螺旋桨的稳定性和噪音产生。
叶片截面形状通常为翼型,需要进行流线型设计,以减少阻力和音响。
2.利用计算机辅助设计软件进行螺旋桨的三维模型设计,可采用实体造型或曲面造型方法。
实体造型较为简单,但不易调整;曲面造型则可以更加灵活地对螺旋桨进行优化。
二、螺旋桨的流体力学设计
1.螺旋桨受到的流体力学作用主要包括阻力、升力和扭矩。
螺旋桨的叶片形状和叶片曲度将直接影响这些力的大小和分布。
三、螺旋桨的静力学和强度设计
1.螺旋桨在运行时会受到来自流体力学、离心力和惯性力等载荷的作用,因此需要进行强度和振动分析。
静力学分析用于确定螺旋桨的刚度和变形情况,而动力学分析则用于确定螺旋桨的共振频率和临界速度。
2.使用有限元分析软件对螺旋桨进行强度和振动分析,以确保螺旋桨在运行时不会发生破裂或共振失效。
四、螺旋桨的材料选择和制造工艺
1.螺旋桨常用的材料包括高强度钢、铝合金、复合材料等。
材料的选择主要考虑到强度、耐腐蚀性和重量等因素。
复合材料由于具有轻质、高强度和良好的耐腐蚀性能,逐渐在螺旋桨制造中得到应用。
2.螺旋桨的制造工艺包括铸造、锻造、机械加工和涂装等。
涂装工艺对螺旋桨的表面光滑度和耐腐蚀性都有重要影响。
总结:螺旋桨的设计与绘制涉及到几何形状、流体力学、静力学和强度分析、材料选择和制造工艺等多个方面。
设计过程中需要使用计算机辅助设计软件和CFD软件进行模拟和优化,并结合有限元分析软件进行强度和振动分析。
材料的选择需要考虑到强度、耐腐蚀性和重量等因素。
制造工艺包括铸造、锻造、机械加工和涂装等。
通过以上的设计与制造过程,可以生产出高性能的螺旋桨,提高船舶和飞机的推进效率。