大连市2013年高三双基测试卷数学理

合集下载

大连市2012年高三双基测试卷 数学(理)

大连市2012年高三双基测试卷 数学(理)


6
B.

3

2
D.
2 3
ˆ 80 x 50 ,则下列判断 6.工人月工资 y(元)与劳动生产率 x(千元)变化的回归直线方程为 y
正确的是 ①劳动生产率为 1 千元时,工资约为 130 元; ②劳动生产率每提高 1 千元时,工资平均提高 80 元; ③劳动生产率每提高 1 千元时,工资平均提高 130 元; ④当月工资为 210 元时,劳动生产率约为 2 千元. A.①③ B.②④ C.①②④ ( )

4
时,求直线 BD 的参数方程。
24. (本小题满分 10 分)选修 4-5:不等式选讲 已知对于任意非零实数 m,不等式 | 4m 1 | | 1 m || m | (| 2 x 3 | | x 1 |) 恒成立,求 实数 x 的取值范围.
x x2 2
( x1 x2 ) x1 x2 .
请考生在 22,23,24 三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用 2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22. (本小题满分 10 分)选修 4-1:几何证明选讲 如图所示,已知⊙O1 和⊙O2 相交于 A、B 两点,过 A 点作⊙O1 的切线交⊙O2 于点 C,过点 B 作两圆的割线,分别交⊙O1、⊙O2 于点 D、E,DE 与 AC 相交于点 P. (I)求证:AD∥EC; (Ⅱ)若 AD 是⊙O2 的切线,且 PA=6,PC=2,BD=9,求 AD 的长.
x
D. y x x
3
4.已知 cos A.
5 , 为第二象限角,则 tan( ) = 4 5
B.


1 3
1 3

辽宁省大连市2012届高三下学期双基测试 数学(理).pdf

辽宁省大连市2012届高三下学期双基测试 数学(理).pdf

大连市 2012年高三双基测试卷 数学试题(理科) 说明: 1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第22题~第24题为选考题,其它题为必考题. 2.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回. 第I卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知等于( ) A.B. C.D. 2.设复数等于( ) A.B.C.D. 3.下列函数中,在其定义域内既是增函数又是奇函数的是( ) A.B.C.D. 4.已知为第二象限角,则=( ) A.B.C.3D.—3 5.在△ABC中,a、b、c分别为三个内角A、B、C所对的边,设向量,若,则角A的大小为( ) A.B.C.D. 6.工人月工资y(元)与劳动生产率x(千元)变化的回归直线方程为,则下列判断正确的是( ) ①劳动生产率为1千元时,工资约为130元; ②劳动生产率每提高1千元时,工资平均提高80元; ③劳动生产率每提高1千元时,工资平均提高130元; ④当月工资为210元时,劳动生产率约为2千元. A.①③ B.②④ C.①②④ D.①②③④ 7.定义在R上的函数上单调递减,且是偶函数,则下列不等式中正确的是 ( ) A.B. C.D. 8.已知函数,则函数有两个相异零点的充要条件是( ) A.B. C.D. 9.设的值( ) A.B. C.D.— 10.程序框图如图所示,其输出结果是( ) A.B.—C.0D. 11.双曲线的左、右焦点分别为F1、F2,离心率为e,过F2的直线与双曲线的右支交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则e2的值是( ) A.B.C.D. 12.棱长为的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些球的最大半径为( ) A.B.C.D. 第Ⅱ卷 本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答, 二、填空题(本大题共4小题,每小题5分,共20分.) 13.如图所示是一个几何体的三视图(单位:cm),则这个几何体的表面积 cm2. 14.设坐标原点为O,抛物线上两点A、B在该抛物线的准线上的射影分别是A′、B′,已知|AB|=|AA′|+|BB′|,则=。

2013年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2013年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2013年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x |﹣<x <},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B .C.4D .3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C :(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A .B .C .D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B 两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B .C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n ,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t ).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n =a n +,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P (0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE 交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.2013年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.【考点】并集及其运算;73:一元二次不等式及其应用.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x <或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.【考点】复数的运算.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z 的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.【考点】分层抽样方法.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.【考点】双曲线的性质.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C :(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.【考点】分段函数的解析式求法及其图象的作法;EF:程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.【考点】球的体积和表面积.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.【考点】等差数列的性质;85:等差数列的前n项和.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m ==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n ,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.【考点】由三视图求面积、体积.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.【考点】二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.【考点】椭圆的标准方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E 的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.【考点】其他不等式的解法.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax 的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.【考点】数列的函数特性;8H:数列递推式.【分析】由a n+1=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=及b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n =(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,又由题意,b n+1﹣c n+1=,∴=a1﹣b n,∴b n+1﹣a1=,∴b n﹣a1=,∴,c n=2a1﹣b n =,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.2.【考点】平面向量的基本定理;9O:平面向量数量积的性质及其运算.【分析】由于•=0,对式子=t+(1﹣t )两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(﹣2)n﹣1.【考点】等比数列的通项公式.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.﹣.【考点】两角和与差的三角函数;H4:正弦函数的定义域和值域.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx ﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.16.【考点】函数与方程的综合运用;6E:利用导数研究函数的最值.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.【解答】解:(I)在Rt△PBC 中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA 中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O 为坐标原点,的方向为x 轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C 的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos <,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C 所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X400500800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N (1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M 的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M 相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.∴曲线C2的直角坐标方程为x2+y2﹣2y=0,联立,解得或,∴C1与C2交点的极坐标为()和(2,).【点评】本题考查曲线极坐标方程的求法,考查两曲线交点的极坐标的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.24.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y=,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[﹣,]都成立.故﹣≥a﹣2,解得a ≤,故a的取值范围为(﹣1,].【点评】本题考查绝对值不等式的解法与绝对值不等式的性质,关键是利用零点分段讨论法分析函数的解析式.。

辽宁省大连市2024届高三上学期期末双基测试数学检测卷(有答案)

辽宁省大连市2024届高三上学期期末双基测试数学检测卷(有答案)

辽宁省大连市2024届高三上学期期末双基测试数学检测卷注意事项:1.请在答题纸上作答,在试卷上作答无效2.本试卷分和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.已知集合,则( ){}*11,2,3,4,5,2x A B x ⎧⎫-==∈⎨⎬⎩⎭N A B ⋂=A.B.C.D.{}5{}2,4{}3,5{}1,3,52.设复数,则( )1i4i 1i z -=++z =A.0B.1C.2D.33.在中,若,则( )ABC 1,3AD mDB CD CA CBλ==+ λ=A. B. C. D.231313-23-4.在财务审计中,我们可以用“本•福特定律”来检验数据是否造假.本福特定律指出,在一组没有人为编造的自然生成的数据(均为正实数)中,首位非零的数字是这九个事件不是等19~可能的.具体来说,随机变量是一组没有人为编造的首位非零数字,则χ.则根据本•福特定律,首位非零数字是1与首位非零数字()1lg,1,2,,9k P k k k χ+=== 是8的概率之比约为( )(保留至整数,参考数据:).lg20.301,lg30.477==A.4B.6C.7D.85.已知曲线“表示焦点在轴上的椭圆”的一个充分非()()22:log 2024log 20241a b C x y +=y必要条件是( )A.B.0a b <<1a b<<C. D.32a b <<1b a<<6.已知函数,若存在实数满足()()[]2log ,0,2πsin ,2,104x x f x x x ⎧∈⎪=⎨⎛⎫∈ ⎪⎪⎝⎭⎩1234,,,x x x x ,且,则的值是( )()()()()1234f x f x f x f x ===1234x x x x <<<34124x x x x +⋅A.3B.6C.8D.127.设,则( )11155,2ln sin cos ,ln48844a b c ⎛⎫==+= ⎪⎝⎭A.B.a b c <<b a c<<C. D.c b a <<a c b <<8.已知函数满足下列条件:①对任意()sin πcos π(1,1,0)f x a x b x a b ωωω=+>>>恒成立;②在区间上是单调函数;③经过点()1,4xf x f ⎛⎫∀∈≤ ⎪⎝⎭R ()f x 34,77⎡⎤⎢⎥⎣⎦的任意一条直线与函数图像都有交点,则的取值范围是()()b ()y f x =ωA.B.(]280,13,9⎡⎤⋃⎢⎥⎣⎦()280,13,9⎡⎤⋃⎢⎥⎣⎦C.D.][(0,13,5⎤⋃⎦()30,1,52⎡⎤⋃⎢⎥⎣⎦二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.在中,角的对边分别是,若,ABC ,,A B C ,,a b c cos sin a B b A c +=,则()222sin a ab c ab C =+-=A. B.tan 2C =π3A =C.D.的面积为b =ABC10.如图,在棱长为1的正方体中,分别是的中点,1111ABCD A B C D -M N P 、、1111C D C C A A 、、则()A.平面截正方体所得截面为等腰梯形1A MN B.三棱锥的体积为1D MNB -112C.异面直线与MN 1D P D.1A D BM⊥11.已知三个盒子,其中盒子内装有2个红球,1个黄球和1个白球;盒子内装,,A B C A B 有2个红球,1个白球;盒子内装有3个红球,2个黄球.若第一次先从盒子内随机抽取C A 1个球,若取出的球是红球放入盒子中;若取出的球是黄球放入盒子中;若取出的球是A B 白球放入盒子中,第二次从第一次放入盒子中任取一个球,则下列说法正确的是()C A.在第一次抽到黄球的条件下,第二次抽到红球的概率为12B.第二次抽到红球球的概率为13C.如果第二次抽到的是红球,则它来自号盒子的概率最大B D.如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有150种12.已知椭圆左焦点,左顶点,经过的直线交椭圆于两点(点22:143x y E +=F C F l ,A B 在第一象限),则下列说法正确的是( )A A.若,则的斜率2AF FB=l k =B.的最小值为4AF BF +274C.以为直径的圆与圆相切AF 224x y +=D.若直线的斜率为,则,AC BC 12,k k 1294k k ⋅=-第II 卷三、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图所示是一个样本容量为100的频率分布直方图,则由图形中的数据,可知其分60%位数为__________.14.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间均分为三段,去掉中[]0,1间的区间段,记为第一次操作:再将剩下的两个区间...分为三段,并各12,33⎛⎫ ⎪⎝⎭120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦自去掉中间的区间段,记为第二次操作...,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和小于,则操作的次18212024数的最大值为__________.n (参考数据:)456722220.1975,0.1317,0.0878,0.05853333⎛⎫⎛⎫⎛⎫⎛⎫≈≈≈≈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭15.已知,若点是抛物线上的任意一点,点是圆上任意()3,0A P 28y x =Q 22(2)1x y -+=一点,则最小值是__________.2||PA PQ16.如图所示,在圆锥内放入两个球,它们都与圆锥相切(即与圆锥的每条母线相切,12,O O 切点圆分别为.这两个球都与平切,切点分别为,丹德林(G.Dandelin )12,C C α12,F F 利用这个模型证明了平面与圆锥侧面的交线为椭圆,为此椭圆的两个焦点,这两个α12,F F 球也称为G.Dandelin 双球.若圆锥的母线与它的轴的夹角为,的半径分别为3012,C C 2,5,点为上的一个定点,点为椭圆上的一个动点,则从点沿圆锥表面到达M 2C P P 的路线长与线段的长之和的最小值是__________.M 1PF 四、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数,其中,__________.()()sin 2cos2f x x xϕ=++π2ϕ<请从以下二个条件中任选一个,补充在题干的横线上,并解答下列问题:①是的一个零点;②.π12-()f x ()π03f f ⎛⎫= ⎪⎝⎭(1)求的值;ϕ(2)当时,若曲线与直线恰有一个公共点,求的取值范围.ππ,63x ⎡⎤∈-⎢⎥⎣⎦()y f x =y m =m 注:如果选择条件①和条件②分别解答,按第一个解答计分.18.(本小题满分12分)如图,多面体,四边形是矩形,梯形平面ABCDNM DBMN ,ABCD AD ∥,BC DN ⊥,为中点,.π,2ABCD CBD ∠=E AB 2,1AD BD DN BC ====(1)证明:平面;AN ∥MDE (2)求平面和平面所成角余弦值.MNC MNA 19.(本小题满分12分)已知数列满足.设.{}n a ()*111,1,N 2,n n n a n a a n a n +-⎧==∈⎨⎩为奇数为偶数21nn b a -=(1)证明:数列为等比数列,并求出的通项公式;{}2n b -{}n b (2)求数列的前项和.{}n a 2n 20.(本小题满分12分)某农场2021年在3000亩大山里投放一大批鸡苗,鸡苗成年后又自行繁育,今年为了估计山里成年鸡的数量,从山里随机捕获400只成年鸡,并给这些鸡做上标识,然后再放养到大N 山里,过一段时间后,从大山里捕获1000只成年鸡,表示捕获的有标识的成年鸡的数目.X (1)若,求的数学期望;10000N =X (2)已知捕获的1000只成年鸡中有20只有标识,试求的估计值(以使得最N ()20P X =大的的值作为的估计值).N N 21.(本小题满分12分)已知抛物线经过点,经过点的直线与抛物线交两2:2(0)G x py p =>()2,1()0,2l G ,A B 点,过两点作抛物线的切线相交于点为线段(两点除外)上一动点,,A B G ,P Q AB ,A B 直线与抛物线交两点.PQ G ,C D (1)若的的面积为,求直线方程;PABl (2)求证.PCPD CQDQ=22.(本小题满分12分)已知函数(为自然对数的底数).()ln 1x a x f x e a x +=--e (1)若,求实数的值;()0f x ≥a (2)证明:;()21sin 2ln x x xe x x->+-(3)对恒成立,求取值范围.2π,,2cos 2x x xe ax x x x ∞⎛⎫∈-+≥+- ⎪⎝⎭a 答案与评分标准数学说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半:如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数,选择题和填空题不给中间分第I 卷一、单项选择题1.C2.D3.A2.D3.A4.B5.C6.A7.B8.A.7.解:,构造函数由211111ln sin cos ln 1sin ,1ln 188444b c ⎛⎫⎛⎫⎛⎫⎛⎫=+=+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得,构造函数()sin ,ln 1x x x x <+<11111sin ,ln 1sin sin ,;44444a b ⎛⎫>+<<> ⎪⎝⎭()()()2211ln 1,11(1)(1)x xf x x f x x x x x =+-='-=++++在上单调递增,即,故()f x []0,1c a >c a b>>另法:1111ln ,1ln 1444x x x c ⎛⎫⎛⎫-<=++>⎪ ⎪⎝⎭⎝⎭8.方法一:由函数可知函数周期是,()sin πcos π(0)f x a x b x ωωω=+>2π2πωω=因为①对任意恒成,所以函数的一条对称轴是,()1,4x f x f ⎛⎫∀∈≤ ⎪⎝⎭R 14x =又因为在区间是单调函数,所以,()f x 34,77⎡⎤⎢⎥⎣⎦()11347114147m m ωω⎧+⨯≤⎪⎪⎨⎪++⨯≥⎪⎩所以,所以为0或1.12,m m -<≤∈Z m 当时,;当时,0m =2809ω<≤1m =285659ω≤≤由已知得,因为经过点的任意一条直线与函数图像max ()f x =()b ()y f x =,所以.b a≥因为①对任意恒成,所以.()1,4x f x f ⎛⎫∀∈≤ ⎪⎝⎭R 1πππcos sin 0444f a b ωωω'⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭所以,ππtan,1tan 144a b ωω=-≤≤由或,得或,所以或2809ω<≤285659ω≤≤ππ044ω<≤3ππ7π449ω≤≤01ω<≤2839ω≤≤方法二:()()ππ,tan ,0,,2b f x x a ωϕϕϕ⎛⎫⎛⎫=+=∈ ⎪ ⎪⎝⎭⎝⎭由①可知:,即(*)1πππ42m ωϕ⨯+=+()πππ,42m m Z ωϕ=-++∈由②可知:,()34ππ,π77x ωϕωϕωϕ⎡⎤+∈++⎢⎥⎣⎦因为函数在上是单调函数,所以34,77⎡⎤⎢⎥⎣⎦()34πππ,ππ,π,7722k k k Z ωϕωϕ⎡⎤⎡⎤++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦将(*)带入化简可得:3724721127k k T πωπϕππωπϕπ⎧+≥-+⎪⎪⎪+≤+⎨⎪⎪≥⎪⎩2828()5528(),()907k m k m k m Z ωωω⎧≥-+-⎪⎪⎪≤--∈⎨⎪<≤⎪⎪⎩所以,下同方法一.2828560,,959ω⎛⎤⎡⎤∈⋃ ⎥⎢⎥⎝⎦⎣⎦二、多项选择题9.AC10.ACD11.AD12.BCD10.解:对于,在正方体中,连接,因为分别为中点,所以A 11,CD AB ,M N 111,CD C C ,在正方体中,,所以,又因为MN ∥1D C 1A B ∥1D C MN ∥1A B 1MA NB ==所以平面截正方体所得截面为等腰梯形,A 正确;1A MN 对于B ,错误;1111111111,3322224D MNB B D MN D MN V V BC S B--==⨯⨯=⨯⨯⨯⨯= 对于C ,因为,所以异面直线与所成角即为直线与所成角,MN∥1D C MN 1DP 1D C 1D P 设所成角为,则,C 正θ222222111132||cos 2D P D C CP D P D C θ⎛⎫+-+-===⋅确;对于,在正方体中易知平面平面,所以正D 1A D ⊥11,ABC D BM ⊂11ABC D 1,D A D BM ⊥确.11.解:记第一次抽到第红、黄、白球的事件分别为,则有123,,A A A ,对于,在第一次抽到黄球的条件下,则黄球放入盒()()()12311,24P A P A P A ===A B 子内,因此第二次抽到红球的概率为正确;21,A42P ==于B ,记第二次在第盒内抽到白球的事件分别为,而两两互,,A B C ()1,2,3i B i =123,,A A A 斥,和为,记第二次在第号盒内抽到红球的事件分别为,而Ω,,A B C ()1,2,3i C i =两两互斥,和为,错;记第123,,A A A Ω()()()112233111,,,222P C A P C A P C A B ===∣∣∣二次抽到红球的事件为,C ()()()33111111111()2242422i i i i i i i P C P AC P A P C A ==⎡⎤==⋅=⨯+⨯+⨯=⎣⎦∑∑∣若取出的球是红球放入盒子中;若取出的球是黄球放入盒子中;若取出的球是白球放入A B 盒子中,第二次从第一次放入盒子中任取一个球,C ()()()()()()()()111222121111112242,112422P A P C A P A P C A P A C P A C P C P C ⨯⨯⋅⋅======∣∣∣∣,,()()()()333311142142P A P C A P A C P C ⨯⋅===∣∣即第二次抽到的是红球,则它来自盒子的概率最大,不正确;A C 把5个不同的小球分成3组的不同分组方法数是种,22353522C C C A ⎛⎫+ ⎪⎝⎭将每一种分组方法分成的小球放在3个盒子中有种不同放法,33A 由分步乘法计数原理得不同的放法种数是种,D 正确.2233535322150C C C A A ⎛⎫+⋅= ⎪⎝⎭易知:,对于,若,显然直线的斜率存在且大于0,设()()121,0,1,0F F -A 112AF F B =1l 直线,联立椭圆方程,化简整理得()()()111221(0),,,,l y k x k A x y B x y =+>()221143y k x x y ⎧=+⎪⎨+=⎪⎩,显然,又()22224384120k x k x k +++-=221212228412Δ0,,4343k k x x x x k k -->+==++,故,整理得,由()()1111221,,1,AF x y F B x y =---=+()12121x x --=+1223x x +=-解得,又,故错误;21221221228432341243k x x k x x k x x k ⎧-+=⎪+⎪⎪+=-⎨⎪-⎪=⎪+⎩254k =0k >k A =对于,易知直线的斜率不为0,设直线,联立椭圆方B 1l()()11122:1,,,,l x my A x y B x y =-程,化简整理得,显然221143x my x y =-⎧⎪⎨+=⎪⎩()2234690m y my +--=,由点在轴的上方,显然,又12122269Δ0,,3434m y y y y m m ->+==++A x 120,0y y ><,1112,AF yBF y ====()()2221121211143439134m m AF BF m m +++=====++,故()11111111114311332744554444BF AF AF BF AF BF AF BF AF BF ⎛⎛⎫⎛⎫ +=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,即时取等,正确;11114BF AF AF BF =112AF BF =B 对于,设的中点为,则,又C ()111,,A x y AF P 111,22x y P -⎛⎫⎪⎝⎭,由椭圆定义知:,即,22AF OP ==21222AF AF +=122AF OP =-又的圆心为,半径为2,故以为直径的圆与圆内切,224x y +=()0,0O 1AF 224x y +=正确;C 方法二:12.解:易知:,对于,若,显然直线的斜率存在且大于()()121,0,1,0F F -A 112AF F B=1l0,设直线,联立椭圆方程,化简整理得()()111221,,,,l x my A x y B x y =-221143x my x y =-⎧⎪⎨+=⎪⎩,显然()2234690mx my +--=12122269Δ0,,,3434m y y y y m m ->+==++又,故,()()1111221,,1,AF x y F B x y =---=+122y y =-由,解得,又,故,A 错误;122122126349342m y y m y y m y y ⎧+=⎪+⎪-⎪=⎨+⎪=-⎪⎪⎩245m =0k>k =对于,由点在轴的上方,显然,又B A x 120,0y y ><,1112,AF y BF y ==()()2221121211143439134m m AF BF m m +++=====++,故()11111111114311332744554444BF AF AF BF AF BF AF BF AF BF ⎛⎛⎫⎛⎫ +=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,即时取等,正确;11114BF AF AF BF =112AF BF =B 对于D ,,2121212122222698124,,,34343434m m y y y y x x x x m m m m ---++==+==++++()()()212122*********934,D124822244243434AC BCy y y y m k k m x x x x x x m m -+⋅====--+-++++++⋅+++正确第II 卷三、填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.1414.5解:记表示第次去掉的长度,,第2次操作,去掉的线段长为,n a n 113a ∴=222,3a =第次操作,去掉的线段长度为,n 123n n na -=,则,12133212313nnn S ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴==- ⎪⎝⎭-21821220310.10033202432024n n<>⎛⎫⎛⎫-⇒≈ ⎪ ⎪⎝⎭⎝⎭由的最大值为5.56220.1317,0.0878,33n⎛⎫⎛⎫≈≈∴ ⎪ ⎪⎝⎭⎝⎭15.4-解:由题意得抛物线的焦点为,准线方程为.28y x =()2,0F 2x =-又点是抛物线上一点,点是圆上任意一点,P Q 22(2)1x y -+=max ||1,PQ PF ∴=+∴.令,点的坐标为,则,22||||1PA PA PQ PF ≥+1t PF =+P (),P P x y ()233P X PF t t =-=-≥,()()()222222||338(33)83412P P P P PA x y x x t t t t ∴=-+=-+=--+-=-+,当且仅当,即22||412124441PA t t t PF t t -+∴==+-≥-=+12t t =时t =等号成立.的最小值为.2||PA PQ∴4-16.6解:在椭圆上任取一点,连接交球于点,交球于点,P VP 1O Q 2O R连接,在与中有:111112,,,,O Q O F PO PF O R 11ΔO PF 1ΔO PQ ,(为圆的半径,为圆的半径,),111O Q O F =1r 1C 2r 2C ,11190O QP O F P ∠∠== 为公共边,所以,所以,1O P 111ΔΔO PF O PQ ≅1PF PQ =设点沿圆锥表面到达的路线长为,P M PM d 则,1PM PM PF d PQ d PQ PR QR+=+≥+=当且仅当为直线与椭圆交点时取等号,P VM ,所以最小值为6,125261sin302r r QR --===四、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)解:选条件①(1)由题设.πππsin cos 01266f ϕ⎛⎫⎛⎫⎛⎫-=-++-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以.πsin 6ϕ⎛⎫-= ⎪⎝⎭因为,所以.ππ22ϕ-<<2πππ363ϕ-<-<所以.ππ63ϕ-=-所以.π6ϕ=-(2)由(1)()π1sin 2cos2cos262f x x x x x⎛⎫=-+=+ ⎪⎝⎭.πsin 26x ⎛⎫=+ ⎪⎝⎭令ππ5π2t 666t x ⎛⎫=+- ⎪⎝⎭……所以在单调递增,在单调递减,y sint =ππ,62⎡⎤-⎢⎥⎣⎦π5π,26⎡⎤⎢⎥⎣⎦于是,当且仅当,即时,取得最大值1;ππ262x +=π6x =()f x 当且仅当,即时,取得最小值.ππ266x +=-π6x =-()f x 12-又,即时,.π5π266x +=π3x =π5π1sin 362f ⎛⎫==⎪⎝⎭所以的取值范围是.m {}11,122⎡⎫-⋃⎪⎢⎣⎭选条件②.(1)由题设.2π2πsin cos0sin cos33ϕϕ⎛⎫+=++ ⎪⎝⎭整理得.πsin 6ϕ⎛⎫-= ⎪⎝⎭以下同选条件(1).18.(本小题满分12分)证明:(1)连接线段交与于点,连接,BN DM O OE 四边形是矩形,点是线段中点, DBMN ∴O BN 点是中点,, E AB OE ∴∥AN 平面平面,OE ⊂ ,MDE AN ⊄MDE平面.AN ∴∥MDE (2),AD ∥π,,2BC CBD DA DB ∠=∴⊥平面平面,DN ⊥ ,,ABCD DA DB ⊂,,ABCD DN DA DN DB ∴⊥⊥三条直线两两互相垂直,,,DN DA DB ∴以为原点,以为轴正方向建立空间直角坐标系,D ,,DA DB DN,,x y z ()()()()0,2,2,0,0,2,2,0,0,1,2,0M N A C -设平面的法向量为,MNA ()()(),,z ,0,2,0,2,0,2m x y NM NA ===-,令,则0220,200m NA x z y m NM ⎧⋅=-=⎧⎪∴⎨⎨=⋅=⎩⎪⎩ 1x =()1,0,1m = 设平面的法向量为,MNC ()()(),,,0,2,0,1,0,2n a b c NM MC ===--,令,则,020,200n MC a c b n NM ⎧⋅=--=⎧⎪∴⎨⎨=⋅=⎩⎪⎩ 2a =()2,0,1n =- 设平面与平面所成角为,则MNC MNA θ||cos |cos ,|||||m n m n m n θ⋅=<>===平面与平面.∴MNC MNA 19.(本小题满分12分)解:(1)由题意可知:,111b a ==,()121221212212222n n n n n n b a a a a b ++--===-=-=-故,()11222,210,20n n n b b b b +-=--=-≠∴-≠ 得,1222n n b b +-=-故是以为首项,以为公比的等比数列,{}2n b -121b -=-2q =且,故1*22,n n b n --=-∈N 1*22,N n nb n -=-+∈(2)由(1)知,,即,1*22,N n n b n -=-+∈1*2122,N n n a n --=-+∈由题意知:,故,()*11,212,2n n n a n k a k N a n k +-=-⎧=∈⎨=⎩*2211,n n a a n N -=-∈故数列的前项和{}n a 2n ()()2135212462n n n S a a a a a a a a -=+++++++++ ()135212n a a a a n-=++++- ()0121222222n n n-⎡⎤=-+++++-⎣⎦ 1122322312n n n n+-=-⨯+=-++-20.(本小题满分12分)解:(1)以服从超几何分布,且,X 10000,400N M ==故.()40010004010000E X =⨯=(2)当时,;1380N <()200P X ==当时,1380N ≥()20980400400100020N NC C P X C -⋅==令,则()2010004004001000N N C C f N C -⋅=()()()()()()20980400140010001209804004001000111000140011400980N N N NC C f N N N C C C f N N N C +-+-⋅++-+-==⋅++--22139899939913781379N N N N -+⨯=--,22139899939913781379,19999N N N N N -+⨯≥--∴≤当时,;当时,138019999N ≤≤()()1f N f N ≤+20000N ≥,()()1f N f N >+所以当或20000时,最大,所以的值为19999或20000.19999N =()f N N 21.(本小题满分12分)解:(1)已知抛物线经过点,所以抛物线2:2(0)G x py p =>()2,12:4G x y =设,由题意可知直线斜率存在,设直线方程为,()()1122,,,A x y B x y AB AB 2y kx =+联立方程组,可得,242x y y kx ⎧=⎨=+⎩2480x kx --=所以,21212Δ16320,4,8k x x k x x =+>+==-所以弦长2AB x =-=,所以切线方程:,即①12y x '=AP ()11112y y x x x -=-2111124y x x x =-同理可得切线方程:②BP 2221124y x x x =-联立①和②方程组21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩解得:,所以,122,22x x x k y +===-()2,2P k -又因为点到直线距离P AB d 所以,()3221422ABPS AB d k =⨯=+=ò可得,即,所以直线方程为21k =1k =±AB 2y x =±+(2)方法一:设,设,()()()003344,,,,,Q x y C x y D x y (),,1,1PC CQ PD DQ λμλμ==≠-≠-所以,所以,()()3303032,2,x k y x x y y λ-+=--03032121k x x y y λλλλ+⎧=⎪⎪+⎨-+⎪=⎪+⎩代入抛物线方程得:,()()()2002412k x y λλλ+=+-+化简得()()22200004448480,xy kx y k λλ-+-+++=同理,()()22200004448480x y kx y k μμ-+-+++=即是方程的两根,,λμ()()22200004448480xy x kx y x k -+-+++=因为点在直线上,即,()00,Q x y AB 004480kx y -+=所以方程化为,可得,()222004480xy x k -++=0λμ+=即成立.PCPD CQDQ=方法二:设,()()()3344,,,,,Q Q Q x y C x y D x y 由题意知直线的斜率存在,设直线方程为:,PQ PQ ()()22,y m x k m k +=-≠联立方程组,可得,()2422,x y y m x k ⎧=⎪⎨+=-⎪⎩24880x mx km -++=,()23434Δ164880,4,88m km x x m x x km =-+>+==+因为,3,QPC x DQ x =-=-4,,Q PD x CQ x =-=-因为所以()()()()344320,20Q Q k x x x k x xx -->-->||||||||QPC DQ PD CQ x -=----()()()23434341422Q m k x x x k x x x x ⎡⎤=+---++⎣⎦③()()()()221448164124Q Q m k m x km m k m x km ⎡⎤⎡⎤=+-++=+-++⎣⎦⎣⎦由两条直线联立:,可得,()222y m x k y kx ⎧+=-⎨=+⎩24Q km x k m +=-+代入③可知()()22441240km PC DQ PD CQ m k m km k m +⎡⎤-=+-++=⎢⎥-+⎣⎦即成立.PCPD CQDQ=22.(本小题满分12分)解(1)方法一:,()()()ln 0,ln 10,ln 10x x x f x xe a x x e a x x +≥∴-+-≥∴-+-≥ 令,对任意恒成立,令,ln ,.10tt x x t R e at =+∈∴--…t ∈R ()1t h t e at =--当时,,与恒成立矛盾,不合题意;0a <101220a h e e a ⎛⎫=-<-< ⎪⎝⎭()0h t …当时,,与恒成立矛盾,不合题意;0a =()()111,1110t h t e h e e -=--=-=-<()0h t …当时,在上递减,在上递增,0a >()(),t h t e a h t =-'(),ln a ∞-()ln ,a ∞+的最小值为.()h t ∴()ln ln 1h a a a a =--令,则,知在上递增,在上递减,()ln 1a a a a ϕ=--()ln a a ϕ'=-()a ϕ()0,1()1,∞+,要使,当且仅当.()max ()10a ϕϕ∴==()ln 10a a a a ϕ=--…1a =综上,实数的值为1.a 方法二:,()()()ln 0,ln 10,ln 10x x x f x xe a x x e a x x +≥∴-+-≥∴-+-≥ 令,对任意恒成立,ln ,.10tt x x t e at =+∈∴--R …t ∈R 当时,,因为,所以;0t >1t e a t -≤1111t e t t t -+->=1a ≤当时,,因为,所以;0t <1t e a t -≥1111t e t t t -+-<=1a ≥当时,不等式恒成立;0t =综上,实数的值为1.a 方法三:将等价为,当时,()0f x ≥()ln 10x g x xe ax a x =---≥0a <,与恒成立矛盾,不合题意,当时,也不合题意101220a h e e a ⎛⎫=-<-< ⎪⎝⎭()0h t …0a =当时0a >,()()()()()()1111x xxx xe a x x e a x a g x x e a x x x '+-+-+=+--==令,所以在单调递增,()()(),10x x h x xe a h x x e ==+'->()h x ()0,∞+因为,()()()00,10a a h a h a ae a a e =-<=-=->所以,使得,即,即,()00,x ∞∃∈+()00h x =00x X e a =00ln ln x x a +=当,即,所以单调递减;()()000,,0x x h x '∈<()0g x '<()g x 当,即,所以单调递增,()()00,,0x x h x ∞'∈+>()0g x '>()g x 所以()()0min 000000()ln 1ln 1ln 1x g x g x x e ax a x a a x x a a a ==---=-+-=--令,()()ln 1,ln a a a a aϕϕ'=--=-当单调递增;当单调递减,()()()0,1,0,a a a ϕϕ>'∈()()()1,,0,a a a ∞ϕϕ∈+<'可知.()()10a ϕϕ≤=所以当且仅当时成立.1a =()ln 10x g x xe ax a x =---≥即时,.()0f x ≥1a =(2)方法一:证明:由(1)知,当时,,即,1a =ln 10x xe x x ---…ln 1xxe x x ++…,22ln x x e x x x x ∴++…证明:等价于证明下面证明()21sin 2ln xx xe x x->+-,()()2ln 2ln 21sin x x x x x x x ++>+--即证.222sin 0x x x -+->令.()()222sin ,212cos g x x x x g x x x-+=-'=--当时,显然单调递增,,01x <…()g x '()()π112cos112cos03g x g '=-'<-=…在上单调递减,,()g x ∴(]0,1()()122sin10g x g =->…当时,显然,即.1x >222sin 0x x x -+-…()0g x >故对一切,都有,即.()0,x ∞∈+()0g x >()()2ln 2ln 21sin x x x x x x x ++>+--故原不等式成立.()()22ln 21sin x x e x x x >+--方法二:证明:由(1)知,当时,,即,1a =ln 10x xe x x ---…ln 1xxe x x ++…22ln x x e x x x x∴++…证明:等价于证明下面证明()21sin 2ln xx xe x x->+-,()()2ln 2ln 21sin x x x x x x x ++>+--即证.222sin 0x x x -+->因为,所以.2221(1)0x x x x -+--=-≥221x x x -+≥+因为,显然.sin ,1sin x x x >≥222sin 0x x x -+-…故原不等式成立.()()22ln 21sin x x e x x x >+--(3)方法一:令,()()2cos ,sin x x g x e ax x g x e a x=--+=--'①若,当时,,1a >0x ≥()cos x g x e x =-''在单调递增,()()0,g x g x >'∴'' [)0,∞+,()()()100,1sin 1110a g g a e a a a a +=+=--+>+-'-'= 故存在唯一,使得,则当为减函数,()00,x ∞∈+()00g x '=()()00,,x x g x ∈,此时,与题意不符(舍).()()()00,00g g x g =∴<'= ()0xg x ∴<②若1a ≤(i )当,则由①可知,在单调递增,0x ≥()()cos 0,x g x e x g x =-≥'''[)0,∞+在单调递增,所以()()()010,g x g a g x ∴-≥'>'>[)0,∞+()()00g x g ≥=所以成立.22cos x xe ax x x x ≥+-(ii )当在单调递增,()()()π,0,cos ,sin ,2x x x g x e x g x e x g x ⎛⎫∈-=-=+ '⎪⎝⎭'''''''π,02⎛⎫- ⎪⎝⎭,故存在唯一,使得,()π2π01,102g g e -⎭''''⎛⎫=-=-< '⎪'⎝ 0π,02x ⎛⎫∈- ⎪⎝⎭()00g x '''=当时,在上单调递减,0π,2x x ⎛⎫∈- ⎪⎝⎭()()0,g x g x <'''''0π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递增,()0,0x x ∈()()"'0,g x g x >''()0,0x ,故存在唯一,使得,()π2π00,02g g e -⎛'⎫=-='''> ⎪⎝⎭10π,2x x ⎛⎫∈- ⎪⎝⎭()10g x ''=当时,在上单调递增,1π,2x x ⎛⎫∈- ⎪⎝⎭()()0,g x g x >'''1π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递减,()1,0x x ∈()()0,g x g x <'''()1,0x 在恒成立,()()π2π010,10,02g a g e a g x -⎛⎫=->-=-+>∴> ⎪⎝⎭''' π,02⎛⎫- ⎪⎝⎭在单调递增恒成立,()g x ∴π,02⎛⎫- ⎪⎝⎭()()()00,0g x g xg x ∴<=∴>时,恒成立,1a ∴≤()0xg x >综上所述,1a ≤方法二:因为,所以.22cos xxe ax x x x ≥+-()2cos 0x x e ax x --+≥当时,恒成立,所以恒成立,0x ≥2cos 0x e ax x --+≥2cos xe x ax -+≥令在上()()()2cos ,sin 11sin 10,x x x e x x x e x x x x ϕϕϕ=-+-=--≥+--≥'[)0,x ∞∈+单调递增,,所以,所以.()()00x ϕϕ≥=2cos xe x x ax -+≥≥1a ≤当时,恒成立,所以恒成立,π02x -<≤2cos 0x e ax x --+≤2cos x e x ax -+≤令,()()2cos ,sin 1x x x e x x x e x ϕϕ=-+-'-=-当时,,令,使得,0x <()cos xx e x ϕ=-''0πcos 0,,02x e x x ⎛⎤-=∃∈- ⎥⎝⎦00cos x e x =当时,在上单调递增,0π,2x x ⎛⎫∈- ⎪⎝⎭()()0,x x ϕϕ>'∴''π,02⎛⎫- ⎪⎝⎭当时,在上单调递减,()0,0x x ∈()()0,x x ϕϕ<'∴''()0,0x ,()ππ22ππ00,sin 1022e e ϕϕ--⎛⎫⎛⎫=-=---=> ⎪ ⎪⎝'⎝⎭'⎭ 恒成立,()π,0,02x x ϕ⎛⎤∴ ''∀∈->⎥⎝⎦在上单调递增减,在上单调递增,()x ϕ'π,02x ⎛⎤∈- ⎥⎝⎦()()()00,x x ϕϕϕ'≥='π,02x ⎛⎤∈- ⎥⎝⎦所以,所以,所以.综上所述.()()00x ϕϕ≤=2cos xe x x ax -+≤≤1a ≤1a ≤方法三:()2cos 0x x e ax x --+≥①当时,恒成立,即在恒成立,令0x >2cos 0x e ax x --+≥2cos x e xa x -+≤()0,∞+,()()()21sin 2cos 2cos (0),x x x e x x x e xh x x h x x x --+--+=='>令在上单调()()()()()1sin 2cos ,cos 0,x x g x x e x x x g x x e x g x =--+>'-=-∴()0,∞+递增,在上单调递增,()()()()00,0,g x g h x h x ∴>'>=∴∴()0,∞+,由洛必达法则()()0h x h ∴>()01,1h a =∴≤②当时,恒成立,即在恒成立,π02x -<<2cos 0xe ax x --+≤2cos x e x a x -+≤π,02⎛⎫- ⎪⎝⎭同方法一①,,()()cos 0,cos x x g x x e x e x=-=∴='存在唯一,使得,0π,02x ⎛⎫∈- ⎪⎝⎭()00g x '=当时,在上单调递减,0π,2x x ⎛⎫∈- ⎪⎝⎭()()()cos 0,x g x x e x g x =-<'0π,2x ⎛⎫- ⎪⎝⎭当时,在上单调递增,()0,0x x ∈()()()cos 0,x g x x e x g x =->'()0,0x ,()π2πππ00,10222g g e -⎛⎫⎛⎫=-=---< ⎪ ⎪⎝⎭⎝⎭ 在恒成立,在单调递减,()0g x ∴<π,02⎛⎫- ⎪⎝⎭()()0,h x h x <∴'∴π,02⎛⎫- ⎪⎝⎭,()()0h x h ∴>用洛必达法则.()01,1h a =∴≤③当时,恒成立,0x =()2cos 0x x e ax x --+≥综上所述,1a ≤(用洛必达法则扣1分)。

2013年全国高考数学(理科)试题及答案-全国大纲卷(解析版)

2013年全国高考数学(理科)试题及答案-全国大纲卷(解析版)

2021年普通高等学校招生全国统一考试〔全国大纲卷〕数学〔理科〕一、选择题:本大题共12小题,每题5分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈那么M 中的元素个数为〔A 〕3 〔B 〕4 〔C 〕5 〔D 〕6 2.()31+3i=〔A 〕8- 〔B 〕8 〔C 〕8i - 〔D 〕8i 3.向量()()1,1,2,2m n λλ=+=+,假设()()m n m n +⊥-,那么=λ〔A 〕4- 〔B 〕3- 〔C 〕2- 〔D 〕-1 4.函数()f x 的定义域为()1,0-,那么函数()21f x -的定义域为〔A 〕()1,1- 〔B 〕11,2⎛⎫- ⎪⎝⎭ 〔C 〕()-1,0 〔D 〕1,12⎛⎫ ⎪⎝⎭5.函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - 〔A 〕()1021x x >- 〔B 〕()1021xx ≠- 〔C 〕()21x x R -∈ 〔D 〕()210xx -> 6.数列{}n a 满足12430,3n n a a a ++==-,那么{}n a 的前10项和等于 〔A 〕()10613---〔B 〕()101139--〔C 〕()10313-- 〔D 〕()1031+3- 7. ()()8411+x y +的展开式中22x y 的系数是〔A 〕56 〔B 〕84 〔C 〕112 〔D 〕1688.椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是〔A 〕1324⎡⎤⎢⎥⎣⎦, 〔B 〕3384⎡⎤⎢⎥⎣⎦, 〔C 〕112⎡⎤⎢⎥⎣⎦,〔D 〕314⎡⎤⎢⎥⎣⎦, 9.假设函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,那么a 的取值范围是 〔A 〕[-1,0] 〔B 〕[1,)-+∞ 〔C 〕[0,3] 〔D 〕[3,)+∞10.正四棱柱1111ABCD A B C D -中12AA AB =,那么CD 与平面1BDC 所成角的正弦值等于〔A 〕23 〔B 〕33 〔C 〕23 〔D 〕1311.抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,假设0MA MB =,那么k =〔A 〕12〔B 〕22 〔C 〕2 〔D 〕212.函数()=cos sin 2f x x x ,以下结论中错误的选项是〔A 〕()y f x =的图像关于(),0π中心对称 〔B 〕()y f x =的图像关于直线2x π=对称〔C 〕()f x 的最大值为32〔D 〕()f x 既奇函数,又是周期函数 二、填空题:本大题共4小题,每题5分.13.α是第三象限角,1sin 3a =-,那么cot a = .14.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.〔用数字作答〕15.记不等式组0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D ,假设直线()1y a x =+与D 公共点,那么a 的取值范围是 .16.圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,32OK =,且圆O 与圆K 所在的平面所成的一个二面角为60,那么球O 的外表积等于 .三、解答题:解容许写出文字说明、证明过程或演算步骤.17.〔本小题总分值10分〕等差数列{}n a 的前n 项和为n S ,232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式。

2013年全国高考理科数学试题及答案-新课标2

2013年全国高考理科数学试题及答案-新课标2

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2。

回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效。

3。

答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4。

考试结束,将试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{}R x x x M ∈<-=),4)1(|2,{}3,2,1,0,1-=N ,则MN =( )(A){0,1,2} (B){-1,0,1,2}(C){-1,0,2,3} (D ){0,1,2,3} 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以M N {}2,1,0=,选A 。

2、设复数z 满足,2)1(i z i =-则z =( )(A )i +-1 (B )i --1 (C)i +1 (D )i -1 【答案】A 【解析】i i i i i i i z +-=+-+=-=1)1)(1()1(212,所以选A 。

3、等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则1a =( ) (A )31 (B) 31- (C)91 (D )91- 【答案】C4、已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )(A ) α∥β且l ∥α (B )α⊥β且l ⊥β (C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l 【答案】D5、已知5)1)(1(x ax ++的展开式中2x 的系数是5,则a =( )(A ) -4 (B ) -3 (C)-2 (D )-1 【答案】D6、执行右面的程序框图,如果输入的10=N ,那么输出的S =( )【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,依此类推,选B 。

2023大连市12月高三双基测试-数学答案

1 / 172023年大连市高三双基测试参考答案与评分标准数学说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.第Ⅰ卷一.单项选择题1.(C );2.(A );3. (B );4. (C );5. (B );6.(C );7.(A );8.(D ) 部分试题解答: 5. 答案:A解析:由题意可知当1x =时,6(1)64a +=,解得1a =,二项式621x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()66212661C C rr r rr r r T x x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭⋅, 令630r -=,解得2r =,所以展开式中的常数项为26315T C ==.故选A.2 / 176. 答案C整理,得2tan 4tan 30αα-+=,解得tan 3α=或tan 1α=.所以tan 3α=.故选C .7.解:44ln ln ln 4ln 232,,4232eea b c e e=====构造函数2ln 1ln (),'()0,x xf x f x x e x x -====,故()f x 在(0,)e +单调递增,在(,)e +∞单调递减,max1()f f e e ==,而428,232e e <<,故4()(2)32ef f <,故选A.8.解:因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =,因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以3 / 17()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑K K .二.多项选择题9.(A )(B )(C );10.(A )(C );11.(B )(C )(D );12.(A )(C )(D ) 10.解:对于A ,()()2410.770.23P P ξξ≤-=≥=-=,故A 正确; 对于B ,()122010339D X =⨯⨯=,所以()220313209D X -=⨯=,故B 不正确; 对于C ,回归直线方程经过点(),x y ,将4x =,50y =代入求得9.8b =,故C 正确;对于D ,设丢失的数据为x ,则这组数据的平均数为317x+,众数为3,当3x ≤时,中位数为3,此时36731x ++=,解得10x =-;当35x <<时,中位数为x ,此时23137x x+=+,解得4x =;当5x ≥时,中位数为5,此时113073x+=+,解得18x =.所以所有可能x 的值和为1041812-++=11. 答案BCD解:∵CC 1与AF 不垂直,而DD 1∥CC 1,∴AF 与DD 1不垂直,故(A )错误;取B 1C 1的中点N ,连接A 1N ,GN ,可得平面A 1GN ∥平面AEF ,则直线A 1G ∥平面AEF ,故(B )正确;把截面AEF 补形为四边形AEFD 1,由四边形AEFD 1为等腰梯形,可得平面AEF 截正方体所得的截面面积S =98,故(C )正确;显然点A 1与点D 到平面AEFD 1的距离相等,故(D )正确.故选BCD12.【答案】ACD对于A ,由题可知,设直线CD 的方程为:1=+x my ,4 / 17联立241⎧=⎨=+⎩y x x my ,消x 得:2440--=y my ,设1122(,),(,)C x y D x y ,则124=-y y ,则221212144=⋅=y y x x 所以1212143OC OD x x y y ⋅=+=-=-,故A 正确; 对于B ,又因为2124(1)=-===+CD y y m同理:214(1)=+AB m, 222211114(1)4(1)8(2)32(1)22当且仅当时取等==⋅+⋅+=++≥=ACBD S AB CD m m m m m故B 错误;对于C ,22211114(1)4(1)4+=+=++m AB CD m m ,故C 正确; 对于D ,设直线AB 的方程为:1=+x ky ,联立241⎧=⎨=+⎩y x x my ,消x 得:2440--=y my ,设3344(,),(,)A x y B x y ,则344=-y y ,又34,,==AF BF5 / 17所以2234(1)4(1)16=+=+=AF BF k y y k,解得:23,==k k所以直线CD的斜率为D 正确. 故选:ACD .第Ⅱ卷三.填空题13.—1; 14. 2; 15.12;9π 14.解:设切点0001,ln x x x ⎛⎫-⎪⎝⎭,其中00x >,()211f x x x '=+,()020011f x x x '=+, 所以过点0001,ln x x x ⎛⎫- ⎪⎝⎭的切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即020001121ln y x x x x x ⎛⎫=+--+ ⎪⎝⎭,因为切线为3y ax =-故20011a x x =+, 00231ln x x -=--+,01,2x a ∴== 15. 解:设),,(00y x P 由G 为21PF F ∆的重心得:G 的坐标为),3,3(00y x G 再由且GM ∥12F F ,所以M 点的纵坐标为3y ,在21PF F ∆中,c F F a PF PF 2,22121==+,所以21PF F ∆的面积为02121y F F S =,又因为M 为21PF F ∆的内心,所以M 点的纵坐标即为内切圆的半径,所以6 / 173)(2102211y PF F F PF S ⨯++=,所以021*******321y F F y PF F F PF =⨯++)(,即0022132221y c y c a =⨯+)(,所以c a 2=,所以椭圆C 的离心率21=e . 16.解:因为23ADC π∠=且四边形ABCD 为菱形, 所以CBD △,A BD '△均为等边三角形,取CBD △,A BD '△的重心为,M N ,过,M N作平面CBD 、平面A BD '的垂线,且垂线交于一点O , 此时O 即为三棱锥A BCD '-的外接球球心,如下图所示:记AC BD O '=,连接,CO OO ',因为二面角A BD C '--的大小为23π, 且A O BD ''⊥,CO BD '⊥,所以二面角A BD C '--的平面角为23A O C π''∠=, 因为O M O N ''=,所以cos cos MO O NO O ''∠=∠,所以3MO O NO O π''∠=∠=,又因为6BC =,所以6sin3CO A O π'''===,所以MO NO ''==所以tan33OM O M π'==,又23CM CO '==,所以OC ==三棱锥A BCD '-.当截面面积取最小值时,此时OE'⊥截面,又因为截面是个圆,设圆的半径为r,外接球的半径为R,又因为13NE A O'''==3ON OM==,所以OE'==所以3r==,所以此时截面面积为9Sπ=.四.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)解:(I)选择①:设等差数列{}n a的公差为d,则0d>,由题意可得2428S S S=,即()()()2462828d d d+=++,2d=,因此()1121na a n d n=+-=-.选择②:设等差数列{}n a的公差为d,则0d>,由251072a a a-=得2(14)(19)(16)2d d d++-+=,解得2d=,因此()1121na a n d n=+-=-. ………………………………… 5分(II)由(I)可得()()111111212122121nn nba a n n n n+⎛⎫===-⎪-+-+⎝⎭,所以11111111112335212122121nnTn n n n⎛⎫⎛⎫=-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭.…………………… 10分18.(本小题满分12分)解:(I)由()(sin sin)()sinb c B C a c A+-=-,根据正弦定理可得()()()b c b c a c a+-=-,………………………………………………… 2分即222b ac ac=+-,222ac a c b=+-由余弦定理2222cosb ac ac B=+-,得2221cos22a c bBac+-==,…………………………………………………………………… 4分7 / 178 / 17由于0B π<<,所以3B π=.………………………………………………………………… 6分(II )因为ABC ∆,所以1sin 2ac B ==,即4ac =,………………………………………………… 8分 因为2224b a c ac =+-=,所以228a c +=,………………………………………………10分所以4a c +==,所以ABC ∆周长为6. ………………………………… 12分 19.(本小题满分12分)解:(I )因为//DE AF ,又因为DE ⊄平面ABF ,AF ⊂平面ABF ,所以//DE 平面ABF . …………………………………………………… 2分因为底面ABCD 是正方形,所以//CD AB , 又因为CD ⊄平面ABF ,AB ⊂平面ABF ,所以//CD 平面ABF . ……………………………………………………4分 因为CD ⊂平面CDE ,DE ⊂平面CDE ,CDDE D =,所以平面CDE ∥平面ABF .因为CE ⊂平面CDE ,所以CE ∥平面ABF . …………………………………………………………6分 (II )以A 为坐标原点,分别以AB ,AD ,AF 所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系.由4AB AD AF ===得,(000)A ,,,(400)B ,,,(440)C ,,,(002)F ,,,(040)D ,,,(04)E m ,,.设平面BCF 的法向量为1111()x y z =,,n ,由已知得,(402)FB =-,,,(442)FC =,,-, 由1100.FB FC ⎧⋅=⎪⎨⋅=⎪⎩,n n 得111114204420.x z x y z -=⎧⎨+-=⎩,不妨取11x =,则1102y z ==,,从而平面BCF 的一个法向量为1(102)=,,n .………………………………………………… 8分9 / 17设平面ECF 的法向量为2222()x y z =,,n ,又(40)CE m =-,,,由2200CE FC ⎧⋅=⎪⎨⋅=⎪⎩,,n n 得22222404420.x mz x y z -+=⎧⎨+-=⎩,不妨取24z =,则222x m y m ==-,, 所以平面ECF 的一个法向量为2(24)m m =-,,n . ………………………………………………… 10分所以12|cos ||cos ,|10α=<>=n n . 化简得2417130m m -+=,解得1m =或134m =, 因为DE AF <,所以1DE =. ………………………………………………… 12分20.(本小题满分12分)解:(I )X 的可能值为1和1k +,()1k P X p ==,()11kP X k p =+=-, 所以随机变量X 的分布列为:所以11(1)1EX p k p k kp =⨯++⨯-=+-.……………………………………………3分z yx A BDEF10 / 17(II )①设方案二总费用的数学期望为E Y (),方案一总费用的数学期望为Z ,则1620Y X =+,所以方案二总费用的数学期望为:()()162016(1)20kE Y E X k kp =+=+-+,又5k =,所以()516(620)5E Y p =-+589116p =-+,又方案一的总费用的数学期望为80Z =,所以()5916(5)4Z E Y p -=-,当p >59120p <<,59110544p <-<, 所以()Z E Y >,所以该单位选择方案二合理. …………………………………………………7分②由①知方案二总费用的数学期望()()162016()120kE Y E X k kp =+=+-+,当p =时,() 16120k E Y k k k =+-+⎡⎤⎢⎥⎢⎥⎣⎦79164k k ke -⎛⎫ ⎪⎝=+⎭-,又方案一的总费用为16Z k =,令()E Y Z <得:7916164k k ke k -⎛⎫ ⎪⎭<⎝+-,所以794kke->,即79ln ln 4k ke -⎛⎫> ⎪⎝⎭,所以9ln ln 074k k -->,………9分设()[)9ln ln ,2,74x f x x x =--∈+∞,所以()[)117,2,77xf x x x x-'=-=∈+∞, 令()0f x '>得27x ≤<,()0f x '<得7x >,11 / 17所以()f x 在区间[)2,7上单调递增,在区间()7,+∞上单调递减,……………………………10分 ()()()max 7ln 712ln 3ln 20.10f x f ==---=>,()()88883ln 22ln 3ln 25ln 22ln 3 1.30777f =---=--=->, ()()99992ln 32ln 3ln 22ln 2701.477f =---=-=->,()()1010ln102ln 3ln 2 1.507710f =---=->, ()()111111ln112ln 3ln 2 1.6077f =---=->, ()()12121212ln122ln 3ln 24ln 2ln 3 1.70777f =---=--=-<, 所以k 的最大值为11. ………………………………………………………………12分 21.(本小题满分12分)(1)由题可知2=a ,解得2=a 所以双曲线Q 的标准方程为2214-=x y . ………………………………………………………2分 (II )方法一:由题可知,直线AB 、AC 斜率存在且不为0. 因为AB AC ⊥ 所以1⋅=-AB AC k k ,即1211211-⋅=--y y y x x x .12 / 17又点,A C 在双曲线Q 右支上221122221414⎧-=⎪⎪⎨⎪-=⎪⎩x y x y ,作差得:211221124()-+=-+y y x x x x y y ,则212112121114()4+-===-+-BC y y x x yk x x y y x , ……………………………………………………4分又1111131224--==--BD y y y k x x 所以=BC BD k k .又BC 、BD 有公共点,所以、、B C D 三点共线. …………………………………………6分 方法二:由题可知,直线AB 、AC 斜率存在且不为0. 因为AB AC ⊥ 所以1⋅=-AB AC k k ,即1211211-⋅=--y y y x x x .① 又因为2221212122212121BC ACy y y y y y k k x x x x x x +--⋅==+--,又因为222212121,1,44x x y y -=-= 所以22212221111444BC ACx x k k x x --+⋅=-.② 由①②得4AB BCk k =-,所以1114BC yk x =-,……………………………………………………4分13 / 171111131224--==--BD y y y k x x ,所以=BC BDk k .又BC 、BD 有公共点,所以、、B C D 三点共线. …………………………………………6分 (III )设直线AC 的方程为1111()-=--y y y x x x , 联立方程组111122()14⎧-=--⎪⎪⎨⎪-=⎪⎩y y y x x x x y ,化简得22222221111112221114()()(1)8440++-+⋅-⋅-=x x x y x x y x y y y 22111222111112222111218()8()4410⎧+⎪+⎪+=-=⎪-⎨-⎪⎪∆>⎪⎩x x y y x x y x x x x y y , 因为11215()22∆=⋅⋅+ABC S y x x , 所以22111122118(152)24∆+=⋅-⋅ABCS y x x y x y , 所以221112211110()4∆+=-ABCy x x y x y S , ………………………………………………………………8分 又221114-=x y ,所以221144-=x y14 / 172222221111111112222222222111111111111111331111422411111111221110()10()440()4(4)(4)(4)(4)40()40()4174))4(4(17∆++⋅+==--⋅--⋅-++ ==-++-=ABCy y y S y y y y y x x y x x y x x y x y x y x y x y x y x x x y x x x x y y x ……………10分令11=y k x ,则22140()48174)4(17∆+==+-ABC k k k S k,令1=+t k k ,整理得:224351500--=t t .因为0t >,所以103=t , 所以231030-+=k k ,解得:133或==k k , 又因为双曲线C 的渐近线为12=±y x ,所以13=k . 所以直线l 的方程为13=y x . ………………………………………………………………12分 方法二:直线l 的方程为=y kx ,则直线AC 的方程为11()-=--y y k x x ,联立11221()14⎧-=--⎪⎪⎨⎪-=⎪⎩y y x x k x y ,化简得221111241(1)8()4()40-+⋅+-⋅+-=x x x y x y k k k k ,15 / 17111228()40+⎧+=-⎪∴-⎨⎪∆>⎩x ky x x k 因为11215()22∆=⋅⋅+ABC S y x x , 所以11211528(42)∆=⋅⋅+-ABC S y x ky k, ()()232322111111112221210108()10)1522(4444∆++++===----=⋅⋅ABCkx k x k k x x ky x y ky k k k y k S ……………8分 联立2214=⎧⎪⎨-=⎪⎩y kxx y ,消y 得:22414x k =-, 所以()()332321222422411040()1040()1414441744()17∆++++-====---++-ABC k k k k kxk k k k kkk k k kS ………10分 令1=+t k k ,240484257∆==-ABC t S t ,整理得:224351500--=t t .因为0t >,所以103=t ,所以231030-+=k k ,解得:133或==k k , 又因为双曲线C 的渐近线为12=±y x ,所以13=k . 所以直线l 的方程为13=y x . ………………………………………………………………12分16 / 1722.(本小题满分12分)),又k ()∴f x 在(0,)+∞单调递减,又()10=f ,∴函数()f x 的只有一个零点。

辽宁省大连市2023届高三上学期期末双基测试数学试卷含答案

2023年大连市高三双基测试注意事项:1.请在答题纸上作答,在试卷上作答无效.2.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求. 1.已知集合{}1,2,3,4,5A =,12x B x Z ⎧⎫-=∈⎨⎬⎩⎭,则=A B(A ){}5(B ){}3,5(C ){}1,3,5(D ){}2,42.i 是虚数单位,若复数z =543i+,则z 的共轭复数z = (A )43i 55+ (B )43i 55- (C )43i 55-+(D )43i 55-- 3.已知命题0:p x ∃∈R ,20010x x -+<,则p ⌝是(A )0x ∃∈R ,20010x x -+≥(B )x ∀∈R ,210x x -+≥(C )x ∀∈R ,210x x -+< (D )x ∀∈R ,210x x -+>4.开普勒(Johannes Kepler ,1571~1630),德国数学家、天文学家,他提出的行星运动三定律之三:如图,所有行星绕太阳 运动的轨道都是椭圆,且所有行星轨道的半长轴的三次方与它 的公转周期的二次方的比都相等.已知金星与地球的公转周期之 比约为2:3,地球运行轨道的半长轴为a ,则金星运行轨道的半长轴约为(参考数据:133 1.442≈ ) (A )0.66a (B )0.70a (C )0.76a (D )0.96a5.若二项式62(10)x x a a ⎛⎫ ⎪⎭>+⎝的展开式中所有项的系数和为64,则展开式中的常数项为(A )10 (B )15 (C )25 (D )306.tan α=(A (B )2 (C )3 (D7.已知432(4ln 32)1,,a b c e e -===,则 (A )a c b << (B )c a b << (C )a b c << (D )b a c <<8.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑(A )21- (B )22- (C )23- (D )24-二.多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.将函数()cos(2)f x x π=-图像上所有的点向左平移6π个单位长度,得到函数()g x 的图像,则(A )()g x 的最小正周期为π(B )()g x 图像的一个对称中心为7,012π⎛⎫⎪⎝⎭(C )()g x 的单调递减区间为()5,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z(D )()g x 的图像与函数sin 26y x π⎛⎫=-- ⎪⎝⎭的图像重合10.下列正确的是( )(A )若随机变量()2~1,N ξσ,()40.77P ξ≤=,则()20.23P ξ≤-=(B )若随机变量1~10,3X B ⎛⎫ ⎪⎝⎭,则()3119D X -=(C )已知回归直线方程为ˆ10.8=+y bx,且4x =,50y =,则ˆ9.8=b (D )已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11.若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为2211. 正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则(A )直线D 1D 与直线AF 垂直(B )直线A 1G 与平面AEF 平行(C )平面AEF 截正方体所得的截面面积为98 (D )点A 1与点D 到平面AEF 的距离相等12.已知点F 是抛物线24y x =的焦点,,AB CD 是经过点F 的弦且AB CD ⊥,直线AB 的斜率为k ,且0k >,,C A 两点在x 轴上方,则(A )3OC OD ⋅=- (B )四边形ABCD 面积最小值为64(C )111||||4AB CD += (D )若||||16AF BF ⋅=,则直线CD 的斜率为 第Ⅱ卷三.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13. 设向量a (,2)m =,b (2,1)=,且222+=+a b a b ,则=m .14.若直线3y ax =-为函数1()ln f x x x =-图像的一条切线,则a 的值是 . 15. 已知12(,0)(,0)F c F c -,为椭圆2222:1x yC a b+=的两个焦点,P 为椭圆C 上一点(P 不在y 轴上),12PF F ∆的重心为G ,内心为M ,且GM ∥12F F ,则椭圆C 的离心率为 .16. 已知菱形ABCD 边长为6,23ADC π∠=,E 为对角线AC 上一点,AE =ABD △沿BD 翻折到A BD '△的位置,E 移动到E '且二面角A BD A '--的大小为3π,则三棱锥A BCD '-的外接 球的半径为______;过E '作平面α与该外接球相交,所得截面面积的最小值为______.四.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知公差为正数的等差数列{}n a 的前项和为n S ,11a =,_______.请从以下二个条件中任选一个,补充在题干的横线上,并解答下列问题:①2S 、4S 、8S 成等比数列,②251072a a a -=.(I)求数列{}n a 的通项公式;(II)若11n n n b a a +=,求数列{}n b 的前n 项和n T .18.(本小题满分12分)记ABC ∆内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )(sin sin )b c B C A C a +-=-.(I) 求B的值;(II )若ABC ∆,2b =,求ABC ∆周长.19.(本小题满分12分) 如图多面体ABCDEF ,正方形ABCD 的边长为4AF ⊥面ABCD ,2AF =,AF ∥DE ,DE <(I )求证:CE ∥平面ABF .(II )若二面角--BCF E 的大小为α,且|cos |α=DE 长.某地区为居民集体筛查新型传染病毒,需要核酸检测,现有*(,2)k k k ∈≥N 份样本,有以下两种检验方案,方案一:逐份检验,则需要检验k 次;方案二:混合检验,将k 份样本分别取样混合在一起检验一次,若检验结果为阴性,则k 份样本均为阴性,若检验结果为阳性,为了确定k 份样本的阳性样本,则对k 份本再逐一检验.逐份检验和混合检验中的每一次检验费用都是16元,且k 份样本混合检验一次需要额外收20元的材料费和服务费.假设在接受检验的样本中,每份样本是否为阳性是相互独立的,且据统计每份样本是阴性的概率为()01p p <<.(I )若()*,2k k k ∈≥N 份样本采用混合检验方案,需要检验的总次数为X ,求X分布列及数学期望;(II )①若5,k p =>案二的合理性;②若p =,采用方案二总费用的数学期望低于方案一,求k 的最大值. 参考数据:ln 20.7=,ln 3 1.1=,ln 7 1.9=,ln10 2.3=,ln11 2.4=已知双曲线Q :2221-=x y a 的离心率为2,经过坐标原点O 的直线l 与双曲线Q 交于,A B 两点,点()11,A x y 位于第一象限,()22,C x y 是双曲线Q 右支上一点,⊥AB AC ,设113,2⎛⎫- ⎪⎝⎭y D x .(I )求双曲线Q 的标准方程; (II )求证:,,C D B 三点共线; (III )若∆ABC 面积为487,求直线的l 方程.1 / 172023年大连市高三双基测试参考答案与评分标准数学说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.第Ⅰ卷一.单项选择题1.(C );2.(A );3. (B );4. (C );5. (B );6.(C );7.(A );8.(D ) 部分试题解答: 5. 答案:A解析:由题意可知当1x =时,6(1)64a +=,解得1a =,二项式621x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()66212661C C rr r rr r r T x x x ---+⎛⎫=⋅=⋅ ⎪⎝⎭⋅, 令630r -=,解得2r =,所以展开式中的常数项为26315T C ==.故选A.2 / 176. 答案C整理,得2tan 4tan 30αα-+=,解得tan 3α=或tan 1α=.所以tan 3α=.故选C .7.解:44ln ln ln 4ln 232,,4232eea b c e e=====构造函数2ln 1ln (),'()0,x xf x f x x e x x -====,故()f x 在(0,)e +单调递增,在(,)e +∞单调递减,max1()f f e e ==,而428,232e e <<,故4()(2)32ef f <,故选A.8.解:因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =,因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以3 / 17()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑K K .二.多项选择题9.(A )(B )(C );10.(A )(C );11.(B )(C )(D );12.(A )(C )(D ) 10.解:对于A ,()()2410.770.23P P ξξ≤-=≥=-=,故A 正确; 对于B ,()122010339D X =⨯⨯=,所以()220313209D X -=⨯=,故B 不正确; 对于C ,回归直线方程经过点(),x y ,将4x =,50y =代入求得9.8b =,故C 正确;对于D ,设丢失的数据为x ,则这组数据的平均数为317x+,众数为3,当3x ≤时,中位数为3,此时36731x ++=,解得10x =-;当35x <<时,中位数为x ,此时23137x x+=+,解得4x =;当5x ≥时,中位数为5,此时113073x+=+,解得18x =.所以所有可能x 的值和为1041812-++=11. 答案BCD解:∵CC 1与AF 不垂直,而DD 1∥CC 1,∴AF 与DD 1不垂直,故(A )错误;取B 1C 1的中点N ,连接A 1N ,GN ,可得平面A 1GN ∥平面AEF ,则直线A 1G ∥平面AEF ,故(B )正确;把截面AEF 补形为四边形AEFD 1,由四边形AEFD 1为等腰梯形,可得平面AEF 截正方体所得的截面面积S =98,故(C )正确;显然点A 1与点D 到平面AEFD 1的距离相等,故(D )正确.故选BCD12.【答案】ACD对于A ,由题可知,设直线CD 的方程为:1=+x my ,4 / 17联立241⎧=⎨=+⎩y x x my ,消x 得:2440--=y my ,设1122(,),(,)C x y D x y ,则124=-y y ,则221212144=⋅=y y x x 所以1212143OC OD x x y y ⋅=+=-=-,故A 正确; 对于B ,又因为2124(1)=-===+CD y y m同理:214(1)=+AB m, 222211114(1)4(1)8(2)32(1)22当且仅当时取等==⋅+⋅+=++≥=ACBD S AB CD m m m m m故B 错误;对于C ,22211114(1)4(1)4+=+=++m AB CD m m ,故C 正确; 对于D ,设直线AB 的方程为:1=+x ky ,联立241⎧=⎨=+⎩y x x my ,消x 得:2440--=y my ,设3344(,),(,)A x y B x y ,则344=-y y ,又34,,==AF BF5 / 17所以2234(1)4(1)16=+=+=AF BF k y y k,解得:23,==k k所以直线CD的斜率为D 正确. 故选:ACD .第Ⅱ卷三.填空题13.—1; 14. 2; 15.12;9π 14.解:设切点0001,ln x x x ⎛⎫-⎪⎝⎭,其中00x >,()211f x x x '=+,()020011f x x x '=+, 所以过点0001,ln x x x ⎛⎫- ⎪⎝⎭的切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即020001121ln y x x x x x ⎛⎫=+--+ ⎪⎝⎭,因为切线为3y ax =-故20011a x x =+, 00231ln x x -=--+,01,2x a ∴== 15. 解:设),,(00y x P 由G 为21PF F ∆的重心得:G 的坐标为),3,3(00y x G 再由且GM ∥12F F ,所以M 点的纵坐标为3y ,在21PF F ∆中,c F F a PF PF 2,22121==+,所以21PF F ∆的面积为02121y F F S =,又因为M 为21PF F ∆的内心,所以M 点的纵坐标即为内切圆的半径,所以6 / 173)(2102211y PF F F PF S ⨯++=,所以021*******321y F F y PF F F PF =⨯++)(,即0022132221y c y c a =⨯+)(,所以c a 2=,所以椭圆C 的离心率21=e . 16.解:因为23ADC π∠=且四边形ABCD 为菱形, 所以CBD △,A BD '△均为等边三角形,取CBD △,A BD '△的重心为,M N ,过,M N作平面CBD 、平面A BD '的垂线,且垂线交于一点O , 此时O 即为三棱锥A BCD '-的外接球球心,如下图所示:记AC BD O '=,连接,CO OO ',因为二面角A BD C '--的大小为23π, 且A O BD ''⊥,CO BD '⊥,所以二面角A BD C '--的平面角为23A O C π''∠=, 因为O M O N ''=,所以cos cos MO O NO O ''∠=∠,所以3MO O NO O π''∠=∠=,又因为6BC =,所以6sin3CO A O π'''===,所以MO NO ''==所以tan33OM O M π'==,又23CM CO '==,所以OC ==三棱锥A BCD '-.当截面面积取最小值时,此时OE'⊥截面,又因为截面是个圆,设圆的半径为r,外接球的半径为R,又因为13NE A O'''==3ON OM==,所以OE'==所以3r==,所以此时截面面积为9Sπ=.四.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)解:(I)选择①:设等差数列{}n a的公差为d,则0d>,由题意可得2428S S S=,即()()()2462828d d d+=++,2d=,因此()1121na a n d n=+-=-.选择②:设等差数列{}n a的公差为d,则0d>,由251072a a a-=得2(14)(19)(16)2d d d++-+=,解得2d=,因此()1121na a n d n=+-=-. ………………………………… 5分(II)由(I)可得()()111111212122121nn nba a n n n n+⎛⎫===-⎪-+-+⎝⎭,所以11111111112335212122121nnTn n n n⎛⎫⎛⎫=-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭.…………………… 10分18.(本小题满分12分)解:(I)由()(sin sin)()sinb c B C a c A+-=-,根据正弦定理可得()()()b c b c a c a+-=-,………………………………………………… 2分即222b ac ac=+-,222ac a c b=+-由余弦定理2222cosb ac ac B=+-,得2221cos22a c bBac+-==,…………………………………………………………………… 4分7 / 178 / 17由于0B π<<,所以3B π=.………………………………………………………………… 6分(II )因为ABC ∆,所以1sin 2ac B ==,即4ac =,………………………………………………… 8分 因为2224b a c ac =+-=,所以228a c +=,………………………………………………10分所以4a c +==,所以ABC ∆周长为6. ………………………………… 12分 19.(本小题满分12分)解:(I )因为//DE AF ,又因为DE ⊄平面ABF ,AF ⊂平面ABF ,所以//DE 平面ABF . …………………………………………………… 2分因为底面ABCD 是正方形,所以//CD AB , 又因为CD ⊄平面ABF ,AB ⊂平面ABF ,所以//CD 平面ABF . ……………………………………………………4分 因为CD ⊂平面CDE ,DE ⊂平面CDE ,CDDE D =,所以平面CDE ∥平面ABF .因为CE ⊂平面CDE ,所以CE ∥平面ABF . …………………………………………………………6分 (II )以A 为坐标原点,分别以AB ,AD ,AF 所在直线为x 轴、y 轴、z 轴,建立如图空间直角坐标系.由4AB AD AF ===得,(000)A ,,,(400)B ,,,(440)C ,,,(002)F ,,,(040)D ,,,(04)E m ,,.设平面BCF 的法向量为1111()x y z =,,n ,由已知得,(402)FB =-,,,(442)FC =,,-, 由1100.FB FC ⎧⋅=⎪⎨⋅=⎪⎩,n n 得111114204420.x z x y z -=⎧⎨+-=⎩,不妨取11x =,则1102y z ==,,从而平面BCF 的一个法向量为1(102)=,,n .………………………………………………… 8分9 / 17设平面ECF 的法向量为2222()x y z =,,n ,又(40)CE m =-,,,由2200CE FC ⎧⋅=⎪⎨⋅=⎪⎩,,n n 得22222404420.x mz x y z -+=⎧⎨+-=⎩,不妨取24z =,则222x m y m ==-,, 所以平面ECF 的一个法向量为2(24)m m =-,,n . ………………………………………………… 10分所以12|cos ||cos ,|10α=<>=n n . 化简得2417130m m -+=,解得1m =或134m =, 因为DE AF <,所以1DE =. ………………………………………………… 12分20.(本小题满分12分)解:(I )X 的可能值为1和1k +,()1k P X p ==,()11kP X k p =+=-, 所以随机变量X 的分布列为:所以11(1)1EX p k p k kp =⨯++⨯-=+-.……………………………………………3分z yx A BDEF10 / 17(II )①设方案二总费用的数学期望为E Y (),方案一总费用的数学期望为Z ,则1620Y X =+,所以方案二总费用的数学期望为:()()162016(1)20kE Y E X k kp =+=+-+,又5k =,所以()516(620)5E Y p =-+589116p =-+,又方案一的总费用的数学期望为80Z =,所以()5916(5)4Z E Y p -=-,当p >59120p <<,59110544p <-<, 所以()Z E Y >,所以该单位选择方案二合理. …………………………………………………7分②由①知方案二总费用的数学期望()()162016()120kE Y E X k kp =+=+-+,当p =时,() 16120k E Y k k k =+-+⎡⎤⎢⎥⎢⎥⎣⎦79164k k ke -⎛⎫ ⎪⎝=+⎭-,又方案一的总费用为16Z k =,令()E Y Z <得:7916164k k ke k -⎛⎫ ⎪⎭<⎝+-,所以794kke->,即79ln ln 4k ke -⎛⎫> ⎪⎝⎭,所以9ln ln 074k k -->,………9分设()[)9ln ln ,2,74x f x x x =--∈+∞,所以()[)117,2,77xf x x x x-'=-=∈+∞, 令()0f x '>得27x ≤<,()0f x '<得7x >,11 / 17所以()f x 在区间[)2,7上单调递增,在区间()7,+∞上单调递减,……………………………10分 ()()()max 7ln 712ln 3ln 20.10f x f ==---=>,()()88883ln 22ln 3ln 25ln 22ln 3 1.30777f =---=--=->, ()()99992ln 32ln 3ln 22ln 2701.477f =---=-=->,()()1010ln102ln 3ln 2 1.507710f =---=->, ()()111111ln112ln 3ln 2 1.6077f =---=->, ()()12121212ln122ln 3ln 24ln 2ln 3 1.70777f =---=--=-<, 所以k 的最大值为11. ………………………………………………………………12分 21.(本小题满分12分)(1)由题可知2=a ,解得2=a 所以双曲线Q 的标准方程为2214-=x y . ………………………………………………………2分 (II )方法一:由题可知,直线AB 、AC 斜率存在且不为0. 因为AB AC ⊥ 所以1⋅=-AB AC k k ,即1211211-⋅=--y y y x x x .12 / 17又点,A C 在双曲线Q 右支上221122221414⎧-=⎪⎪⎨⎪-=⎪⎩x y x y ,作差得:211221124()-+=-+y y x x x x y y ,则212112121114()4+-===-+-BC y y x x yk x x y y x , ……………………………………………………4分又1111131224--==--BD y y y k x x 所以=BC BD k k .又BC 、BD 有公共点,所以、、B C D 三点共线. …………………………………………6分 方法二:由题可知,直线AB 、AC 斜率存在且不为0. 因为AB AC ⊥ 所以1⋅=-AB AC k k ,即1211211-⋅=--y y y x x x .① 又因为2221212122212121BC ACy y y y y y k k x x x x x x +--⋅==+--,又因为222212121,1,44x x y y -=-= 所以22212221111444BC ACx x k k x x --+⋅=-.② 由①②得4AB BCk k =-,所以1114BC yk x =-,……………………………………………………4分13 / 171111131224--==--BD y y y k x x ,所以=BC BDk k .又BC 、BD 有公共点,所以、、B C D 三点共线. …………………………………………6分 (III )设直线AC 的方程为1111()-=--y y y x x x , 联立方程组111122()14⎧-=--⎪⎪⎨⎪-=⎪⎩y y y x x x x y ,化简得22222221111112221114()()(1)8440++-+⋅-⋅-=x x x y x x y x y y y 22111222111112222111218()8()4410⎧+⎪+⎪+=-=⎪-⎨-⎪⎪∆>⎪⎩x x y y x x y x x x x y y , 因为11215()22∆=⋅⋅+ABC S y x x , 所以22111122118(152)24∆+=⋅-⋅ABCS y x x y x y , 所以221112211110()4∆+=-ABCy x x y x y S , ………………………………………………………………8分 又221114-=x y ,所以221144-=x y14 / 172222221111111112222222222111111111111111331111422411111111221110()10()440()4(4)(4)(4)(4)40()40()4174))4(4(17∆++⋅+==--⋅--⋅-++ ==-++-=ABCy y y S y y y y y x x y x x y x x y x y x y x y x y x y x x x y x x x x y y x ……………10分令11=y k x ,则22140()48174)4(17∆+==+-ABC k k k S k,令1=+t k k ,整理得:224351500--=t t .因为0t >,所以103=t , 所以231030-+=k k ,解得:133或==k k , 又因为双曲线C 的渐近线为12=±y x ,所以13=k . 所以直线l 的方程为13=y x . ………………………………………………………………12分 方法二:直线l 的方程为=y kx ,则直线AC 的方程为11()-=--y y k x x ,联立11221()14⎧-=--⎪⎪⎨⎪-=⎪⎩y y x x k x y ,化简得221111241(1)8()4()40-+⋅+-⋅+-=x x x y x y k k k k ,15 / 17111228()40+⎧+=-⎪∴-⎨⎪∆>⎩x ky x x k 因为11215()22∆=⋅⋅+ABC S y x x , 所以11211528(42)∆=⋅⋅+-ABC S y x ky k, ()()232322111111112221210108()10)1522(4444∆++++===----=⋅⋅ABCkx k x k k x x ky x y ky k k k y k S ……………8分 联立2214=⎧⎪⎨-=⎪⎩y kxx y ,消y 得:22414x k =-, 所以()()332321222422411040()1040()1414441744()17∆++++-====---++-ABC k k k k kxk k k k kkk k k kS ………10分 令1=+t k k ,240484257∆==-ABC t S t ,整理得:224351500--=t t .因为0t >,所以103=t ,所以231030-+=k k ,解得:133或==k k , 又因为双曲线C 的渐近线为12=±y x ,所以13=k . 所以直线l 的方程为13=y x . ………………………………………………………………12分16 / 1722.(本小题满分12分)),又k ()∴f x 在(0,)+∞单调递减,又()10=f ,∴函数()f x 的只有一个零点。

辽宁省大连市2013届高三第一次模拟考试数学(文)试题(word版,详解)

辽宁省大连市2013届高三第一次模拟考试数 学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.球的表面积公式:24S R π=,其中S 表示球的表面积,R 表示球的半径.第I 卷一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}2,ln A x =,{},B x y =,若{}0A B = ,则y 的值为( ) A .0 B .1 C .e D .1e2.设复数11iz i-=+,则z 为( )A .1B .1-C .iD .i -3. 计算sin 47cos17cos 47cos73︒︒-︒︒的结果等于( )A.21B. 33C.22D.234. 某市有400家超市,其中大型超市有40家,中型超市有120家,小型超市有240家.为了掌握各超市的营业情况,要从中抽取一个容量为20的样本.若采用分层抽样的方法,抽取的中型超市数是( )A .4B .6C .7D .12 5. 已知a b 、均为单位向量,且a b +=,则a 与b 的夹角为( )A .6πB .3πC .2π D .23π6. 若曲线22(1)(2)4x y -+-=上相异两点P Q 、关于直线20kx y --=对称,则k 的值为( )A .1B .2C .3D .47.如图,网格纸是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为 ( )A. 4B. 8C. 16D. 208. 已知函数()sin()(R,0,0,||)2f x A x x A πωϕωϕ=+∈>><的图象(部分)如图所示,则ωϕ,分别为 ( )A .2,6πωπϕ==B .,6πωπϕ==C .,3πωπϕ==D .2,3πωπϕ==9.运行如图所示的算法框图,则输出的结果S 为( )A .—1B .1C .—2D .210.下列说法正确的是( ) A .(0,)x π∀∈,均有sin cos x x >B .命题“R x ∃∈使得210x x ++<”的否定是:“R x ∀∈,均有210x x ++<” C .“0a =”是“函数32()f x x ax x =++为奇函数”的充要条件D .R x ∃∈,使得5sin cos 3x x +=成立 11.已知,A B 两点均在焦点为F 的抛物线22(0)y px p =>上,若||||4AF BF +=,线段AB 的中点到直线2px =的距离为1,则p 的值为( ) A .1 B .1或3 C .2 D .2或612.定义在R 上的函数()f x 满足(3)1f =,(2)3f -=,()f x '为()f x 的导函数,已知()y f x '=的图象如图所示,且()f x '有且只有一个零点,若非负实数,a b 满足(2)1f a b +≤,(2)3f a b --≤,则21b a ++的取值范围是( ) A .4[,3]5 B .4(0,][3,)5+∞ C .4[,5]5 D .4(0,][5,)5+∞第II 卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷卡的相应位置上)13.已知△ABC 三个内角A 、B 、C ,且sin :sin :sin2:3:4A B C =,则cos C 的值为 .14. 已知双曲线C :22221y x a b-=(0,0)a b >>,P 为x 轴上一动点,经过P 的直线2(0)y x m m =+≠与双曲线C 有且只有一个交点,则双曲线C 的离心率为 .15.在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且1PA PB PC ===.则这个球的表面积为 .16.已知函数()y f x =的定义域为R ,且具有以下性质:①()()0f x f x --=;②(2)(2)f x f x +=-;③)(x f y =在区间[0,2]上为增函数,则对于下述命题:(Ⅰ))(x f y =的图象关于原点对称 ; (Ⅱ))(x f y =为周期函数,且4是一个周期;(Ⅲ))(x f y =在区间[2,4]上为减函数.所有正确命题的序号为 .三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分). 已知各项均为正数的数列{}n a 满足11a =,11+0n n n n a a a a ++-= . (Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)求数列2n n a ⎧⎫⎨⎬⎩⎭前n 项和n S .18.(本小题满分12分)某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[]21,7,22.3(单位:cm )之间的零件,把零件尺寸在)1.22,9.21[的记为一等品,尺寸在)2.22,1.22[)9.21,8.21[ 的记为二等品,尺寸在]3.22,2.22[)8.21,7.21[ 的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:(Ⅰ)根据上述数据完成下列22⨯列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?/cm/cm()21122122121+2++1+2-=n n n n n n n n n χ,(Ⅱ)若一等品、二等品、三等品的单件利润分别为30元、20元、15元,求出上述甲工艺所抽取的100件产品的单件利润的平均数.19.(本小题满分12分)如图,正三棱柱ABC -A 1B 1C 1中,底面边长为2D 为11AC 中点. (Ⅰ)求证;1BC ∥平面1AB D ; (Ⅱ)三棱锥1B AB D -的体积.20. (本小题满分12分)设离心率12e =的椭圆2222:1(0)x y M a b a b+=>>的左、右焦点分别为12F F 、,P 是x轴正半轴上一点,以1PF 为直径的圆经过椭圆M 短轴端点,且该圆和直线30x +=相切,过点P 直线椭圆M 相交于相异两点A 、C .(Ⅰ)求椭圆M 的方程;(Ⅱ)若相异两点A B 、关于x 轴对称,直线BC 交x 轴与点Q ,求Q 点坐标.D21.(本小题满分12分)已知R m ∈,函数2()2x f x mx e =-.(Ⅰ)当2m =时,求函数()f x 的单调区间; (Ⅱ)若()f x 有两个极值点,求m 的取值范围.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的 AC BD =,过C 点的圆的 切线与BA 的延长线交于E 点. (Ⅰ)证明:ACE BCD ∠=∠;(Ⅱ)若9,1BE CD ==,求BC 的长. 23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x O y 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),曲线2C 的参数方程为22cos 2sin x y ββ=+⎧⎨=⎩(β为参数),P 是2C 上的点,线段OP 的中点在1C 上.(Ⅰ)求1C 和2C 的公共弦长;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求点P 的一个极坐标. 24.(本小题满分10分)选修4-5:不等式选讲 已知512)(-+-=ax x x f (a 是常数,a ∈R)(Ⅰ)当a=1时求不等式0)(≥x f 的解集.(Ⅱ)如果函数)(x f y =恰有两个不同的零点,求a 的取值范围.2013年大连市高三一模测试数学(文科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分. 一.选择题1.A ;2.D ;3. A ;4. B ;5.B ;6. D ;7.C ;8. C ;9. A ;10.C ;11.B ;12. A . 二.填空题 13.14-; 14.15.3π;16.(Ⅱ),(Ⅲ). 三.解答题17.解:(Ⅰ)∵11+0n n n n a a a a ++-= ,∴1110n n n nn n a a a a a a ++++-= ,∴1111n na a +-=,··························· 3分 111a =,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列. ········ 4分 11(1)1nn n a =+-⨯=,1n a n =. ··················· 6分(Ⅱ)法一:由(Ⅰ)知2=2nn nn a .12=12+22++2n n S n ⨯⨯⨯ . ······································································· ① 23+12=12+22++2n n S n ⨯⨯⨯ . ·································································· ② ······················································································································· 9分 由①-②得121=2+2++22nn n S n +--⨯ .∴1=(1)22n n S n +-+. ················································································12分法二:令212n n n b n c c +==- ,令()2n n c An B =+ , ∴11()2()22n n n n n n b c c An A B An B n ++=-=++-+= .∴12A B ==-,. ······················································································ 9分 ∴122132111n n n n b b b c c c c c c c c +++++=-+-++-=-1(12)2(12)2=(1)22n n n n +=+----+ . ············································12分 18······································ 3分841.302.290110100100)50604050(20022<≈⨯⨯⨯⨯-⨯⨯=χ, ···················································· 6分所以没有理由认为选择不同的工艺与生产出来一等品有关. ···································· 8分 (Ⅱ)甲工艺抽取的100件产品中,一等品有50件,二等品有30件,三等品有20件, ··································· 10分 所以这100件产品单件利润的平均数为24)152020303050(1001=⨯+⨯+⨯. ················· 12分 19.解:(Ⅰ)解:(Ⅰ)如图,连结A 1B 与AB 1交于E ,连结DE ,则E 为A 1B 的中点,∴BC 1∥DE , DE ⊂平面1AB D ,1BC ⊄平面1AB D ,∴1BC ∥平面1AB D . ···························································································· 6分 (Ⅱ)过点D 作11DH A B ⊥,∵正三棱柱111ABC A B C -,∴1111AA A B C ⊥平面,1AA DH ⊥,1111AA A B A = ,∴DH ⊥平面11ABB A .DH 为三棱锥1D ABB -的高 ·········································· 8分 1112ABB S AB BB ∆== 1112MH A B ==, ················································ 10分1tan3DH A D π==∵1113B AB D D ABB V V --=== ····························································· 12分 20.解:(Ⅰ)设以1PF 为直径的圆经过椭圆M 短轴端点N ,∴1||NF a =,∵12e =,∴2a c =, ∴13NF P π∠=, 1||2F P a =. ······················································································ 3分 ∴2(,0)F c 是以1PF 为直径的圆的圆心,∵该圆和直线30x +=相切,∴2c =1,2,c a b ===,∴椭圆M 的方程为:22143x y +=.··············································································· 5分 (Ⅱ)法一:设点11(,)A x y ,22(,)C x y ,则点11(,)B x y -,设直线PA 的方程为(3)y k x =-,联立方程组22143(3).x y y k x ⎧+=⎪⎨⎪=-⎩, 化简整理得2222(43)2436120k x k x k +-+-=, 由2222(24)4(34)(3612)0k k k ∆=-⋅+⋅->得235k <. 则22121222243612,4343k k x x x x k k -+==++.·············································································· 8分 直线BC 的方程为:211121()y y y y x x x x ++=--,令0y =,则22221221121221212272247223()44343==2463643k k y x y x x x x x k k x k y y x x k --+-+++==++--+∴Q 点坐标为4(,0)3. ··································································································· 12分法二:设点11(,)A x y ,22(,)C x y ,则点11(,)B x y -, 设直线方程为3x my =+.由2231.43x my x y =+⎧⎪⎨+=⎪⎩,得22(34)18150m y my +++=, 由22(18)415(34)0m m ∆=-⋅⋅+>得253m >. 12212218,3415.34m y y m y y m ⎧+=-⎪⎪+⎨⎪=⎪+⎩···································································································· 8分直线BC 的方程为:211121()y y y y x x x x ++=--,令0y =,则212211212122152(3)(3)24343=3+=18334m y my y my my y m x m y y y y m ++++==+++-+ . ∴Q 点坐标为4(,0)3. ··································································································· 12分21. 解:(Ⅰ)2m =时,2()22x f x x e =-,()422(2)x x f x x e x e '=-=-.令()2x g x x e =-,()2x g x e '=-, ·················································································· 2分 当(,ln 2)x ∈-∞时,()0g x '>,(ln 2,)x ∈+∞时,()0g x '< ∴()(ln 2)2ln 220g x g =-<≤.∴()0f x '<.∴()f x 在(,)-∞+∞上是单调递减函数. ············ 4分 (Ⅱ)①若()f x 有两个极值点,()a b a b <,则,a b 是方程()220x f x mx e '=-=的两不等实根.解法一:∵0x =显然不是方程的根,∴xe m x=有两不等实根. ·································· 6分令()x e h x x =,则2(1)()x e x h x x -'=当(,0)x ∈-∞时,()0h x '<,()h x 单调递减,()(,0)h x ∈-∞(0,1)x ∈时,()0h x '<,()h x 单调递减,(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 要使xe m x=有两不等实根,应满足(1)m h e >=,∴m 的取值范围是(,)e +∞.(注意:直接得()h x 在(,1)-∞上单调递减,(1,)+∞上单调递增). ································· 12分解法二:()()22x h x f x mx e '==-,则,a b 是方程()0h x =的两不等实根.∵()2()x h x m e '=-,当0m ≤时,()0h x '<,()h x 在(,)-∞+∞上单调递减,()0h x =不可能有两不等实根 当0m >时,由()0h x '=得ln x m =,当(,ln )x m ∈-∞时,()0h x '>,(ln ,)x m ∈+∞时,()0h x '<∴当max ()(ln )2(ln )0h x h m m m m ==->,即m e >时,()0h x =有两不等实根∴m 的取值范围是(,)e +∞. ························ 8分22.解:(Ⅰ)证明 ,AC BDABC BCD =∴∠=∠ . ···················································· 2分 又EC 为圆的切线,,ACE ABC ∴∠=∠∴ACE BCD ∠=∠. ····························· 5分 (Ⅱ)EC 为圆的切线,∴CDB BCE ∠=∠, 由(Ⅰ)可得BCD ABC ∠=∠ ····················································································· 7分∴△BEC ∽△CBD ,∴CD BCBC EB=,∴BC =3. ················································ 10分 23.解:(Ⅰ)曲线1C 的一般方程为4)2(22=-+y x ,曲线2C 的一般方程为4)2(22=+-y x . ································································· 2分 两圆的公共弦所在直线为x y =,)0,2(到该直线距离为2,所以公共弦长为2222222=-. ························ 5分(Ⅱ)曲线1C 的极坐标方程为θρsin 4=,曲线2C 的极坐标方程为θρcos 4=. ······································································· 7分 设),(θρM ,则),2(θρP ,两点分别代入1C 和2C 解得554=ρ, θ不妨取锐角55arcsin, 所以)55arcsin ,558(P .························································································ 10分 24.解:(Ⅰ)136(),2()14().2x x f x x x ⎧-≥⎪⎪=⎨⎪--<⎪⎩∴0)(≥x f 的解为{}42-≤≥x x x 或 . ·················· 5分(Ⅱ)由0)(=x f 得,=-12x 5+-ax . ················· 7分第 11 页 共 11 页 令12-=x y ,5+-=ax y ,作出它们的图象,可以知道,当22<<-a 时, 这两个函数的图象有两个不同的交点,所以,函数)(x f y =有两个不同的零点. ················· 10分。

2013年高考试题分项版解析数学(理)专题13算法(Word精析版)

第十三章算法一.基础题组1【. 2013 年一般高等学校招生全国一致考试(陕西卷)】依据以下算法语句 , 当输入 x 为 60 时 , 输出 y 的值为()(A) 25输入 x(B) 30If x≤ 50 Theny=0.5 * x(C) 31Elsey=25+0.6*( x-50)(D) 61End If输出 y2. 【 2013年2013 年一般高等学校一致考试天津卷理科】阅读右侧的程序框图, 运转相应的程序, 若输入x 的值为1,则输出S 的值为()(A) 64(B) 73(C) 512(D) 585【答案】 B4. 【2013 年一般高等学校一致考试江苏数学试题】以下图是一个算法的流程图,则输出的n 的值是.开始n1, a2n n 1a 20Ya 3a 2N 输出 n结束5. 【2013 年一般高等学校招生全国一致考试(湖南卷)】履行如图3 所示的程序框图,假如输入a 1,b2,则输出的 a 的值为.开始a 10, i 1a 4 ?是否是是奇数 ?否aa输出 ia 3a 1a2i i 1结束6. 【 2013 年一般高等学校招生全国一致考试湖北卷理科】阅读以下图的程序框图,运转相应的程序,输出的结果 i_________.二.能力题组7. 【2013 年一般高等学校招生全国一致考试福建卷理】阅读以下图的程序框图,若编入的 k 10 ,则该算法的功能是()A. 计算数列2n 1的前10项和B. 计算数列2n1的前 9项和C. 计算数列2n - 1 的前10项和D. 计算数列2n - 1 的前9项和8. 【 2013 年一般高等学校招生全国一致考试( 江西卷 ) 理】阅读以下程序框图,假如输出i=5 ,那么在空白矩形框中应填入的语句为A.S=2 i-2B.S=2 i-1C.S=2iD.S=2i+49.【2013年一般高等学校招生全国一致考试(辽宁卷)理科】履行以下图的程序框图,若输入 n10,则输出的 SA .5103672B .C.D.1111555510.【 2013年一般高等学校招生全国一致考试(广东卷)理】履行以下图的程序框图, 若输入n 的值为4,则输出s 的值为 ______.开始输入 ni1,s1否i n是s输出s s i 1结束i i1【答案】7【分析】第一次循环后: s1,i 2 ;第二次循环后: s2, i 3 ;第三次循环后: s4, i 4 ;第四次循环后: s7, i5,此时i 4.故输出7 .【考点定位】程序框图.11. 【2013 年一般高等学校招生全国一致考试(山东卷)】履行右边的程序框图,若输入的的值为0.25,则输入的 n 的值_____.【考点定位】此题考察程序框图的运转门路,考察读图能力和运算能力, 针对近似问题可依据框图中的重点“部位”进行数据排列 .三.拔高题组12. 【2013 年一般高等学校招生全国一致考试数学浙江理】某程序框图以下图,若该程序运转后输出的值是9,5则()A. a4B. a5C. a 6D. a713. 【2013 年一般高等学校一考新Ⅱ数学(理)卷】行右边的程序框,假如入的N=10,那么出的 s=( A)1+!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
大连市2013年高三双基测试卷
数学(理)试题
本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第22题~第24题为选
考题,其它题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,
将本试卷和答题卡一并交回.

参考公式:球的体积公式334RV.其中R为球半径.

用最小二乘法求线性回归方程系数公式1221niiiniixynxybxnx,aybx.
第I卷
一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是
符合题目要求的)
1. 复数iz1的虚部是
A.1 B.1 C.i D.i

2.已知集合0)3lg(|,034|2xxNxxxM,则MN=

A.}31|{xx B.}21|{xx
C. D.}32|{xx
3.函数2)cos(sin)(xxxf 的最小正周期为
A.4 B.2 C. D.2
4.抛物线212xy的焦点F到准线l的距离是
A.2 B.1 C.21 D.41

5.执行如图所示的程序框图,如果6n,则输出的s的值是
A.76 B.87

C.65 D.540,1si
6.nS为等差数列{}na的前n项和,682aa,则9S
A.227 B.27 C.54
D.108

开始
输出s
结束

1ii

)1(1ii
ss
?ni

第5题图
- 2 -

7.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概
率为

A.1 B.12 C.13 D.14

8.下列函数中,与函数3xy的奇偶性相同且在)0,(上单调性也相同的是
A.1yx B.2logyx C.21yx D.31yx
9.下列说法中,正确的是
A.命题“若22ambm,则ab”的逆命题是真命题
B.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
C.已知xR,则“1x”是“2x”的充分不必要条件

D.命题“xR,02xx”的否定是:“xR,02xx”

10.设O在ABC的的内部,有230OAOBOC,则0ABC的面积和AOC且的面积之比

A.3 B.533 C.2 D.
2
3

11.已知()fx是定义在R上的且以2为周期的偶函数,当01x时,2()fxx,如果函数
)()()(mxxfxg
有两个零点,则实数m的值为
A.k2(kZ) B.k2或412k(kZ)
C.0 D.k2或412k(kZ)
12.SC为球O的直径,BA,是该球球面上的两点,4,2BSCASCAB,若棱锥
SBCA

的体积为433,则球O体积为
A.43 B.323
C.27 D.34

第II卷
本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第
22题~第24题为选考题,考生根据要求做答.
二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)
13.一个几何体的三视图及其尺寸如下(单位:cm):
- 3 -

则该几何体的表面积为 cm2.
14.已知下列表格所示的数据的回归直线方程为axy8.3ˆ,则a的值为___ ___.

x
2 3 4 5 6

y
251 254 257 262 266

15.数列na满足:33)1()12(531321nnnanaaa,则数列na的通项公式
n
a
= .
16.已知点A2,0,B(2,0),且动点P满足2PAPB,则动点P
的轨迹与直线)2(xky有两个交点的充要条件为k .

三.解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)

已知CBA,,是ABC的三个内角,向量m)sin,sin(sinCBA,

向量n)sinsin,sinsin2(BACA,m//n
(Ⅰ)求角B;
(Ⅱ)若53sinA,求Ccos的值.

4
4
4
4

4
主视图 左视图

俯视图
第13题图
- 4 -

18.(本小题满分12分)
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情
况的频率分布直方图如下:

已知样本中身高在[150,155)cm的女生有1人.
(Ⅰ)求出样本中该校男生的人数和女生的人数;
(Ⅱ)估计该校学生身高在170~190cm之间的概率;
(Ⅲ)从样本中身高在185~190cm之间的男生和样本中身高在170~180cm之间的女生中随机

抽取3人,记被抽取的3人中的女生人数为X.求随机变量X的分布列和数学期望()EX.

19.(本小题满分12分)
如图,四棱锥PABCD中,底面ABCD为梯形,60DAB,AB∥CD,
22ADCDAB,PD底面ABCD,M为PC
的中点.
(Ⅰ)证明:BDPC;

(Ⅱ)若12PDAD,求二面角DBMP的余弦值.

20.(本小题满分12分)
设A,B分别是直线xy22和xy22上的动点,且2AB,

设O为坐标原点,动点P满足OBOAOP.
(Ⅰ)求点P的轨迹方程;

A
B

C
D

P
M

第19题图

0.08
150
7
0.04

0.02
150
1

身高/cm 组距频率 0 150 155 160 165 170 175 180 身高/cm
0

组距
频率

160 165 170 175 180 185 190
0.07
0.065

0.025
0.02

0.01

男 生
女 生

第18题图
- 5 -
(Ⅱ)过点)0,3(做两条互相垂直的直线21,ll,直线21,ll与点P的轨迹相交弦分别为CD、EF,
设CD、EF的弦中点分别为M、N,求证:直线MN恒过一个定点.

21.(本小题满分12分)
函数2ln)(axxxf(aR).

(Ⅰ)求函数)(xf的单调区间;
(Ⅱ)当81a时,证明:存在),2(0x,使)1()(0fxf;

(Ⅲ)当41a时,证明:43142)(4xxf.

请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用
2B铅笔在答题卡上把所选题目对应的标号涂黑.

22.(本小题满分10分)选修4-1:几何证明选讲
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,
连结EC、CD.
(Ⅰ)求证:直线AB是⊙O的切线;

(Ⅱ)若tan∠CED=21,⊙O的半径为3,求OA的长.

23.(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xoy中,以原点o为极点,x轴的正半轴为极轴建立极坐标系.

已知射线:l4与曲线:C,)1(,12tytx(t为参数),相交于BA,两点.
(Ⅰ)写出射线l的参数方程和曲线C的直角坐标系方程;
(Ⅱ)求线段AB的中点极坐标.

24.(本小题满分10分)选修4-5:不等式选讲
已知实数t,若存在]3,21[t使得不等式21521xxtt
成立,求实数x的取值范围.

O
A
B

C

D

E

第22题图
- 6 -
- 7 -
- 8 -
- 9 -
- 10 -
- 11 -

相关文档
最新文档