初中数学-多边形专项训练

合集下载

初中数学——多边形练习试卷92

初中数学——多边形练习试卷92

初中数学——多边形练习试卷92一、选择题(共10小题;共50分)1. 如图,将一副直角三角板,按如图所示叠放在一起,则图中的度数是A. B. C. D.2. 如图,公路,互相垂直,公路的中点与点被湖隔开,若测得的长为,则,两点间的距离为3. 小易和小菲从同一地点同时出发,分别沿直线匀速前进,小易向正南方向前进,速度是,小菲的速度是,小时后他们两人相距,由此可以判断小菲前进的方向是A. 正北B. 正东C. 正西D. 正东或正西4. 若正方形的外接圆半径为,则其边长为A. B. D.5. 如图,平分交于点,于点,于点.若,,,则的长是A. B. C. D.6. 边长相等的正三角形和正六边形的面积之比为A. B. C. D.7. 如图,正六边形内接于圆,半径为,则这个正六边形的边心距和弧的长分别为A. B. , C. , D. ,8. 若正五边形绕着它的中心旋转一个度数后能与原图形重合,则旋转的这个角度至少为A. B. C. D.9. 如图,在中,,高,点,分别在,上,点,在上,当四边形是矩形,且时,则矩形的周长为A. B. C. D.10. 如图,正六边形中,,两点分别为,的内心.若,则线段的长为B. C. D.二、填空题(共6小题;共30分)11. 如图,在直角三角形中,,是高,,,则.12. 在中,,如比小,则度.13. 如图,在中,,点在上,且,若,则.14. 如图,在中,,于点,如果,,那么.15. 如图,,,,为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为.16. 如果一个多边形共有条对角线,则这个多边形的边数是.三、解答题(共6小题;共78分)17. 如图,在中,,点在上,且.(1)求证:.(2)求的度数.18. 如图所示,在中,,,,,,求的长.19. 如图,,于点.求证:.20. 如图,为了测量一口池塘的长度,在池塘外取两点,,使点在的延长线上,从可直接到达,,再取和的中点,,量得,,求的长.21. 如图,在中,,,分别是,的中点,,垂足为.求证:(1);(2).22. 如图,已知过平行四边形的顶点作一直线交于点,交的延长线于点,交于点.求证:.答案第一部分1. B 【解析】,,,.故选:B.2. B3. D4. B5. D【解析】平分,,,,,,,.6. C7. D8. D9. C 【解析】,,,,,,矩形的周长.10. A【解析】如图,连接,,,,因为,两点分别是,的内心,又因为,易得,,所以垂直平分,则,因为,是内角为,,的三角形,所以,,,,,.第二部分11.12.【解析】设,则,,,即,解得.故答案为:.【解析】设,因为,所以,即,解得或(舍去).所以,因为,所以,所以,所以.14.【解析】在中,,在中,,在中,,,解得:.15.【解析】连接,,,,,为一个正多边形的顶点,为正多边形的中心,点,,,在以点为圆心,为半径的同一个圆上,,,这个正多边形的边数.16.第三部分17. (1),,,,,,,.(2),,又,,在中,,.18. .19. 如图,连接.则,..又,,.20. ,分别是,的中点,,,.21. (1),分别是,的中点,,,,.(2),分别是,的中点,,,.22. 略。

初中数学《八上》 第十一章 三角形-多边形及其内角相和 考试练习题

初中数学《八上》 第十一章 三角形-多边形及其内角相和 考试练习题

初中数学《八上》第十一章三角形-多边形及其内角相和考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、正五边形每个内角的度数是_______ .知识点:多边形及其内角相和【答案】【分析】先求出正n边形的内角和,再根据正五边形的每个内角都相等,进而求出其中一个内角的度数.【详解】解:∵ 正多边形的内角和为,∴ 正五边形的内角和是,则每个内角的度数是.故答案为:【点睛】此题主要考查了多边形内角和,解题的关键是熟练掌握基本知识.2、已知一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是()A . 6B . 7C . 9D . 8知识点:多边形及其内角相和【答案】D【分析】设多边形的边数为,根据多边形的内角和公式以及外角和的性质,列方程求解即可.【详解】解:设多边形的边数为,由题意可得:解得故选D【点睛】此题考查了多边形内角和以及外角和的性质,熟练掌握相关基本性质是解题的关键.3、图中x 的值为 ________知识点:多边形及其内角相和【答案】130【分析】根据多边形内角和定理求解即可.【详解】根据多边形内角和定理可得,该五边形内角和为540°解得故答案为:130 .【点睛】本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.4、已知一个正多边形的每个内角都是150° ,则这个正多边形是正 __ 边形.知识点:多边形及其内角相和【答案】十二【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360 度,利用 360 除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:外角是:180° ﹣150° =30° ,360°÷30° = 12 .则这个正多边形是正十二边形.故答案为:十二.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.5、从7 边形的一个顶点作对角线,把这个 7 边形分成三角形的个数是()A . 7 个B . 6 个C . 5 个D . 4 个知识点:多边形及其内角相和【答案】C【分析】可根据n边形从一个顶点引出的对角线与边的关系:n −3 ,可分成(n −2 )个三角形直接判断.【详解】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n −2 ) ,∴7 边形的一个顶点可以作 4 条对角线,把这个 7 边形分成个三角形;故选:C .【点睛】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n −3 )条,经过多边形的一个顶点的所有对角线把多边形分成(n −2 )个三角形.6、如图,在锐角中,分别是边上的高,交于点,,则的度数是()A .B .C .D .知识点:多边形及其内角相和【答案】B【分析】根据垂直的定义和四边形的内角和是360° 求得 .【详解】解:BE⊥AC ,CD⊥AB ,∠ADC =∠AEB =90°∠BPC =∠DPE =180°-50° =130°故选:B【点睛】主要考查了垂直的定义以及四边形内角和是360 度 . 注意∠BPC 与∠DPE 互为对顶角 .7、十二边形的内角和是__________知识点:多边形及其内角相和【答案】1800°【分析】n 边形的内角和是 (n-2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】十二边形的内角和等于:(12-2)•180°=1800°;故答案为:1800° .【点睛】本题主要考查了多边形内角和问题,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.8、四边形的外角和等于_______.知识点:多边形及其内角相和【答案】360° .【详解】解:n (n≥3 )边形的外角和都等于360° .9、如图,将矩形ABCD绕点A顺时针旋转到矩形AB ‘C ‘D ‘ 的位置,旋转角为α (0° <α <90° ),若∠1 =112° 则∠α 的度数是 ______ .知识点:多边形及其内角相和【答案】22°【分析】先根据矩形的性质得∠BAD=∠ABC=∠ADC=90° ,再根据旋转的性质得∠BAB ′ =α ,∠B ′AD ′ =∠BAD=90° ,∠D ′ =∠D=90° ,然后根据四边形的内角和得到∠3=68° ,再利用互余即可得到∠α的大小.【详解】解:∵ 四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90° ,∵ 矩形ABCD绕点A顺时针旋转到矩形AB ′C ′D ′ 的位置,旋转角为α ,∴∠BAB ′ =α ,∠B ′AD ′ =∠BAD=90° ,∠AD ′C ′ =∠ADC=90° ,∵∠2 =∠1 =112° ,而∠ABC=∠D ′ =90° ,∴∠3 =180°−∠2 =68° ,∴∠BAB ′ =90°−68°=22° ,即∠α =22° .故答案为:22° .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10、若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是 ______ .知识点:多边形及其内角相和【答案】8【详解】解:设边数为n ,由题意得,180 (n-2 ) =3603解得n=8.所以这个多边形的边数是8.11、如图,两条平行线分别经过正五边形的顶点,如果,那么∠2=_______ 度.知识点:多边形及其内角相和【答案】80【分析】延长CB交l1于点F,根据正五边形内角和以及平行线的性质解答即可.【详解】解:延长CB交l1于点F,∵ 正五边形ABCDE的一个内角是=108° ,∴∠4=180°-108°=72° ,∴∠3=180°-∠1-∠4=180°-28°-72°=80° ,∵l1 ∥l2,∠3=80° ,∴∠2=∠3=80° ,故答案为:80 .【点睛】此题考查平行线的性质及正多边形的性质,解题的关键是由正多边形的性质求出∠3 的度数,从而得出答案.12、如图,在五边形ABCDE中,∠D=120° ,与∠EAB相邻的外角是80° ,与∠DEA,∠ABC相邻的外角都是60° ,则∠C为________ 度.知识点:多边形及其内角相和【答案】80【分析】利用邻补角的定义分别求出∠DEA,∠ABC,∠EAB的度数;再利用五边形的内角和为540 毒,可求出∠C 的度数.【详解】解:∵ 与∠EAB相邻的外角是80° ,与∠DEA,∠ABC相邻的外角都是60° ,∴∠DEA=180° -60° =120° ,∠ABC=180° -60° =120° ,∠EAB=180° -80° =100° ;五边形的内角和为(5 - 2 )×180° =540° ;∴∠C=540° -120° -120° -120° -100° =80° .故答案为:80 .【点睛】此题考查了多边形内角和的性质,涉及了邻补角的定义,熟练掌握相关基本性质是解题的关键.13、已知一个多边形的内角和是900° ,则这个多边形是()A .六边形B .七边形C .八边形D .九边形知识点:多边形及其内角相和【答案】B【分析】根据多边形的内角和公式(n -2 )•180°,列式求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n -2 )•180°=900°,解得n =7 .故选:B .【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14、多边形的边数由3 增加到 2021 时,其外角和的度数()A .增加B .减少C .不变D .不能确定知识点:多边形及其内角相和【答案】C【分析】根据多边形的外角和定理即可求解判断.【详解】解:∵ 任何多边形的外角和都是360° ,∴ 多边形的边数由 3 增加到 2021 时,其外角和的度数不变,故选:C .【点睛】此题考查多边形的外角和,熟记多边形的外角和是360 度,并不随边数的变化而变化是解题的关键.15、正五边形的每一个内角都等于___ .知识点:多边形及其内角相和【答案】108°【分析】方法一:先根据多边形的内角和公式(n-2 )×180° 求出内角和,然后除以 5 即可;方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【详解】方法一:(5-2 )×180°=540° ,540°÷5=108° ;方法二:360°÷5=72° ,180°-72°=108° ,所以,正五边形每个内角的度数为108° .故答案为:108° .16、正多边形的一个外角等于60° ,这个多边形的边数是()A . 3B . 6C . 9D . 12知识点:多边形及其内角相和【答案】B【分析】根据多边形的边数等于360° 除以每一个外角的度数60° ,计算即可.【详解】解:边数=360°÷60° = 6 .故选:B .【点睛】本题主要考查了正多边形的外角与边数的关系,360° 除以每一个外角的度数就等于正多边形的边数,需要熟练记忆.17、正九边形一个内角的度数为______ .知识点:多边形及其内角相和【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于减去一个外角,求出外角即可求解.【详解】正多边形的每个外角(为边数),所以正九边形的一个外角正九边形一个内角的度数为故答案为:140° .【点睛】本题考查的是多边形的内角和,多边形的外角和为,正多边形的每个内角相等,通过计算1 个外角的度数来求得 1 个内角度数是解题关键.18、若正多边形的一个外角是45° ,则该正多边形的内角和为()A .1080°B .900°C .720°D .540°知识点:多边形及其内角相和【答案】A【分析】先根据多边形的外角和定理求出多边形的边数,再根据多边形的内角和公式求出这个正多边形的内角和.【详解】解:正多边形的边数为:360°÷45°=8 ,则这个多边形是正八边形,所以该正多边形的内角和为(82 )×180°=1080° .故选:A .【点睛】本题主要考查了多边形的外角和定理及多边形的内角和公式,关键是掌握内角和公式:(n-2 )•180 (n≥3 )且 n 为整数).19、一个十边形的内角和等于()A .B .C .D .知识点:多边形及其内角相和【答案】C【分析】根据多边形的内角和计算公式(n -2 )×180° 进行计算即可.【详解】解:十边形的内角和等于:(10-2 )×180°=1440° .故选C .【点睛】本题主要考查了多边形的内角和定理,关键是掌握多边形的内角和的计算公式.20、三角形纸片ABC中,,将纸片的一角折叠,使点C落在△ABC内(如图),则的度数为________。

(完整版)初中数学专项训练:多边形及其内角和

(完整版)初中数学专项训练:多边形及其内角和

初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。

新人教版数学八年级上册11.3.1多边形同步练习

新人教版数学八年级上册11.3.1多边形同步练习

初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷

人教版初中数学八年级上册《11.3 多边形及其内角和》同步练习卷

人教新版八年级上学期《11.3 多边形及其内角和》同步练习卷一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.6.一个n边形的内角和比四边形的外角和大540°,求n.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?19.已知一个多边形的内角和720°,求这个多边形的边数.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).25.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.26.(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图②,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;②如图③,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.27.在四边形ABCD中,∠A=140°,∠D=80°(1)如图1,若∠B=∠C,求∠C的度数;(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,求∠C的度数.28.如图,六边形ABCDEF的各个内角都相等,且∠DAB=60°.(1)求∠E的度数.(2)求∠ADE的度数.(3)判断AB与DE的位置关系,并说明理由.29.如图,四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.30.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.31.在各个内角都相等的多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数.32.小月和小东在一起探究有关“多边形内角和”的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角的度数之比为1:2:3:6,求各个内角的度数.小东想了想,说:“这道题目有问题”(1)请你指出问题出在哪里;(2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.33.如图1,点E在四边形ABCD的边BA的延长线上,CE与AD交于点F,∠DCE=∠AEF,∠B=∠D.(1)求证:AD∥BC;(2)如图2,若点P在线段BC上,点Q在线段BP上,且∠FQP=∠QFP,FM平分∠EFP,试探究∠MFQ与∠DFC的数量关系,并说明理由.34.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E=.35.已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.36.已知在一个十边形中,其中九个内角的和是1320°,求这个十边形另一个内角的度数.37.如图,在四边形ABCD中,∠DAB、∠CBA的平分线交于点E,试说明:∠AEB=(∠C+∠D).38.为了表示几种三角形之间的关系,画了如图结构图:请你采用适当的方式表示正方形、平行四边形、四边形、菱形、矩形之间的关系.39.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.40.李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.41.如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.42.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形,请画出示意图,并在图形下方写上剩余部分多边形的内角和.43.一个多边形的外角和是内角和的,求这个多边形的边数.44.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.45.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.46.如图,一张四边形纸片ABCD,AB∥CD,AD∥BC,把纸片的一角沿折痕CN折叠,使BC与DC边重合,B′是点B的对应点,过点C作CM⊥CN,(1)证明:AD∥NB′;(2)若∠B=64°,试求∠BCM的度数.47.两条直线相交所形成的四个角中,有一个公共顶点且有一条公共边的两个角叫做邻补角,如图所示,∠AOD与∠BOD就是一对邻补角.(1)多边形的一个外角与其相邻的内角就是一对邻补角,若某多边形的一个外角的度数为x(度),则与该外角相邻的内角度数可用x的代数式表示为;(2)如果设题(1)中的多边形的边数为x,且该外角的度数与其所有不相邻内角的度数之和为460°,则可列二元一次方程为;(3)若某多边形的一个外角的度数与其所有不相邻内角的度数之和为1900°,求这个外角的度数和此多边形的边数.48.如图,在四边形ABCD,AD∥BC,将△ADC沿对角线AC折叠,使得点D落在D′上,AD′与BC交于点E,若∠AEB=70°,求∠CAD的度数.49.解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC 与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)50.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.人教新版八年级上学期《11.3 多边形及其内角和》2019年同步练习卷参考答案与试题解析一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.【分析】图①、②的基本思路是把所求的多边形的问题转化为三角形的问题,利用三角形的内角和定理即可解决问题.【解答】解:连接五边形的一对不相邻的顶点,得到一个三角形和一个四边形,三角形的内角和是180度,四边形的内角和是360度,因而五边形的内角和是180+360=540度.【点评】正确理解图①、②的基本解题思路,把五边形内角和问题转化为熟悉的三角形的内角和的问题.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S;△ABC(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S△ABC..【分析】(2)仿照(1)的方法,只需把换为;(3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;(5)利用(4),得到更普遍的规律.【解答】解:(2)∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC.【点评】注意总结相应规律,类似问题通常采用类比的方法求解.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【分析】(1)边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.【解答】解:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得,即.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【解答】解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【点评】本题主要考查了平行线的性质和多边形的内角和,属于基础题.6.一个n边形的内角和比四边形的外角和大540°,求n.【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【解答】解:设多边形的边数为n,可得(n﹣2)•180°=360°+540°,解得n=7.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.【分析】先根据角平分线得:∠DAB=2∠EAB,∠CBA=2∠EBA,之后运用三角形内角和定理和四边形内角和定理进行变形可得结论.【解答】解:∵∠DAB,∠CBA的平分线交于点E,∴∠DAB=2∠EAB,∠CBA=2∠EBA,在△EAB中,∠EAB+∠EBA=180°﹣∠AEB=180°﹣105°=75°,∴∠DAB+∠CBA=2(∠EAB+∠EBA)=150°,∴∠C+∠D=360°﹣(∠DAB+∠CBA)=360°﹣150°=210°.【点评】本题考查了角平分线的定义、三角形内角和及四边形内角和,熟练掌握多边形内角和是关键.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°,用2750除以180,商就是n﹣2,余数就是加上的那个外角的度数,进而可以算出这个多边形的边数.【解答】解:2750÷180=15…50,则边数n=18,这个内角的度数是:180°﹣50°=130°.故这个内角的大小是130°,多边形的边数是18.【点评】本题考查多边形内角和公式的灵活运用;关键是找到相应度数的等量关系.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.【分析】连接AD,利用平行线的性质说明∠BAF与∠CDE的关系,从而求出∠CDE的度数.利用四边形的内角和是360°,求出∠ABC.【解答】解:连接AD∵AF∥CD,AB∥DE,∴∠F AD=∠ADC,∠BAD=∠ADE,∴∠BAF=∠CDE=100°∵∠ABC+∠DCB+∠BAD+∠ADC=360°,又∵∠F AB=∠F AD+∠BAD=∠ADC+∠BAD=100°,∴∠ABC=360°﹣120°﹣100°=140°.【点评】本题考查了平行线的性质,多边形的内角和定理.解决本题亦可延长AB、DC,利用平行和三角形的内角和求解.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.【分析】设这个正多边的外角为x,则内角为5x﹣60,根据内角和外角互补可得x+5x﹣60=180,解可得x的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【解答】解:设这个正多边的外角为x,则内角为5x﹣60°,由题意得:x+5x﹣60=180,解得:x=40,360°÷40°=9.(9﹣2)×180°=1260°答:这个正多边形的边数是9,内角和是1260°.【点评】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【分析】设这个多边形的边数为n,根据题意得出方程(n﹣2)×180°+360°=(12﹣2)×180°,求出方程的解即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°+360°=(12﹣2)×180°,解得:n=10,答:这个多边形的边数为10.【点评】本题考查了多边形的内角与外角,能熟记多边形的内角和公式是解此题的关键,注意:边数为n(n≥3)的多边形的内角和=(n﹣2)×180°,多边形的外角和=360°.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为36°(直接写出结果)【分析】(1)根据平行线的性质得:∠B=∠DCE,由于∠B=∠D,得∠D=∠DCE,根据平行线的判定,可得结论;(2)①如图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,根据平行线的性质列等式可得结论;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,变形后相减可得结论.【解答】解:(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,∵AD∥BC,∴∠D=∠DCE=2β,∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2α+2β=180整理得:α+β=55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F即:α+2β=∠F+β,∴∠F=α+β=55°;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.【点评】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【分析】(1)先根据三个内角度数的比设未知数,根据三角形的内角和列一元一次方程求出x的值,再求其对应的三个外角的度数并求比值即可.(2)根据多边形的内角和公式列式求解即可.【解答】解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【点评】考查了三角形的内角和定理和外角的性质,明确三角形的内角和为180°,并熟知三角形的一个内角与其相邻的外角和为180°.同时考查了多边形的内角和公式,熟记公式是解题的关键.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.【分析】由AB∥DE可得∠B=∠DEC=78°,已知∠C=60°,根据三角形内角和定理即可得∠EDC的度数.【解答】解:∵AB∥DE,∴∠B=∠DEC=78°,∵∠C=60°,∴∠EDC=180°﹣∠C﹣∠DEC=180°﹣78°﹣60°=42°.故∠EDC的度数为42°.【点评】本题主要考查了平行线的性质及三角形内角和定理,比较简单.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.19.已知一个多边形的内角和720°,求这个多边形的边数.【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=720°,n﹣2=4,n=6.答:这个多边形的边数是6.【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.【分析】根据多边形的内角和求出∠ABC+∠ADC=180°,根据角平分线定义求出∠1+∠2=90°,求出∠3+∠2=90°,推出∠1=∠3,根据平行线的判定得出即可.【解答】解:BE∥DF,理由是:∵四边形内角和等于360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE、CF分别是∠B、∠D的平分线,∴∠1=∠ABC,∠2=∠ADC,∴∠1+∠2=90°,∵在Rt△DCF中,∠3+∠2=90°,∴∠1=∠3,∴BE∥DF.【点评】本题考查了角平分线定义、多边形的内角与外角、平行线的判定等知识点,能求出∠1=∠3是解此题的关键.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.【分析】根据三角形外角的性质,可得∠1与∠A、∠B的关系,∠2与∠C、∠D的关系,∠3与∠E、∠F的关系,再根据多边形的外角和公式,可得答案.【解答】解:如图:根据三角形外角可得:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°【点评】此题考查多边形的内角与外角,掌握三角形的外角和定理是解决问题的关键.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?【分析】先根据四边形的内角和定理求出∠B+∠C+∠D,然后根据五边形的内角和定理列式计算即可得解.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n﹣2)•180°是解题的关键,整体思想的利用也很重要.23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB=∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =45°.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A 有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).。

人教版八年级数学上册多边形及其内角和测试题

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n 10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

多边形面积专项训练题

多边形面积专项训练题
1. 计算一个正方形的面积,其边长为5厘米。

2. 一个矩形的长为8米,宽为4米,求其面积。

3. 一个三角形的底边长为6厘米,高为4厘米,求其面积。

4. 一个梯形的上底长为5厘米,下底长为8厘米,高为3厘米,求其面积。

5. 一个六边形的边长为7厘米,求其面积。

6. 一个正五边形的边长为10厘米,求其面积。

7. 一个正多边形有12条边,每条边长为6厘米,求其面积。

8. 一个不规则多边形,已知其各个顶点坐标,如何计算其面积?
9. 一个圆形的半径为10厘米,求其面积。

10. 一个椭圆的长轴为6厘米,短轴为4厘米,求其面积。

以上是多边形面积专项训练题,希望大家能够通过这些题目加深对多边形面积计算的理解,提高自己的数学能力。

初中数学:正多边形练习(含答案)

初中数学:正多边形练习(含答案)知识点1 正多边形1.若一个正多边形的每个内角为156°,则这个正多边形的边数是( ) A.13 B.14 C.15 D.162.若一个正多边形的每个外角都是36°,则这个正多边形的边数是( ) A.9 B.10 C.11 D.12图3-7-13.如图3-7-1,AC是正五边形ABCDE的一条对角线,则∠ACB=________°.4.如果一个正多边形的每个内角比与它相邻的外角的4倍还多30°,求这个正多边形的边数及内角和.知识点2 圆内接正多边形5.下列说法正确的是( )A.在圆的内部的正多边形叫做圆内接正多边形B.经过四边形的各个顶点的圆叫做这个四边形的外接圆C.任意一个四边形都有外接圆D.一个圆只有唯一一个内接四边形6.已知⊙O的内接正六边形的周长为12 cm,则这个圆的半径是________cm.7.如图3-7-2①,圆内接正五边形的中心角∠AOB=________°,∠ACB=________°;如图②,圆内接正六边形的中心角∠AOB=______°,∠ACB=________°.图3-7-2探究:如图③,圆内接正n边形的中心角∠AOB=________°,∠ACB=________°.(用含n的代数式表示)图3-7-38.如图3-7-3,在正六边形ABCDEF 中,AB =2,P 是ED 的中点,连结AP ,则AP 的长为( )A .2 3B .4 C.13 D.119.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边长作三角形,则该三角形的面积是( )A.22 B.32C. 2D. 3 10.如图3-7-4,正方形ABCD 内接于⊙O ,M 为AD ︵的中点,连结BM ,CM . (1)求证:BM =CM ;(2)连结OA ,OM ,求∠AOM 的度数.图3-7-4图3-7-511.若干个全等正五边形排成环状,图3-7-5中所示的是前3个正五边形,要完成这一圆环共需________个正五边形.详解详析1.C [解析] 由正多边形的每个内角是156°可得它的每一个外角是24°,360°24°=15.故选C. 2.B3.36 [解析] ∵五边形ABCDE 是正五边形, ∴∠B =108°,AB =CB ,∴∠ACB =(180°-108°)÷2=36°.4.解:设这个正多边形的每个内角是x °,每个外角是y °,则得到方程组⎩⎨⎧x =4y +30,x +y =180,解得⎩⎨⎧x =150,y =30.而任何多边形的外角和是360°, 360÷30=12,则这个正多边形是正十二边形,内角和为(12-2)×180°=1800°. 故这个正多边形的边数是12,内角和为1800°. 5.B6.2 7.72 36 60 30 ⎝ ⎛⎭⎪⎫360n ⎝ ⎛⎭⎪⎫180n8.C [解析] 如图,连结AE,过点F作FM⊥AE于点M.在正六边形ABCDEF中,∠AFE=16×(6-2)×180°=120°.∵AF=EF,∴∠AEF=∠EAF=12×(180°-120°)=30°,EM=12AE,∴∠AEP=120°-30°=90°,FM=12EF=1,∴EM=3,AE=2EM=2 3.∵P是ED的中点,∴EP=12×2=1.在Rt△AEP中,AP=AE2+EP2=(2 3)2+12=13. 故选C.9.A [解析] 如图①,∵OC=2,∴OD=1;如图②,∵OB=2,∴OE=2;如图③,∵OA=2,∴OD= 3.则该三角形的三边长分别为1,2, 3. ∵12+(2)2=(3)2, ∴该三角形是直角三角形,∴该三角形的面积是12×1×2=22.故选A.10.(1)证明:∵四边形ABCD 是正方形, ∴AB =CD ,∴AB ︵=CD ︵. ∵M 为AD ︵的中点, ∴AM ︵=DM ︵, ∴BM ︵=CM ︵, ∴BM =CM .(2)如图,连结OB ,OC .∵BM ︵=CM ︵, ∴∠BOM =∠COM . ∵正方形ABCD 内接于⊙O ,∴∠BOC=∠AOB=360°4=90°,∴∠BOM=12×(360°-90°)=135°,∴∠AOM=∠BOM-∠AOB=135°-90°=45°.11.10 [解析] 如图,延长正五边形的两边,交于圆心.∵正五边形的外角等于360°÷5=72°,∴延长正五边形的两边围成的圆心角的度数为180°-72°-72°=36°. ∵360°÷36°=10,∴要完成这一圆环共需10个正五边形.故答案为10.。

初中数学精品试题:正多边形

3.7 正多边形
1.正六边形ABCDEF 内接于⊙O,正六边形的周长是12,则⊙O 的半径是( ). A.3 B.2 C.2 D.23
(第1题)(第3题)(第4题)
2.下列圆的内接正多边形中,一条边所对的圆心角最大的是( ).
A.正三角形
B.正方形
C.正五边形
D.正六边形
3.如图所示,边长为a 的正六边形内有两个斜边长为a,有一个角是60°的直角三角形,则
空白
阴影S S 的值为( ).
A.3
B.4
C.5
D.6
4.如图所示,在正六边形ABCDEF 中,△BCD 的面积为4,则△BCF 的面积为( ).
A.16
B.12
C.8
D.6
5.如图所示,AD 是正五边形ABCDE 的一条对角线,则∠BAD = . (第5题)(第6题)(第7题)
6.如图所示,若干全等的正五边形排成环状,图中所示的是前3个五边形,要完成这一圆环还需 个五边形.
7.如图所示,在正八边形ABCDEFGH 中,四边形BCFG 的面积为20cm 2,则该正八边形的面积为 cm 2.
8.如图所示,以正六边形ABCDEF 的边AB 为边,在正六边形内作正方形ABMN ,连结MC.求∠BCM 的大小.
9.如图所示,M ,N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB ,BC 上的点,且BM=CN ,连结OM ,ON .
(1)求图1中∠MON 的度数.
(2)图2中∠MON 的度数为 图3中∠MON 的度数为 .
(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

……装…………○…___________姓名:___________班……装…………○…初中数学-多边形专项训练注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.当多边形的边数增加时,其外角和( ) A .增加 B .减少 C .不变 D .不能确定2.若一个多边形的边数增加1,它的内角和( ) A .不变 B .增加1 C .增加180° D .增加360°3.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( ) A .5 B .6 C .7 D .84.若一个多边形的内角和等于1080°,则这个多边形的边数是( ) A .9 B .8 C .7 D .65.如图,∠A+∠B+∠C+∠D+∠E+∠F 为( )A .180°B .360°C .540°D .720°6.下列说法,正确的是( ) A .多边形的外角和为360°B .多边形至少有四个内角是锐角C .多边形的内角最多有四个钝角D .多边形最多有四个内角是直角7.如果一个正多边形内角和是1080°,那么它是( ) A .正方形 B .正五边形 C .正六边形 D .正八边形8.如图,四边形ABCD 纸片中,已知∠A=160°,∠B=30°,∠C=60°,四边形ABCD 纸片分别沿EF ,GH ,OP ,MN 折叠,使A 与A'、B 与B'、C 与C'、D 与D'重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7-∠8的值是( )………○……………○…………装…线…………○…学校:___________………○……………○…………装…线…………○…A .600°B .700°C .720°D .800°9.若一个正多边形的一个外角是72°,则这个正多边形的边数是( ) A .10 B .9 C .8 D .510.下面哪一个度数是某个多边形的内角和( ) A .270° B .630°C .1920°D .720°第Ⅱ卷(非选择题)二、填空题30°,那么这个多边形的边数为______.12.六边形有______条对角线.13.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是______边形.14.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,如图1,AC 、AD 是五边形ABCDE 的对角线.思考下列问题:(1)如图2,n 边形A 1A 2A 3A 4…A n 中,过顶点A 1可以画______条对角线,它别是______;过顶点A 2可以画______条对角线,过顶点A 3可以画______条对角线.(2)过顶点A 1的对角线与过顶点A 2的对角线有相同的吗?过顶点A 1的对角线与过顶点A 3的对角线有相同的吗?(3)在此基础上,你能发现n 边形的对角线条数的规律吗?(4)在此基础上,推导出n 边形的内角和.15.若从一个多边形的一个顶点可以作3条对角线,则这个多边形的边数为______,它的内角和等于______度.16.能伸缩的校门,它利用了四边形的一个性质是______.……订………………线……:___________考号:__……订………………线……17.正六边形的每一个内角都等于______度.18.如图,五边形ABCDE 中,∠A=140°,∠B=120°,∠E=90°,CP 和DP 分别是∠BCD 、∠EDC 的外角平分线,且相交于点P ,则∠CPD=______.19.n 边形过每一个顶点的对角线有______条.20.如图,每一个多边形都可以按如图的方法分割成若干个三角形.按如图所示的方法,十五边形可以分成______个三角形. 三、解答题有的同学一共握手820次.我们可以通过这个数据求出班级里的学生人数,设班级共有学生n 人,则每一个学生需握手n-1次,这样n 个学生就握了n(n-1)次手,而每两人之间的握手被重复计算了一次,所以可得n(n−1)2=820,这样就可以解出n 了.你看明白了没有?(1)请你运用上述方法,探索8边形对角线的条数.并写出你的思路; (2)请你用题目所给方法得出n 边形对角线的条数的公式.22.(0分)十边形有多少条对角线?若将十边形的对角线全部画出比较麻烦,我们可以通过边数较少的多23.(0分)过m 边形的一个顶点有8条对角线,n 边形没有对角线,p 边形有p 条对角线,试求(m −p)n 的值.24.(0分)有两个多边形它们的边数之比为2:3,对角线之比为1:3,这两个多边形是几边形?25.(0分)已知正n 边形的周长为60,边长为a (1)当n=3时,请直接写出a 的值;(2)把正n 边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b .有人分别取n 等于3,20,120,再求出相应的a 与b ,然后断言:“无论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.………外…………………○………姓名:___________班级:_………内…………………○………26.(0分)若一个多边形的边数恰好是从一个顶点引出的对角线条数的2倍,求此多边形的边数.27.(0分)已知从多边形一个顶点出发的所有对角线将多边形分成三角形的个数恰好等于该多边形所有对角线的条数,求此多边形的内角和.28.(0分)n 边形有多少条对角线?(连接不相邻的两个顶点的线段叫多边形的对角线)29.(0分)过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,求(m −k)n 的值是多少?30.(0分)在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.31.(0分)在凸多边形中,四边形的对角线有两条,五边形的对角线有5条,经过观察、探索、归纳,你认为凸九边形的对角线为多少?简单扼要地写出你的思考过程.32.(0分)若过多边形的一个顶点的所有对角线把这个多边形分成8个三角形,求该多边形的边数.33.(0分)阅读材料:在多边形边上或内部取一点与多边形各顶点的连线,将多边形分割成若干个小三角形,图1给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形. (1)请你按照上述方法将图2中的六边形进行分割,并写出每种方法所得到的小三角形的个数; (2)当多边形为n 边形时,按照上述方法进行分割,写出每种分法所得到的小三角形的个数.34.(0分)同学们,你们会用画多边形的对角线来解决生活中的数学问题吗?比如,学校举办足球赛,共有5个班级的足球队参加比赛,每个队都要和其他各队比赛一场,根据积分排列名次.问学校一共要安排多少场比赛?我们画出5个点,每个点各代表一个足球队,两个队之间比赛一场就用一条线段把它们连接起来.由于每个队都要与其他各队比赛一场,这样每个点与另外4个点都会有一条线段连接(如右图). 现在我们只要数一数五边形的边数和它的对角线条数就可以了.由图可知,五边形的边数和对角线条数都是5,所以学校一共要安排10场比赛. 同学们,请用类似的方法来解决下面的问题:姣姣、林林、可可、飞飞、红红和娜娜六人参加一次会议,见面时他们相互握手问好.已知姣姣已握了5次手,林林已握了4次手,可可已握了3次手,飞飞已握了2次手,红红握手1次,请推算出娜娜目前已和哪几个人握了手.35.(0分)画出下面多边形的全部对角线.○…………外…………装…………○…………………○……………○…学校:___________姓名:___________班级:____号:___________○…………内…………装…………○…………………○……………○…36.(0分)观察下列图形,回答问题:(1)四边形、五边形、六边形、各有几条对角线?从中你能得到什么规律? (2)根据规律你知道七边形有多少条对角线吗? (3)你知道n 边形有多少条对角线吗?37.(0分)阅读材料:多边形上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形.图(一)给出了四边形的具体分割方法,分别将四边形分割成了2个,3个,4个小三角形.请你按照上述方法将图(二)中的六边形进行分割,并写出得到的小三角形的个数.试把这一结论推广至n 边形.38.(0分)已知从n 边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.39.(0分)(1)过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,求(m −k)n 的值是多少?(2)如图,∠A=∠C ,CD ⊥AB 于D ,交AE 于F ,试判别∠AEB 的度数吗?并说明理由.40.(0分)一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,说明得出结论的道理.…订…………_______考号:____…订…………42.(0分)一个多边形有9条对角线,求这个多边形的边数?43.(0分)若过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形有k 条对角线,正h 边形的内角和与外角和相等.求代数式h•(m −k)n 的值.44.(0分)观察图中的图形,并阅读图形下面的相关文字:三角形的对角线有0条,四边形的对角线有2条,五边形的对角线有5条,六边形的对角线有9条.通过分析上面的材料,请你说说十边形的对角线有多少条?你能总结出n 边形的对角线有多少条吗?45.(0分)已知3×9m ×27m =336,求边数为m 的多边形的对角线条数.参考答案1.解:任何多边形的外角和是360°,因而当多边形的边数增加时,其外角和不变所以选C2.解:n边形的内角和是(n-2)•180°,边数增加1,则新的多边形的内角和是(n+1-2)•180°则(n+1-2)•180°-(n-2)•180°=180°.所以选C3.解法1:设边数为n,这个外角为x度,则0<x<180°依据题意,得(n-2)•180°+x=570°解之,得n=930−x180∵n为正整数∴930-x必为180的倍数又∵0<x<180∴n=5解法2:∵0<x<180∴570-180<570-x<570,即390<570-x<570又∵(n-2)•180°=570-x∴390<(n-2)•180°<570解之得4.2<n<5.2∵边数n为正整数∴n=5所以选A4.解:假设所求正n边形边数为n则1080°=(n-2)•180°解得n=8所以选:B5.解:因为∠D+∠E=∠EGC,∠EGC+∠C=∠BIG所以∠D+∠E+∠C=∠BIG故∠A+∠B+∠C+∠D+∠E+∠F=(∠A+∠B+∠F)+(∠D+∠E+∠C)=∠A+∠B+∠F+∠BIG=360°故此题选B6.解:A、多边形的外角和为360°,正确B、因为每一个内角与其相邻的外角互为邻补角,如果多边形有四个内角是锐角,那么这四个内角的外角都是钝角,它们的外角和大于360°,与多边形的外角和为360°相矛盾.故本选项错误C、正五边形的每一个角都是108°,故本选项错误D、多边形最多有四个内角是直角,此时多边形是四边形.如果有五边形有四个内角为直角,那么它的外角和大于360°,故本选项错误所以选A7.解:假设它是n边形,则(n-2)•180°=1080°解得n=8所以选D8.解:∵四边形ABCD中,∠A=160°,∠B=30°,∠C=60°∴∠D=360°-160°-30°-60°=110°∴∠1+∠2=360°-(180°-160°)×2=320°∠3+∠4=360°-(180°-110°)×2=220°∠5+∠6=360°-(180°-60°)×2=120°∠7-∠8=-(∠B+∠B')=-60°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7-∠8=320°+220°+120°-60°=600°所以选:A9.解:这个正多边形的边数:360°÷72°=5所以选:D10.解:四个选项中只有720°是180°的倍数,所以是某多边形的内角和的是720°所以选:D11.解:多边形的边数:360°÷30°=12则这个多边形的边数为12所以答案是:1212.解:6(6−3)2=6×32=9所以答案是:913.解:设多边形是n边形,由对角线公式,得n-2=6.解得n=8,故答案为:8.14.解:(1)过顶点A1可以画(n-3)条对角线,它别是A1A n−1(n>3);过顶点A2可以画(n-3)条对角线,过顶点A3可以画(n-3)条对角线(2)过点A1的和过点A2的没有重复的,但和过点A3的有重复的(A1A3和A3A1重复)(3)n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故可连出(n-3)条共有n个顶点,应为n(n-3)条,这样算出的数,正好多出了一倍,所以再除以2即n边形的对角线条数的为:n(n−3)2(4)过一点有(n-3)条对角线,分成(n-2)个三角形故n边形的内角和为180°•(n-2)15.解:∵过多边形的一个顶点共有3条对角线故该多边形边数为6∴(6-2)•180°=720°所以答案是:6、720°16.解:伸缩门做成四边形的形状,是利用四边形的易变形的特性 所以答案是:四边形的不稳定性17.解:∵六边形的外角和为360度 ∴每个外角的度数为360°÷6=60°又知:六边形的每个外角与内角互补 ∴每个内角为180°-60°=120°18.解:多边形的内角和定理:(n-2)•180°=540° ∴∠BCD+∠EDC=540°-140°-120°-90°=190°又∵CP 和DP 分别是∠BCD 、∠EDC 的外角平分线 ∴∠PCD+∠PDC=12(360°-∠BCD-∠EDC)=85° 依据三角形内角和定理得:∠CPD=180°-85°=95° 所以答案是:95°19.解:n 边形过每一个顶点的对角线有(n-3)条 所以答案是(n-3)20.解:按如图所示的方法,十五边形可以分成15-2=13个三角形 所以答案是1321.解:(1)8(8−3)2=20答:8边形对角线的条数是20(2)从每一个n 边形的顶点出发,可以画(n-3)条对角线,n 个顶点就有n(n-3)条 而每一条又重复了一次,所以有n(n−3)2条22.解:充分观察表,从表中可以看出对角线随多边形边数增加的规律:四边形的对角线2条;五边形的对角线5条,即5=2+3;六边形的对角线9条,即9=2+3+4;七边形的对角线14条,即14=2+3+4+5;八边形的对角线20条,即20=2+3+4+5+6;n 边形的对角线条数 2+3+4+5+…+(n -2)=n(n−3)2条(n ≥3).所以十边形有10(10−3)2=35(条)23.解:∵过m 边形的一个顶点有8条对角线 ∴m-3=8,m=11n 边形没有对角线,n=3 ∵p 边形有p 条对角线 ∴p=p(p-3)÷2,解得p=5所以(m −p)n =(11−5)3=21624.解:假设两个多边形的边数分别为2x 条,3x 条,则2x(2x−3)3x(3x−3)=13解得,x=3故这两个多边形分别是六边形和九边形25.解:(1)a=20 (2)此说法不正确理由如下:尽管当n=3,20,120时,a>b或a<b但可令a=b,得60n =60+7n+7,即60n=67n+7∴60n+420=67n,解得n=60,(7分)经检验n=60是方程的根∴当n=60时,a=b,即不符合这一说法的n的值为6026.解:假设此多边形有n条边,依据题意得,得n=2(n-3)解得n=6故此多边形有6条边27.解:假设多边形为n边形,依据题意得,得n-2=n(n−3)2解得n=4所以内角和为(4-2)×180°=360°28.解:n边形共有12n(n−3)条对角线29.解:依据题意得:m-3=7,n=3解得m=10,n=3依据题意得:k(k−3)2=k解得k=5则:(m−k)n=(10−5)3=12530.解:凸八边形的对角线条数应该是20理由:∵从一个顶点发出的对角线数目,它不能向本身引对角线,不能向相邻的两个顶点引对角线∴从一个顶点能引的对角线数为(n-3)条∵n边形共有n个顶点∴能引n(n-3)条,但是考虑到这样每一条对角线都重复计算过一次∴能引n(n−3)2条∴凸八边形的对角线条数应该是:8×(8−3)2=2031.解:27条思考过程:通过四边形和五边形的对角线图形可知过n边形的1个顶点可以作(n-3)条对角线故过n个顶点可作n(n-3)条对角线而这些对角线重复一遍故n边形的对角线为n(n−3)2条所以凸九边形的对角线为9×(9−3)2=2732.解:设该多边形的边长为n,则n-2=8,解得:n=10.答:该多边形是10边形.33.解:(1)如图所示可以发现所分割成的三角形的个数分别是4个,5个,6个(2)结合两个特殊图形,可以发现第一种分割法把n边形分割成了(n-2)个三角形第二种分割法把n边形分割成了(n-1)个三角形第三种分割法把n边形分割成了n个三角形34.解:先画出6个点,A、B、C、D、E、F各个点依次代表姣姣、林林、可可、飞飞、红红和娜娜,凡是两人之间握过手,就把代表他们的这两点用1条线段连接起来(如图所示).先看姣姣(A)和红红(E).姣姣已握手5次,说明姣姣与另外5人都握了手,所以代表姣姣的A点与B、C、D、E、F这5点都有一条线段连接;红红握手1次,他只能是与姣姣握的手了,所以E点只能与A点之间有线段连接,与其它各点再也不能有线段连接了其次分析林林(B).林林已握手4次,由于他没有可能与红红握过手,所以只能是与剩下的四个人姣姣、可可、飞飞和娜娜握过手了,所以,点B与A、C、D、F四点之间有线段连接再看飞飞(D).飞飞已握手2次,而代表飞飞的D点已与A、B两点有线段连接了,所以D点与其它的点不能再有线段连接了最后考察可可(C).可可与3人握了手,但已不能是与飞飞和红红握的手了,所以代表可可的点C只能与A、B、F三点有线段连接现在观察图形,与代表娜娜的点连接的线段有3条(AF、BF和CF),这说明姣姣、林林和可可三人已与娜娜握过手35.解:如图所示36.解:(1)四边形有2条对角线,五边形有5条对角线,六边形有9条对角线,从中得到的规律是:n边形每增加一条边,对角线增加(n-2)条(2)七边形有14条对角线(3)从多边形的一个顶点出发,可以引(n-3)条对角线,n个顶点共有n(n-3)条对角线,但一半是重复的,所以n边形对角线数目为n(n−3)237.解:如图所示结合两个特殊图形,可以发现第一种分割法把n边形分割成了(n-2)个三角形第二种分割法把n边形分割成了(n-1)个三角形第三种分割法把n边形分割成了n个三角形38.解:依题意有n-3=4,解得n=7,设最短边为x,则7x+1+2+3+4+5+6=56,解得x=5.故这个多边形的各边长是5,6,7,8,9,10,11.39.解:(1)∵n边形一个顶点的对角线有(n-3)条∴对角线的总条数为n(n−3)2由题意有:①m-3=7,解得m=10②n=3=k③k(k−3)2解得k=5∴(m−k)n=(10−5)3=125(2)∠AEB=90°理由如下:∵CD⊥AB∴∠C+∠B=90°∵∠A=∠C∴∠A+∠B=90°在△AEB中,∠AEB=180°-∠A-∠B=180°-90°=90°40.解:假设这个多边形是n边形,则=20∵n(n−3)2∴n2−3n−40=0(n-8)(n+5)=0解得n=8,n=-5(不合题意,舍去)故多边形的边数为8=18∵n(n−3)2∴n2−3n−36=0∵b2−4ac=9+144=153∴方程的根,无法求出整数故这样的多边形不存在42.解:假设多边形有n条边=9则n(n−3)2解得n1=6,n2=−3(不合题意,舍去)答:这个多边形有6条边43.解:∵n边形从一个顶点发出的对角线有n-3条∴m=7+3=10∵n边形没有对角线∴n=3∵k边形有k条对角线k(k−3)=k,解得k=5∴12∵正h边形的内角和与外角和相等∴h=4则h•(m−k)n=4×(10−5)3=500故代数式h•(m−k)n的值为500=5×7=35条44.解:十边形的对角线有10×(10−3)2条n边形的对角线有n(n−3)245.解:∵3×9m×27m=336∴3×32m×33m=336∴1+2m+3m=36解得m=7=14∴多边形的对角线的条数是:7×(7−3)2。

相关文档
最新文档