矩形习题
矩形的性质与判定习题及答案

由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
矩形的练习题及答案

矩形的练习题及答案矩形是我们初中数学中很重要的一个几何图形,同时也是生活中广泛存在的一种形状。
在学习矩形的过程中,练习题是非常必要的,通过解答练习题可以巩固我们对矩形的理解,并提高解决问题的能力。
本文将为您提供一些矩形的练习题及答案,希望能对您的学习有所帮助。
一、填空题1. 矩形是一种具有 ________ 条边的四边形。
答案:四2. 矩形的相邻两条边相等,且 _____ 于对角线。
答案:垂直3. 矩形的内角和一定是 ________ 度。
答案:3604. 矩形的对角线相等,且 ________。
答案:相交于中点5. 一个矩形的对角线长度为10cm,它的边长分别是 ________ cm。
答案:边长任意,无法确定具体数值二、选择题1. 下面哪个图形是矩形?A. △ABCB. □EFGHC. ◇IJKLD. ○MNOP答案:B2. 矩形ABCD的长是10cm,宽是8cm,则它的面积是______。
A. 18cm^2B. 64cm^2C. 80cm^2D. 90cm^2答案:C3. 下面哪个说法是正确的?A. 所有矩形都是正方形。
B. 所有正方形都是矩形。
C. 正方形和矩形没有任何关系。
D. 正方形和矩形是相同的图形。
答案:B4. 矩形的一个内角是60度,那么它的另一个内角是______度。
A. 30B. 60C. 90D. 120答案:D5. 以下哪个不是矩形的特点?A. 两对对边相等B. 两对对边平行C. 对角线相等D. 相邻两个内角互补答案:D三、解答题1. 已知一个矩形的长是x cm,宽是y cm,求它的周长和面积。
答案:周长为2(x+y) cm,面积为xy cm^2。
2. 矩形ABCD中,点E、F分别是AB、AD上的点,且AE=2cm,AD=6cm。
若EF与BC垂直且与BC的交点为G,求矩形的面积。
答案:首先根据AE=2cm,AD=6cm,可以求得矩形的长为6cm,宽为2cm。
由于EF与BC垂直,所以BC的中点和G重合,即BC是EF的中垂线。
(完整版)八年级数学《矩形》练习题

(完整版)八年级数学《矩形》练习题一、选择题1. 矩形的四个角都是:A. 直角B. 锐角C. 钝角D. 无角2. 矩形的对角线之间的关系是:A. 相等且垂直B. 相等且平行C. 相等但不垂直D. 不相等但垂直3. 若矩形的长为12cm,宽为8cm,那么它的面积是:A. 20cm²B. 48cm²C. 80cm²D. 96cm²4. 若矩形的周长为30cm,宽为4cm,那么它的长是:A. 8cmB. 9cmC. 10cmD. 11cm二、填空题1. 矩形的对边是_______。
2. 矩形的并联边是_______。
3. 矩形的一个维数称为_______。
4. 矩形的面积公式是_______。
5. 矩形的周长公式是_______。
三、解答题1. 若矩形的面积是45cm²,且长是5cm,求宽。
解:设矩形的宽为x,则根据面积公式,有5x = 45。
对上述等式两边同时除以5,得到x = 9。
所以矩形的宽为9cm。
2. 若矩形的长为12cm,宽为6cm,求其周长和对角线之间的角的大小。
解:矩形的周长为2(长 + 宽),代入数值得周长为2(12 + 6) = 36cm。
对角线之间的角都是直角,大小为90°。
3. 画出一个矩形,并标注其长、宽、对边和对角线。
[示意图]四、应用题1. 一个矩形的面积是30cm²,且长比宽多2cm,求矩形的长和宽。
解:设矩形的宽为x,根据面积的条件,有x(x+2) = 30。
展开得x² + 2x - 30 = 0。
左侧为二次方程,可以因式分解为(x+6)(x-5) = 0。
因为长比宽多2cm,所以宽为5cm,长为7cm。
2. 一个矩形的周长为28cm,长和宽的比值为5:3,求矩形的长和宽。
解:设矩形的长为5x,宽为3x,根据周长的条件,有2(5x+3x) = 28。
化简得8x = 28,解得x = 3.5。
矩形习题精选(含答案)

∴∠ COF=
=75 °.
13 、∵ AE: EB=5: 2,AB=7cm , ∴ BE= 2 ∵ BF∥DE BE∥ CF, ∴四边形 EBFD是平行四边形∴ EBFD的面积= BE· BD= 24cm2 14 、 30 15 、 过 A 作 AF⊥ BD 于 F,则 AF∥CE,∴∠ E?=∠ FAE∴∠ E=∠ BAE-∠ BAF∵∠ DAC=∠ DBC, ∠ DBC=∠ BAF∴ ∠ BAF=∠ DAC∵∠ BAE?=∠ DAE,∠ CAE=∠ DAE-∠ DAC∴∠ E=∠ CAE∴ AC=CE
12 、如图,矩形 ABCD中, DF平分∠ ADC交 AC于 E,交 BC 于 F,∠ BDF=15°,求∠ DOC、 ?∠ COF的度数.
13 、如图,在矩形 ABCD中,点 E、 F 分别在边 AB、 DC上, BF∥ DE,若 BBDD=12cm, AB=7cm,且 AE: EB=5: 2, 求阴影部分 EBFD的面积.
21 、 30 °
22 、∵ EH是△ ADC中位线, ?∶ EH AC,同理 FG ⊥ DB,∴∠ FEH=90°,∴四边形 EFGH是矩形.
AC,∴ EH FG.∴四边形 EFGH是平行四边形.∵ AC?
二、填空题 23 、 32cm2
三、选择题
24 、 D
四、简答题
25 、∵ AB=AC, AD=AE,∠ BAD=∠ CAE,∴△ ADB≌△ AEC∴ BD= CE∴四边形 DBCE平行四边形
).
A.
B.
C.
D.
10 、下面命题正确的个数是(
).
( 1)矩形是轴对称图形
( 2)矩形的对角线大于夹在两对边间的任意线段
( 3)两条对角线相等的四边形是矩形
(完整版)矩形练习题及答案

矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。
矩形练习题及答案

矩形练习题及答案一、选择题1. 矩形的对角线相等,这个说法是:A. 正确B. 错误2. 如果矩形的长是10厘米,宽是5厘米,那么它的周长是:A. 20厘米B. 30厘米C. 40厘米3. 矩形的面积可以通过以下哪种方式计算:A. 长×宽B. 宽×高C. 对角线×对角线4. 如果一个矩形的对角线长度为13厘米,长为5厘米,那么它的宽是:A. 8厘米B. 12厘米C. 无法确定5. 矩形的四个角都是:A. 锐角B. 直角C. 钝角二、填空题6. 一个矩形的长为8厘米,宽为4厘米,其面积为______平方厘米。
7. 矩形的周长公式为______。
8. 如果矩形的一边长为x,另一边长为y,那么其对角线长度为______。
9. 矩形的对角线将矩形分为两个______。
10. 矩形的内角和为______度。
三、解答题11. 已知矩形ABCD,其中AB=6厘米,BC=4厘米,求矩形ABCD的周长和面积。
12. 矩形EFGH的对角线EH长度为10厘米,EF=8厘米,求矩形EFGH 的另一边GH的长度。
13. 如果矩形IJKL的对角线IL和对角线JK的长度相等,证明矩形IJKL是正方形。
14. 矩形MNOP的长为15厘米,宽为10厘米,求对角线MN的长度。
15. 矩形QRST的长为12厘米,宽为9厘米,求矩形QRST的周长和面积。
答案:1. A2. B3. A4. A5. B6. 327. 2×(长+宽)8. √(x²+y²)9. 直角三角形10. 36011. 周长=2×(6+4)=20厘米,面积=6×4=24平方厘米。
12. 根据勾股定理,GH=√(10²-8²)=6厘米。
13. 因为对角线相等,所以矩形的长和宽相等,符合正方形的定义。
14. 根据勾股定理,MN=√(15²+10²)=17.32厘米(保留两位小数)。
初二数学经典习题 矩形(提高)巩固练习
矩形(提高)【巩固练习】一.选择题1.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分2. 矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则它的面积为( )A.32cmB. 42cmC. 122cmD. 42cm 或122cm 3. 如图,矩形ABCG(AB <BC)与矩形CDEF 全等,点B 、C 、D 在同一条直线上,∠APE 的顶点P 在线段BD 上移动,使∠APE 为直角的点P 的个数是( )A.0B.1C.2D.34. 把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在B′M 或B′M 的延长线上,那么∠EMF 的度数是( )A.85°B.90°C.95°D.100°5.如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD的面积为8,则BE =( )A.2B.3C.22D.326. 矩形的面积为1202cm ,周长为46cm ,则它的对角线长为( )A.15cmB.16cmC.17cmD.18cm二.填空题7.如图,四边形ABCD 是一张矩形纸片,AD =2AB ,若沿过点D 的折痕DE 将A 角翻折,使点A 落在BC 上的A 1处,则∠EA 1B =______°.8.如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连结CE,则CE的长______.9. 如图所示,矩形ABCD的两条对角线相交于点O,∠AOD=120°,AB=4cm,则矩形对角线AC长为________cm.10.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为_______.11.如图,矩形ABCD中,AB=3,BC=4,P是边AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为_________.12.如图所示,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为___________.三.解答题13.如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.(1)线段AF与CD相等吗?为什么?(2)如果AB=AC,试猜测四边形ADCF是怎样的特殊四边形,并说明理由.14.(2012•青岛)已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=12BD,则四边形ABCD是什么特殊四边形?说明理由.15.已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.【答案与解析】一.选择题1.【答案】D;2.【答案】D;【解析】矩形的短边可能是1,也可能是3,所以面积为4×1或4×3.3.【答案】C;【解析】当BP=AB或BP=BC时,∠APE是直角.4.【答案】B;【解析】∠EMF=∠EMB′+∠FMB′=21∠BMC′+21∠CMC′=21×180°=90°. 5.【答案】C ;【解析】过点C 做BE 垂线,垂足为F ,易证△BAE ≌△CBF ,所以BF =AE ,BE =CF ,所以总面积=AE ×BE +CF ×EF = AE ×BE +BE ×(BE -AE )=28BE =,22BE =.6.【答案】C ;【解析】设边长为a b 、,则23,120,a b ab +==解得22289a b +=,所以对角线为28917=.二.填空题7.【答案】60°;【解析】AD =A 1D =2CD ,所以∠CA 1D =30°,∠EA 1B =60°.8.【答案】136; 【解析】设AE =CE =x ,DE =3x -,()22232x x =-+,136x =. 9.【答案】8;【解析】由矩形的性质可知△AOB 是等边三角形,∴ AC =2AO =2AB =8cm .10.【答案】6;【解析】设AB =AF =x ,BE =EF =3,EC =5,则CF =4,()22284x x +=+,解得6x =. 11.【答案】125; 【解析】BD =5,利用面积法,PE +PF =△AOD 中OD 边上的高=345⨯. 12.【答案】12;【解析】设BE =EF =x ,CE =b ,CF =a ,DF =y ,则9,3x b y y a x a b ++++=++=,解得3y =,矩形ABCD 的周长=()()223312y a x b +++=⨯+=.三.解答题13.【解析】解:(1)AF =CD .理由:∵E 是AD 的中点,∴AE =DE∵AF ∥BC∴∠EBD =∠EFA ,∠EDB =∠EAF ,可得△AEF≌△DEB.∴AF=BD.∵BD=CD,∴AF=CD.(2)四边形ADCF为矩形.理由:∵AF∥CD,AF=CD,∴四边形AFCD为平行四边形.∵AB=AC,D是BC的中点,∴∠ADC=90°.∴四边形AFCD为矩形.14.【解析】(1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF(ASA);(2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=12BD,OA=12AC,∴BD=AC,∴Y ABCD是矩形.15.【解析】证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.又∵EF=ED,∴△EBF≌△DCE.∴BE=CD.∴BE=AB.∴∠BAE=∠BEA=45°.∴∠EAD=45°.∴∠BAE=∠EAD.∴AE平分∠BAD.。
矩形的性质与判定练习题
矩形的性质与判定练习题矩形是几何学中常见的形状之一,具有许多独特的性质和特点。
在本文中,我们将通过一些练习题来探讨和判定矩形的性质。
请阅读以下练习题并回答。
练习题一:判断矩形1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个矩形。
练习题二:矩形的性质1. 一条直线分割一个矩形,使其成为两个等面积的小矩形。
证明这条直线必定是通过矩形的中心点。
2. 如果一条直线沿着矩形的一条边切割,那么它将会切成两个全等的小矩形。
3. 证明:一个矩形的对角线相等。
练习题三:矩形的判定1. 给定四个点A(1, 1), B(5, 1), C(5, 4), D(1, 4),请判断这四个点能否构成一个正方形。
2. 如果一条矩形的两条对边相等且平行,则它必定是一个正方形。
练习题四:矩形的角度1. 一个矩形的四个内角的和是多少度?2. 证明:一个矩形的内角都是直角(90度)。
练习题五:矩形的边长关系1. 一个矩形的两条对边的长度分别是a和b,它的对角线的长度是多少?2. 如果一个矩形的一边的长度是a,另一条边的长度是b,那么它的面积是多少?练习题六:矩形的面积1. 已知一个矩形的长为5cm,宽为3cm,求它的面积。
2. 如果一个矩形的面积是24平方单位,且长比宽多2个单位,求矩形的长和宽。
根据上述练习题,我们可以通过判断和计算来了解矩形的性质和特点。
矩形具有对角线相等、相对边平行、内角为直角等特点,这些性质可以帮助我们对矩形进行判定和计算。
答案:练习题一:可以构成一个矩形;练习题二:1. 通过矩形的对角线可以证明;2. 正确;3. 通过矩形的对角线可以证明;练习题三:1. 不能构成一个正方形;2. 正确;练习题四:1. 360度;2. 通过矩形的对角线可以证明;练习题五:1. 对角线的长度可以通过勾股定理计算:√(a^2 + b^2);2. 面积可以通过长乘宽计算:a * b;练习题六:1. 面积等于长乘宽:5cm * 3cm = 15平方厘米;2. 设矩形的宽为x,则长为x+2,根据面积的计算公式得到:(x+2) * x = 24,解得x=4,所以矩形的长为6,宽为4。
(完整版)矩形练习题及答案
矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。
矩形简单练习题
矩形简单练习题一、选择题1. 矩形的对角线相等,这个性质属于:A. 矩形的判定定理B. 矩形的性质C. 正方形的性质D. 平行四边形的性质2. 如果一个四边形的对角线互相垂直且相等,那么这个四边形是:A. 矩形B. 菱形C. 正方形D. 梯形3. 下列哪个条件不能判定一个四边形是矩形:A. 有一个角是直角B. 对角线相等C. 对边相等D. 所有角都相等4. 矩形的面积可以通过以下哪种方式计算:A. 长乘以宽B. 对角线乘积的一半C. 周长的一半乘以高D. 以上都是5. 如果矩形的长是10厘米,宽是5厘米,那么它的对角线长度是:A. 5厘米B. 10厘米C. 12.5厘米D. 15厘米二、填空题6. 矩形的四个角都是________角。
7. 矩形的对角线________相等。
8. 如果矩形的长是a,宽是b,那么它的周长是________。
9. 矩形的对角线将矩形分成四个________三角形。
10. 矩形的内角和为________度。
三、判断题11. 矩形的对角线互相平分。
()12. 矩形的长和宽可以相等。
()13. 矩形的对角线垂直。
()14. 矩形的对边平行且相等。
()15. 矩形的对角线长度是长和宽的平方和的平方根。
()四、简答题16. 请简述矩形的四个基本性质。
17. 矩形和正方形有何不同?18. 如何用坐标系中的点来表示一个矩形?19. 请解释矩形的对角线为什么相等。
20. 矩形的面积公式有哪些,它们是如何推导出来的?五、计算题21. 已知矩形的长为12厘米,宽为8厘米,请计算它的周长和面积。
22. 如果一个矩形的对角线长度为13厘米,且矩形的长比宽多5厘米,求矩形的长和宽。
23. 一个矩形的长是宽的两倍,且面积为48平方厘米,求矩形的长和宽。
24. 已知矩形的对角线长度为17厘米,且矩形的长比宽多4厘米,求矩形的长和宽。
六、应用题25. 在一个矩形的花坛中,长为20米,宽为15米,如果需要铺设草皮,每平方米草皮的价格为10元,请计算铺设整个花坛的草皮需要多少钱?26. 一个矩形的房间,长为6米,宽为4米,如果需要铺设地板砖,每块地板砖的面积为0.5平方米,求至少需要多少块地板砖?27. 一个矩形的游泳池,长为50米,宽为25米,如果需要铺设瓷砖,每块瓷砖的面积为0.25平方米,求至少需要多少块瓷砖?28. 一个矩形的画框,长为30厘米,宽为20厘米,如果需要用相等宽度的边框装饰,边框的宽度至少为多少厘米,使得边框的面积不超过画框面积的10%?请根据以上题目进行作答,注意审题,确保答案的准确性。