矩形的习题精选

合集下载

矩形的判定专项练习30题(有答案)ok

矩形的判定专项练习30题(有答案)ok

矩形的判定专项练习30题(有答案)ok1.在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△XXX。

证明:(1)∠A=90°;(2)四边形ABCD 是矩形。

2.平行四边形ABCD中,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M。

证明:(1)∠BGC=90°;(2)四边形GBMC是矩形。

3.O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E。

问:(1)四边形OCDE是矩形吗?说明理由;(2)将菱形改为另一种四边形,其它条件都不变,能得出什么结论?根据改编后的题目画出图形,并说明理由。

4.△ABC中,AD⊥BC于D,点E、F分别是△ABC中AB、AC中点,什么条件下四边形AEDF是矩形?说明理由。

5.菱形ABCD的对角线AC、BD交于点O。

问:(1)用尺规作图的方法,作出△AOB平移后的△DEC,其中平移的方向为射线AD的方向,平移的距离为线段AD的长;(2)观察图形,判断四边形DOCE是什么特殊四边形,并证明。

6.平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN。

证明四边形NDMB为矩形。

7.点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE相交于点E。

证明四边形OCED是矩形。

8.已知梯形ABCD中,AD∥BC,AB⊥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,连接BD。

证明:(1)四边形DBEM是平行四边形;(2)若BD=DC,证明四边形ABCM为矩形。

9.在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点。

证明四边形AECF是矩形。

初中矩形考试题型及答案

初中矩形考试题型及答案

初中矩形考试题型及答案一、选择题(每题2分,共20分)1. 矩形的对角线相等且互相平分,下列哪个选项不是矩形的性质?A. 对角线相等B. 对角线互相平分C. 四个角都是直角D. 相邻两边垂直答案:D2. 若矩形的长为8cm,宽为6cm,则其周长为多少?A. 28cmB. 22cmC. 14cmD. 40cm答案:A3. 矩形的面积计算公式是?A. 长×宽B. 长+宽C. 长÷宽D. 长-宽答案:A4. 矩形的对边平行且相等,下列哪个选项不是矩形的对边关系?A. 平行B. 相等C. 垂直D. 重合答案:C5. 矩形的四个角都是直角,下列哪个选项不是矩形的角的性质?A. 每个角都是90度B. 相邻角的和为180度C. 对角相等D. 每个角都是45度答案:D6. 若矩形的对角线长度为10cm,长为6cm,则其宽为多少?A. 4cmB. 8cmC. 6cmD. 10cm答案:A7. 矩形的对角线互相平分,下列哪个选项不是对角线的性质?A. 相等B. 平行C. 互相平分D. 垂直答案:B8. 矩形的长和宽可以互换,下列哪个选项不是矩形的长宽关系?A. 可以互换B. 长宽相等时为正方形C. 长宽不等时为长方形D. 长宽相等时为矩形答案:D9. 矩形的对边平行,下列哪个选项不是矩形的边的性质?A. 对边平行B. 相邻边垂直C. 对边相等D. 相邻边平行答案:D10. 矩形的面积可以通过对角线和一边长计算得出,下列哪个选项是错误的?A. 面积=对角线×边长÷2B. 面积=长×宽C. 面积=对角线²÷2D. 面积=对角线×边长答案:D二、填空题(每题2分,共20分)1. 矩形的对角线相等且互相________。

答案:平分2. 矩形的周长计算公式为:周长=2×(长+________)。

答案:宽3. 矩形的面积计算公式为:面积=________×宽。

矩形的练习题及答案

矩形的练习题及答案

矩形的练习题及答案矩形是我们初中数学中很重要的一个几何图形,同时也是生活中广泛存在的一种形状。

在学习矩形的过程中,练习题是非常必要的,通过解答练习题可以巩固我们对矩形的理解,并提高解决问题的能力。

本文将为您提供一些矩形的练习题及答案,希望能对您的学习有所帮助。

一、填空题1. 矩形是一种具有 ________ 条边的四边形。

答案:四2. 矩形的相邻两条边相等,且 _____ 于对角线。

答案:垂直3. 矩形的内角和一定是 ________ 度。

答案:3604. 矩形的对角线相等,且 ________。

答案:相交于中点5. 一个矩形的对角线长度为10cm,它的边长分别是 ________ cm。

答案:边长任意,无法确定具体数值二、选择题1. 下面哪个图形是矩形?A. △ABCB. □EFGHC. ◇IJKLD. ○MNOP答案:B2. 矩形ABCD的长是10cm,宽是8cm,则它的面积是______。

A. 18cm^2B. 64cm^2C. 80cm^2D. 90cm^2答案:C3. 下面哪个说法是正确的?A. 所有矩形都是正方形。

B. 所有正方形都是矩形。

C. 正方形和矩形没有任何关系。

D. 正方形和矩形是相同的图形。

答案:B4. 矩形的一个内角是60度,那么它的另一个内角是______度。

A. 30B. 60C. 90D. 120答案:D5. 以下哪个不是矩形的特点?A. 两对对边相等B. 两对对边平行C. 对角线相等D. 相邻两个内角互补答案:D三、解答题1. 已知一个矩形的长是x cm,宽是y cm,求它的周长和面积。

答案:周长为2(x+y) cm,面积为xy cm^2。

2. 矩形ABCD中,点E、F分别是AB、AD上的点,且AE=2cm,AD=6cm。

若EF与BC垂直且与BC的交点为G,求矩形的面积。

答案:首先根据AE=2cm,AD=6cm,可以求得矩形的长为6cm,宽为2cm。

由于EF与BC垂直,所以BC的中点和G重合,即BC是EF的中垂线。

(完整版)八年级数学《矩形》练习题

(完整版)八年级数学《矩形》练习题

(完整版)八年级数学《矩形》练习题一、选择题1. 矩形的四个角都是:A. 直角B. 锐角C. 钝角D. 无角2. 矩形的对角线之间的关系是:A. 相等且垂直B. 相等且平行C. 相等但不垂直D. 不相等但垂直3. 若矩形的长为12cm,宽为8cm,那么它的面积是:A. 20cm²B. 48cm²C. 80cm²D. 96cm²4. 若矩形的周长为30cm,宽为4cm,那么它的长是:A. 8cmB. 9cmC. 10cmD. 11cm二、填空题1. 矩形的对边是_______。

2. 矩形的并联边是_______。

3. 矩形的一个维数称为_______。

4. 矩形的面积公式是_______。

5. 矩形的周长公式是_______。

三、解答题1. 若矩形的面积是45cm²,且长是5cm,求宽。

解:设矩形的宽为x,则根据面积公式,有5x = 45。

对上述等式两边同时除以5,得到x = 9。

所以矩形的宽为9cm。

2. 若矩形的长为12cm,宽为6cm,求其周长和对角线之间的角的大小。

解:矩形的周长为2(长 + 宽),代入数值得周长为2(12 + 6) = 36cm。

对角线之间的角都是直角,大小为90°。

3. 画出一个矩形,并标注其长、宽、对边和对角线。

[示意图]四、应用题1. 一个矩形的面积是30cm²,且长比宽多2cm,求矩形的长和宽。

解:设矩形的宽为x,根据面积的条件,有x(x+2) = 30。

展开得x² + 2x - 30 = 0。

左侧为二次方程,可以因式分解为(x+6)(x-5) = 0。

因为长比宽多2cm,所以宽为5cm,长为7cm。

2. 一个矩形的周长为28cm,长和宽的比值为5:3,求矩形的长和宽。

解:设矩形的长为5x,宽为3x,根据周长的条件,有2(5x+3x) = 28。

化简得8x = 28,解得x = 3.5。

(完整版)矩形练习题及答案

(完整版)矩形练习题及答案

矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。

八年级数学《矩形》同步练习含答案

八年级数学《矩形》同步练习含答案

八年级数学《矩形》同步练习随堂演练一、填空题1.矩形ABCD的边AB的中点为P,且∠DPC为直角,则AD:BA=.2.已知矩形ABCD中,对角线AC,BD交于O点,∠AOB=2∠BOC,AC=18cm,则AD= cm.3.如图矩形ABCD中,E是CD的中点,且AE⊥EB,若S EAB=8cm2,则AD=,AB= .4.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的长为,对角线的长 .5.在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数是 .6.在Rt△ABC中,∠A=90°,AB=AC,如图,且四边形AFDE为矩形,若EF=5,矩形AFDE的面积为12,则AC= .7.如图,在矩形ABCD中,AB=16,BC=8,将矩形沿AC折叠,点D落在点E处,且CE交AB于点F,则AF= .8.如图,宽为3,长为4的矩形纸片ABCD,先沿对角线BD对折,点C落在点C′位置,BC′交AD于G,再折叠一次使点D与点A重合.得折痕EN,EN交AD于点M,则点ME的长为 .二、选择题1.矩形的边长为10cm和15cm,其中一个内角平分线分长边为两部分,这两部分为()A.6cm和9cm B.5cm和10cmC.4cm和11cm D.7cm和8cm2.下列四边形中,不是矩形的是()A.三个角都是直角的四边形B.四个角都相等的四边形C.一组对边平行且对角线相等的四边形D .对角线相等且互相平分的四边形3.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠ADE :∠EDC =3:2,则∠BDE 的度数( )A .18°B .36°C .54°D .72°4.已知矩形ABCD 对角线相交于O ,且AB :BC=1:2,AC =3cm ,则矩形ABCD 的周长为( )A .(6+23)cmB .5518cmC .(6+556)cmD .12cm5.矩形具有的特征而一般的平行四边形不一定具有的特征是( )A .对角线相等B .对边相等C .对角相等D .对角线互相平分6.矩形的两条对角线与各边围成的三角形中,共有多少对全等的三角形( )A .2对B .4对C .6对D .8对7.矩形的对角线所成的角是65°,则对角线与各边所成的角度是( )A .57.5°B .32.5°C .57.5°,33.5°D .57.5°,32.5°8.下面真命题的个数是( )(1)矩形是轴对称图形,又是中心对称图形(2)矩形的对角线大于夹在两对边间的任意线段(3)两条对角线相等的四边形是矩形(4)有两个角相等的平行四边形是矩形(5)两条对角线相等且互相平分的四边形是矩形.A .5个B .4个C .3个D .2个三、判断题1.两条对角线互相垂直并且相等的四边形是矩形( )2.两条对角线的交点到四个顶点的距离相等的四边形是矩形( )3.矩形是轴对称图形,而且有四条对称轴( )四、解答题1.已知,如图在△ABC 中,D 是AB 上一点,且AD=DC=BD ,DF ,DE 分别是∠ADC ,∠BDC 的平分线.求证:四边形DECF 是矩形.2.已知:如图AC 、BD 的交点O 是四边形ABCD 的对称中心,且∠A =90°.求证:四边形ABCD 是矩形.3.已知:如图△ABC中,CE⊥AD于点E,BD⊥AD于点D,M是BC的中点.求证:ME=MD.4.已知:如图,矩形ABCD中对角线AC,BD交于点O,DE平分∠ADC,交BC于点E,∠BDE=15°.求∠COD与∠COE的度数.5.如图:多边形ABCDEFGH相邻两边都互相垂直,若要求出其周长,那么最少要知道多少条边的长度?参考答案一、填空题1.1:2 2.12 3.8cm m 32 4.5,105.15° 6.7 7.10 8.127 二、选择题1.B 2.C 3.A 4.B 5.A 6.B 7.D 8.C三、判断题1.× 2.× 3.×四、解答题1.证明:因为AD =CD =DB ,所以∠DCA =∠A ,∠BCD =∠B所以∠ACB=∠DCA+∠BCD =∠A+∠B又因为∠ACB+∠A+∠B =180°所以2∠ACB =180°,即∠ACB =90°因为DF 平分∠ADC ,DE 平分∠BDC又AD =CD =DB所以DE ⊥BC ,DF ⊥AC所以∠DEC =∠DFC =90°所以四边形DECF 是矩形点拨:要判断DECF 是矩形,除了根据定义判断外,还可用有三个角是直角的四边形,或者对角线相等的平行四边形.由题设AD =CD =BD 知△ADC ,△BDC 都是等腰三角形.又DF ,DE 是角平分线,所以DF ⊥AC ,DE ⊥BC.2.证明:因为四边形ABCD 是关于O 的中心对称图形,则相对的顶点是关于O 点的对称点,所以OA =OC ,OB =OD ,即AC ,BD 互相平分于点O ,所以四边形ABCD 是平行四边形.又因为∠A =90°,所以四边形ABCD 是矩形.点拨:由O 是对称中心,易知OA =OC ,OB =OD ,可得四边形为平行四边形,根据定义,只要有一个角为90°,即可.3.证法一:延长DM 交CE 于点N ,延长EM 交BD 延长线于点H ,连结HN.因为CE ⊥AD ,BD ⊥AD ,所以CE ∥BD ,所以∠NCM =∠DBM,又∵CM =BM ,∠CMN=∠BMD ,所以△CMN ≌△BMD ,所以NM =DM ,同理可证EM =HM.所以四边形EDHN 是平行四边形,又因为CE ≌AD ,所以EDHN 是矩形.所以EH =DN 所以ME =MD .证法二:延长DM 交CE 于点N ,同证法一△CMN ≌△BMD ,所以NM =MD ,即M 为DN 的中点,所以ME =MD点拨:注意到CE ⊥AD ,BD ⊥AD ,提示构造矩形EDNH ,使它的对角线交于点M 来证. 另若延长DM 交CE 于点N ,则构成直角三角形,可设想到利用直角三角形斜边上的中线性质来证.4.解:因为DE 平分∠ADC ,所以∠ADE =45°,所以∠ADB =∠ADE-∠ODE =45°-15°=30°.所以∠ODC =∠ADC-∠ADB =90°-30°=60°.因为ABCD 为矩形,所以△OCD 为等腰三角形.所以∠COD =180°-2∠ODC =60°,所以△OCD 是等边三角形.所以OC =CD .又在Rt △ECD 中∠EDC =45°,所以CE =CD .所以OC =CE .又因为ABCD 是矩形,所以∠OCE =∠ADB =30°.所以△CEO 中,∠COE=21(180°-∠OCE )=21(180°-30°)=75°.点拨:由于ABCD 为矩形,求∠COD 的度数,只要先求出∠CDO 或∠DCO 的度数,由图及题设条件可知.由于DE 平分∠ADC ,∠BDE=15°,可求出∠ADB =30°,从而可求出∠ODC =60°,故∠DOC =60°显然△COD 是等边三角形,△CED 是等腰直角三角形,从而可知△CEO 中CE =CO,∠OCE =30°,则∠COE=21(180°-∠OCE )=21(180°-30°)=75°. 5.解:至少需要知道三条边的长度.。

(完整版)矩形练习题及答案

矩形课后练习1、矩形具有而平行四边形不具有的性质是()A.内角和为360°B.对角线相等C.对角相等D.相邻两角互补2、平行四边形、矩形、菱形、正方形都具有的性质()A.对角线相等B.对角线互相平分C.对角线平分一组对角D.对角线互相垂直3、下列关于矩形的说法中正确的是()A.矩形的对角线互相垂直且平分B.矩形的对角线相等且互相平分C.对角线相等的四边形是矩形D.对角线互相平分的四边形是矩形下列说法正确的有()①两条对角线相等的四边形是矩形;②有一组对边相等,一组对角是直角的四边形是矩形;③一个角为直角,两条对角线相等的四边形是矩形;④四个角都相等的四边形是矩形;⑤对角线相等且垂直的四边形是矩形;⑥有一个角是直角的平行四边形是矩形.A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,AE⊥BD,垂足为E,∠DAE:∠BAE=1:2,试求∠CAE的度数.5、如图,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE=15°,试求∠COE的度数.6、Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM 的最小值为.7、如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2,E是AB边的中点,F是AC边的中点,D是BC边上一动点,则△EFD的周长最小值是.8、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.9、(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.10、如图,以△ABC的各边向同侧作正△ABD,正△BCF,正△ACE.(1)求证:四边形AEFD是平行四边形;(2)当∠BAC=______时,四边形AEFD是矩形;(3)当∠BAC=______时,以A、E、F、D为顶点的四边形不存在.11、如图,已知平行四边形ABCD,延长AD到E,使DE=AD,连接BE与DC交于O点.(1)求证:△BOC≌△EOD;(2)当∠A=12∠EOC时,连接BD、CE,求证:四边形BCED为矩形.12、已知四边形ABCD中,AB=CD,BC=DA,对角线AC、BD交于点O.M是四边形ABCD外的一点,AM⊥MC,BM⊥MD.试问:四边形ABCD是什么四边形,并证明你的结论.13、如图,△ABC中,AB=AC,D是BC中点,F是AC中点,AN是△ABC的外角∠MAC的角平分线,延长DF交AN于点E.(1)判断四边形ABDE的形状,并说明理由;(2)问:线段CE与线段AD有什么关系?请说明你的理由.14、已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.15、如图,矩形纸片ABCD的宽AD=5,现将矩形纸片ABCD沿QG折叠,使点C落到点R的位置,点P是QG上的一点,PE⊥QR于E,PF⊥AB于F,求PE+PF.16、如图,已知,E是矩形ABCD边AD上一点,且BE=ED,P是对角线BD上任一点,PF⊥BE,PG⊥AD,垂足分别为F、G,你知道PF+PG与AB有什么关系吗?并证明你的结论.矩形课后练习参考答案题一: B .详解:A .内角和为360°矩形与平行四边形都具有,故此选项错误;B .对角线相等只有矩形具有,而平行四边形不具有,故此选项正确;C .对角相等矩形与平行四边形都具有,故此选项错误;D .相邻两角互补矩形与平行四边形都具有,故此选项错误.故选B . 题二: B .详解:因为平行四边形的对角线互相平分、正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知正方形、矩形、菱形都具有的特征是对角线互相平分.故选B .题三: B .详解:A .矩形的对角线互相平分,且相等,但不一定互相垂直,本选项错误;B .矩形的对角线相等且互相平分,本选项正确;C .对角线相等的四边形不一定为矩形,例如等腰梯形对角线相等,但不是矩形,本选项错误;D .对角线互相平分的四边形为平行四边形,不一定为矩形,本选项错误.故选B .题四: C .详解:两条对角线相等且相互平分的四边形为矩形,故①③⑤错;有一个角为直角的平行四边形为矩形,故②④⑥正确.故选C . 题五: 30°.详解:∵∠DAE :∠BAE =1:2,∠DAB =90°,∴∠DAE =30°,∠BAE =60°,∴∠DBA =90°-∠BAE =90°-60°=30°,∵OA =OB ,∴∠OAB =∠OBA =30°,∴∠CAE =∠BAE -∠OAB =60°-30°=30°.题六: 75°.详解:∵四边形ABCD 是矩形,DE 平分∠ADC ,∴∠CDE =∠CED = 45°,∴EC =DC ,又∵∠BDE =15°,∴∠CDO =60°,又∵矩形的对角线互相平分且相等,∴OD =OC ,∴△OCD 是等边三角形,∴∠DCO =60°,∠OCB =90°-∠DCO =30°,∵DE 平分∠ADC ,∠ECD =90°,∠CDE =∠CED = 45°,∴CD =CE =CO ,∴∠COE =∠CEO ;∴∠COE =(180°-30°)÷2=75°.题七: 65.详解:由题意知,四边形AFPE 是矩形,∵点M 是矩形对角线EF 的中点,则延长AM 应过点P ,∴当AP 为Rt △ABC 的斜边上的高时,即AP ⊥BC 时,AM 有最小值,此时AM =12AP ,由勾股定理知BC =22AB AC +=5,∵S △ABC =12AB •AC =12BC •AP ,∴AP =345⨯=125,∴AM =12AP =65. 题八: 1+13.详解:作点F 关于BC 的对称点G ,连接EG ,交BC 于D 点,D 点即为所求,∵E 是AB 边的中点,F 是AC 边的中点,∴EF 为△ABC 的中位线,∵BC =2,∴EF =12BC =12×2=1;∵EF 为△ABC 的中位线,∴EF ∥BC ,∴∠EFG =∠C =90°,又∵∠ABC =60°,BC =2,FG =AC =23,EG =22EF FG +=13,∴DE +FE +DF =EG +EF =1+13.题九: 见详解.详解:(1)BD =CD .理由:∵AF ∥BC ,∴∠AFE =∠DCE ,∵E 是AD 的中点, ∴AE =DE ,在△AEF 和△DEC 中,∠AFE =∠DCE ,∠AEF =∠DEC ,AE =DE ,∴△AEF ≌△DEC (AAS),∴AF =CD ,∵AF =BD ,∴BD =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形,∵AB =AC ,BD =CD ,∴∠ADB =90°,∴平行四边形AFBD 是矩形. 题十: 见详解.详解:(1)∵△BCF 和△ACE 是等边三角形,∴AC =CE ,BC =CF ,∠ECA =∠BCF =60°,∴∠ECA -∠FCA =∠BCF -∠FCA ,即∠ACB =∠ECF ,∵在△ACB 和△ECF 中,AC =CE ,∠ACB =∠ECF ,BC =CF ,∴△ACB ≌△ECF (SAS),∴EF =AB ,∵三角形ABD 是等边三角形,∴AB =AD ,∴EF =AD =AB ,同理FD =AE =AC ,即EF =AD ,DF =AE ,∴四边形AEFD 是平行四边形;(2)当∠BAC =150°时,平行四边形AEFD 是矩形,理由:∵△ADB 和△ACE 是等边三角形,∴∠DAB =∠EAC =60°,∵∠BAC =150°,∴∠DAE =360°-60°-60°-150°=90°,∵由(1)知:四边形AEFD 是平行四边形,∴平行四边形AEFD 是矩形.(3)当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在,理由如下:∵∠DAB =∠EAC =60°,∠BAC =60°,∴∠DAE =60°+60°+60°=180°,∴D 、A 、E 三点共线,即边DA 、AE 在一条直线上,∴当∠BAC =60°时,以A 、E 、F 、D 为顶点的四边形不存在.题十一: 见详解.详解:(1)∵在平行四边形ABCD 中,AD =BC ,AD ∥BC ,∴∠EDO =∠BCO ,∠DEO =∠CBO ,∵DE =AD ,∴DE =BC , 在△BOC 和△EOD 中,∠OBC =∠OED ,BC =DE ,∠OCB =∠ODE ,∴△BOC ≌△EOD (ASA);(2)∵DE =BC ,DE ∥BC ,∴四边形BCED 是平行四边形, 在平行四边形ABCD 中,AB ∥DC ,∴∠A =∠ODE ,∵∠A =12∠EOC ,∴∠ODE =12∠EOC , ∵∠ODE +∠OED =∠EOC ,∴∠ODE =∠OED ,∴OE =OD ,∵平行四边形BCED 中,CD =2OD ,B E =2OE ,∴CD =BE ,∴平行四边形BCED 为矩形.题十二:见详解.详解:矩形.理由:连接OM,∵AB=CD,BC=DA,∴四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AM⊥MC,BM⊥MD,∴∠AMC=∠BMD=90°,∴OM=12BD,OM=12AC,∴BD=AC,∴四边形ABCD是矩形.题十三:见详解.详解:(1)四边形ABDE是平行四边形,理由:∵AB=AC,D是BC中点,F是AC中点,∴DF∥AB,∵AB=AC,D是BC 中点,∴∠BAD=∠CAD,AD⊥DC,∵AN是△ABC的外角∠MAC的角平分线,∴∠MAE=∠CAE,∴∠NAD=90°,∴AE∥BD,∴四边形ABDE是平行四边形;(2)CE∥AD,CE=AD;理由:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=12∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵AB=AC,点D为BC中点,∴AD⊥BC,∵CE⊥AN,∴AD∥CE,∴四边形ADCE为平行四边形,∵CE⊥AN,∴∠AEC=90°,∴四边形ADCE为矩形,∴CE∥AD,CE=AD.题十四:见详解.详解:(1)∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD,∵点E、F分别是AB、CD的中点,∴AE=12 AB,CF=12CD.∴AE=CF,在△AED与△CBF中,AD=CB,∠4=∠C,AE=CF,∴△ADE≌△CBF(SAS),(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AG∥BD,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴DE=BE,∵AE=BE,∴AE=BE=DE,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°,∴∠2+∠3=90°,即∠ADB=90°,∴四边形AGBD是矩形.题十五:5.详解:把折叠的图展开,如图所示:EF=AD,∵AD=5,∴EF=5,∴PF+PE=5.题十六:PF+PG =AB.详解:PF+PG=AB.理由如下:连接PE,则S△BEP+S△DEP=S△BED,即12BE•PF+12DE•PG =12DE•AB.又∵BE=DE,∴12DE•PF+12DE•PG=12DE•AB,即12DE(PF+PG)=12DE•AB,∴PF+PG =AB.。

矩形的练习题及答案

矩形的练习题及答案1. 题目一:若矩形的长为10厘米,宽为5厘米,求矩形的周长和面积。

答案:周长= 2 × (长 + 宽) = 2 × (10 + 5) = 30厘米。

面积 = 长× 宽= 10 × 5 = 50平方厘米。

2. 题目二:一个矩形的对角线长度为13厘米,一边长为5厘米,求另一边的长度。

答案:设另一边的长度为x厘米。

根据勾股定理,5² + x² =13²。

解得x² = 13² - 5² = 144,所以x = √144 = 12厘米。

3. 题目三:一个矩形的长是宽的两倍,若矩形的周长为24厘米,求矩形的长和宽。

答案:设宽为x厘米,则长为2x厘米。

周长= 2 × (长 + 宽)= 2 × (2x + x) = 24。

解得6x = 24,所以x = 4厘米,长为2x =8厘米。

4. 题目四:一个矩形的长是20厘米,宽是10厘米,若将矩形沿对角线折叠,求折叠后的三角形的高。

答案:折叠后的三角形是等腰直角三角形,其高等于原矩形的宽,即10厘米。

5. 题目五:若矩形的长和宽的比为3:2,且面积为72平方厘米,求矩形的长和宽。

答案:设长为3x厘米,宽为2x厘米。

面积 = 长× 宽= 3x × 2x = 6x²。

由题意知6x² = 72,解得x² = 12,所以x = √12 =2√3。

因此,长为3x = 6√3厘米,宽为2x = 4√3厘米。

6. 题目六:若矩形的长减少5厘米,宽增加2厘米,面积不变,求原矩形的长和宽。

答案:设原矩形的长为l厘米,宽为w厘米。

根据题意,(l - 5) × (w + 2) = l × w。

展开得lw + 2l - 5w - 10 = lw。

化简得2l- 5w = 10。

由于条件不足,无法唯一确定长和宽的值。

八年级数学(下)第十八章《矩形》同步练习(含答案)

八年级数学(下)第十八章《矩形》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.矩形具有而平行四边形不一定具有的性质是A.对角相等B.对边相等C.对角线相等D.对角线互相平分【答案】C【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.2.如图,在平行四边形ABCD中,AC、BD是它的两条对角线,下列条件中,能判断这个平行四边形是矩形的是A.∠BAC=∠ACB B.∠BAC=∠ACDC.∠BAC=∠DAC D.∠BAC=∠ABD【答案】D3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是A.2 B.4 C.3D.3【答案】B【解析】∵四边形ABCD是矩形,∴OA=OC=OB=OD.∴△OAB是等腰三角形.∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OA.∵AB=2,∴OA=2.∵OA=OC,∴AC=4.故选B.4.如图,在矩形COED中,点D的坐标是(1,2),则CE的长是A.3B.2 C.5D.6【答案】C【解析】∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,2),∴OD=22125+=,∴CE=5,故选C.5.如图,矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD于E,若∠OAE=24°,则∠BAE的度数是A.24°B.33°C.42°D.43°【答案】B6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10 C.8 D.6【答案】B【解析】四边形ABCD是矩形,∴DC=AB=8,AD=BC=4,∠D=90°,AB∥DC,∴∠FAC=∠DCA,由折叠的性质得∠FCA=∠DCA,∴∠FCA =∠FAC,∴AF=CF,设AF=CF =x,D′F=8-x,在Rt △AD ′F 中,根据勾股定理得AD ′2+D ′F 2=AF 2,即2224(8)x x +-=,解得5x =, ∴11541022AFC S AF AD =⋅=⨯⨯=△.故选B . 7.下列条件中,能判定四边形ABCD 是矩形的是 A .四边形ABCD 中,AC BD = B .四边形ABCD 中,AC BD ⊥C .四边形ABCD 中,90A ∠=︒,90C ∠=︒,90D ∠=︒ D .四边形ABCD 中,90ABC ∠=︒ 【答案】C8.在矩形ABCD 中,AB =1,AD =3,AF 平分∠DAB ,过C 点作CE ⊥BD 于E ,延长AF 、EC 交于点H ,下列结论中:①AF =FH ;②BO =BF ;③CA =CH ;④BE =3ED .正确的是A .②③B .③④C .①②④D .②③④【答案】D【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,90BAD ABC ∠=∠=︒,AO =OC ,OD =OB ,AC =BD ,∴AO =OB =OD ,∵AB =1,AD 3BD =2,∴∠ABD =60°,∴△ABO 是等边三角形, ∴AB =OA =OB ,∠BAO =∠AOB =60°,∵AF 平分∠BAD ,∴∠BAF =∠DAF =45°,∵∠DAF =∠AFB , ∴∠BAF =∠BFA ,∴BF AB OB ==,∴②正确;∵CE ⊥BD ,∴60DOC AOB ∠=∠=︒,∴∠ECO =30°,∵604515FAC ∠=︒-︒=︒ , ∴15H ACE CAF CAF ∠=∠-∠=︒=∠,∴AC =CH ,∴③正确; ∵CF 和AH 不垂直,∴AF ≠FH ,∴①错误;∵∠CEO=90°,∠ECA=30°,∴1122OE OC OD DE===,BE=3DE,∴④正确,正确的有②③④,故选D.二、填空题:请将答案填在题中横线上.9.如图,直角三角形ABC中,∠ACB=90°,CD、CE分别是斜边上的高和中线,AC=CE=10 cm,则BD=__________.【答案】15 cm10.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的长度为__________.【答案】2.5【解析】∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=12BD,∴OD=12BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=2.5.故答案为:2.5.11.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=34°,则∠DBC为__________度.【答案】56【解析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=34°,∴∠DBC=56°.故答案为:56.12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把△ABE沿AE折叠,使点B 落在点B′处.当△CEB′为直角三角形时,CB/的长为__________.【答案】2或10【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图所示,连接AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如图所示,此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,CB2210.综上所述,13B'C的长为210.故答案为:210.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,四边形ABCD为矩形,PB=PC,求证:PA=PD.14.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC 交BC于点E,连接OE.(1)求证:四边形ABCD是矩形;(2)若AB=2,求△OEC的面积.【解析】(1)∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)如图,作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12EC·OF=1.15.如图,ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接BE,DF.判断四边形EBFD的形状,并说明理由.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.16.如图,已知ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD=2,求AC的长.(2)如图,连接AC,∵AD=4,CD=2,四边形ABCD是平行四边形,四边形BECD是矩形,∴AB=BE=CD=2,BC=AD=4,∠AEC=90°,∴AE=AB+BE=4,在Rt△BCE中,CE22-=4223∴在Rt△ACE中,AC22+=4(23)27。

矩形的性质复习题含答案

矩形的性质复习题含答案1. 矩形的对边相等,且互相平行。

答案:正确。

2. 矩形的四个角都是直角。

答案:正确。

3. 矩形的对角线相等且互相平分。

答案:正确。

4. 矩形的面积可以通过长乘以宽来计算。

答案:正确。

5. 矩形的周长是其长和宽的两倍之和。

答案:正确。

6. 矩形的对角线将矩形分成两个全等的直角三角形。

答案:正确。

7. 如果一个四边形的对边相等且互相平行,那么它一定是矩形。

答案:错误。

这个条件只能说明它是平行四边形,要成为矩形还需要四个角都是直角。

8. 矩形的对角线互相垂直。

答案:错误。

矩形的对角线互相平分,但不一定垂直,除非它是正方形。

9. 矩形的内角和为360度。

答案:正确。

10. 矩形的长和宽可以互换,而不影响其形状。

答案:错误。

长和宽互换后,矩形的形状会改变,但仍然是矩形。

11. 矩形的对边中点连线平行于对角线。

答案:正确。

12. 矩形的对角线将矩形分成四个面积相等的小矩形。

答案:错误。

对角线将矩形分成四个面积相等的小三角形,而不是小矩形。

13. 矩形的对边中点连线长度等于对角线长度的一半。

答案:错误。

对边中点连线的长度等于对角线长度的一半,但不是对角线本身的长度。

14. 矩形的对角线是对称轴。

答案:错误。

矩形的对称轴是通过对边中点的直线,而不是对角线。

15. 矩形的对角线相等,因此矩形是轴对称图形。

答案:正确。

由于对角线相等且互相平分,矩形关于对角线对称,因此是轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩形的习题精选
一、性质
1、下列性质中,矩形具有而平行四边形不一定具有的是( )
A 、对边相等
B 、对角相等
C 、对角线相等
D 、对边平行
2.在矩形ABCD 中,∠AOD=130°,则∠ACB=__ _
3.已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为______
4.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm , 对角线是13cm ,那么矩形的周长是____________
5.如图所示,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____
6、直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为___
7、已知,在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= 。

8、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD
于F. 求证:BE=CF.
9.如图,△ABC 中,∠ACB=900,点D 、E 分别为AC 、AB 的中点,点
F 在BC 延长线上,且∠CDF=∠A ,求证:四边形DECF 是平行四边形;
10.已知:如图,在△ABC 中,∠BAC ≠90° ∠ABC=2∠C ,AD ⊥AC ,交BC 或CB 的延长线D 。

试说明:DC=2AB.
11、在△ABC 中,∠C=90O ,AC=BC ,AD=BD ,PE ⊥AC 于点E ,
PF ⊥BC 于点F 。

求证:DE=DF
二、判定
1、下列检查一个门框是否为矩形的方法中正确的是()
A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分
C.用曲尺测量门框的三个角,是否都是直角D.用曲尺测量对角线,是否互相垂直
2、平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD
是矩形
3、在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求
证:四边形AFCE是矩形
4、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA
⊥PC,PB⊥PD,垂足为P。

求证:四边形ABCD为矩形
5、已知:如图,平行四边形ABCD的四个内角的平分线分别相交于E、F、G、H,求
证:四边形EFGH为矩形.
6、如图,△ABC中,点O是AC上一个动点,过点O作直线MN∥BC,设MN交∠
BCA的平分线于点E,交∠BCA的外角平分线于点F,(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF是矩形,并证明你的结论。

菱形的习题精选
一、性质
1.小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形。

小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )
A 、小明、小亮都正确
B 、小明正确,小亮错误
C 、小明错误,小亮正确
D 、小明、小亮都错误
2.下面性质中菱形有而矩形没有的是( )
(A )邻角互补 (B )内角和为360° (C )对角线相等 (D )对角线互相垂直
3.如图,已知四边形ABCD 是平行四边形,下列结论不正确的是( )
A. 当AB=BC 时,它是菱形;
B. 当AC ⊥BD 时,它是菱形;
C. 当∠ABC=90°时,它是矩形;
D. 当AC=BD 时,它是菱形。

4.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm .
5.若菱形的周长为24 cm ,一个内角为60°,则菱形的面积为______ cm 2。

6 .已知:菱形的周长为40cm ,两条对角线长的比是3:4。

求两对角线长分别是 。

7、已知菱形的面积等于80cm2,高等于8cm ,则菱形的周长为 .
8、如图,P 为菱形ABCD 的对角线上 一 点,PE ⊥AB 于点E ,PF ⊥AD 于点 F ,PF=3cm ,则P 点到AB 的距离是_____ cm
13、如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM +PN 的最小值是_______. 9.已知菱形ABCD 中,对角线AC 和BD 相交于点O ,∠BAD=120°,求∠ABD 的度数。

10、已知如图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AE=2。

求(1)∠ABC 的度数; (2)对角线AC 、BD 的长; (3)菱形ABCD 的面积。

11、已知:如图,AD 平分∠BAC ,DE ∥AC 交AB 于E , DF ∥AB 交AC 于F . 求证:四边形AEDF 是菱形;
B
C A
D O
12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是
CD上的动点,满足AE+CF=a。

证明:不论E、F怎样移动,△BEF总是正三角形。

二、判定
1、□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是形;(2)若AC=BD,则□ABCD是形;
(3)若∠ABC是直角,则□ABCD是形;(4)若∠BAO=∠DAO,则□ABCD 是形。

2、下列条件中,不能判定四边形ABCD为菱形的是().
A、AC⊥BD ,AC与BD互相平分B、AB=BC=CD=DA
C、AB=BC,AD=CD,且AC⊥BD D、AB=CD,AD=BC,AC⊥BD
3、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为
D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF
是菱形。

4、如图,在已知平行四边形ABCD中,AE平分∠BAD,与BC相交于点E,EF//AB,
与AD相交于点F.求证:四边形ABEF是菱形.
5、如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分
∠ACB,交AD于G,交AB于E,EF⊥BC于F,四边形AEFG
是菱形吗?
6、如图,已知在□ABCD中,AD=2AB,E、F在直线AB上,
且AE=AB=BF,说明CE⊥DF.。

相关文档
最新文档