矩形的性质与判定经典例题练习

合集下载

矩形的性质与判定练习题(经典实用)

矩形的性质与判定练习题(经典实用)

矩形的性质与判定练习题(经典实用) 矩形的性质和判定练习题(精选)1(矩形的对边,对角线且,四个角都是 .2(矩形是面积的60,一边长为5,则它的一条对角线长等于。

3(如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。

4. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.5.形的两条对角线的夹角是60?,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______. 6(已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当?ODP是腰长为5的等腰三角形时,点P的坐标为。

7(若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .y 8(平行四边形没有而矩形具有的性质是( ) P B C A、对角线相 B、对角线互相垂 C、对角线互相平分 D、对角相等9.下列叙述错误的是( )A.平行四边形的对角线互相平分。

B.平行四边形的四个内角相等。

x D A OC.矩形的对角线相等。

D.有一个角时90º的平行四边形是矩形10.下列检查一个门框是否为矩形的方法中正确的是( ) (6题图) A(测量两条对角线是否相等 B(用曲尺测量对角线是否互相垂直C(用曲尺测量门框的三个角是否都是直角D.测量两条对角线是否互相平分,ABC,AOB11(矩形ABCD的对角线相交于点O,如果的周长比的周长大10cm,则AD的长是( )A、5cmB、7.5cmC、10cmD、12.5cm 12.下列图形中既是轴对称图形,又是中心对称图形的是( )A、平行四边形B、等边三角形C、矩形D、直角三角形5一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .6(如图,在?ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE?AB于E,PF?AC于F,M为EF中点,则AM的最小值为( )55564235 A( B( C( D(二、解答题7、已知:如图,在?ABC中,AB=AC,AD?BC,垂足为点D,AN是?ABC的外角?CAM的平分线,CE?AN,垂足为点E,求证:四边形ADCE为矩形。

初一下册矩形的性质与判定练习题含答案

初一下册矩形的性质与判定练习题含答案

矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。

矩形的性质:矩形的四个角都是直角;矩形的对角线相等;矩形的对角线相等且互相平分。

特别提示:直角三角形斜边上的中线等于斜边的一半 矩形具有平行四边形的一切性质。

矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形 有三个角是直角的四边形是矩形【例题】专题一:矩形的性质矩形的性质性质1. 矩形的四个角都是直角。

几何语言:∵四边形ABCD 是矩形;∴∠BAD=∠ABC=∠BCD=∠ADC=90°性质2. 矩形的对角线相等且平分。

几何语言:∵四边形ABCD 是矩形;∴OA=OC=OB=OD=D B 21AC 21==性质3. 对边平行且相等几何语言:∵四边形ABCD 是矩形;∴AD=BC , AD ∥BC 或者 AB=CD , AB ∥CD3. 直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半。

几何语言:∵ 在Rt △ABC 中,OA=OC (OB 是AC 边上的中线)∴ OB=21AC在直角三角形中,30角所对的直角边等于斜边的一半。

矩形具有平行四边形的一切性质。

1.如图,矩形ABCD 中,BE ⊥AC 于E ,DF ⊥AC 于F ,若AE=1,EF =2,则FC = ,AB = 。

FEADBFC =1,AB =2.2.只用一把刻度尺检查一张四边形纸片是否是矩形,下列操作中最为恰当的是( )A. 先测量两对角线是否互相平分,再测量对角线是否相等 CB. 先测量两对角线是否互相平分,再测量是否有一个直角C. 先测量两组对边是否相等,再测量对角线是否相等D. 先测量两组对边是否互相平行,再测量对角线是否相等3.已知:如图3-32,矩形ABCD 中,对角线AC 、BD 相交于点O ,AC = 10cm ,∠ACB = 30°, 则∠AOB = °,AD = cm ;60 534.如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在点E 处,求证:EF =DF .5.如图,在Rt ⊿ABC 中,∠C = 90,AC = AB ,AB = 30,矩形 DEFG 的一边DE 在AB 上,顶点G 、F 分别在AC 、BC 上,若 DG :GF = 1:4,则矩形DEFG 的面积是 100 ;专题二:矩形的判定图3-32OBACDABCDF G矩形的判定方法方法1:矩形的定义:有一个角是直角的平行四边形叫做矩形。

矩形的性质与判定习题及答案

矩形的性质与判定习题及答案

由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

矩形的性质与判定练习(含答案)

矩形的性质与判定练习(含答案)

交于点 G ,四边形 ABGD 的面积是

26.如图,在长方形 ABCD 中, AB 4cm ,BC 8cm .E 、F 分别是 AB 、BC 的中点.则
E 到 DF 的距离是
cm .
27.如图,在平面直角坐标系中,O 为坐标原点,矩形OABC 中, A(10, 0) ,C(0, 4) , D 为
(1) BCD 的形状为

(2)随着点 E 位置的变化, DBF 的度数是否变化?并结合图说明你的理由;
(3)当点 F 落在边 AC 上时,若 AC 6 ,请直接写出 DE 的长.
43.如图,在平行四边形 ABCD 中,AC AD ,延长 DA 于点 E ,使得 DA AE ,连接 BE . (1)求证:四边形 AEBC 是矩形; (2)过点 E 作 AB 的垂线分别交 AB ,AC 于点 F ,G ,连接 CE 交 AB 于点 O ,连接 OG , 若 AB 6 , CAB 30 ,求 OGC 的面积.
且 OE 2DE ,则 DE 的长为

19.如图, ABC 中, AC 的垂直平分线分别交 AC 、 AB 于点 D 、 F , BE DF 交 DF 延
长线于 E ,已知 A 30 , BC 2 , AF BF ,则四边形 BCDE 的面积是

20.如图,在 ABC 中, AD BC 于 D , BE AC 于 E , M 为 AB 边的中点,连结 ME 、
A. 3 1
B. 3 1
C. 6 1
D. 6 1
15.如图,在矩形 ABCD 中, AB 4 , BC 6 ,点 E 为 BC 的中点,将 ABE 沿 AE 折叠, 使点 B 落在矩形内点 F 处,连接 CF ,则 CF 的长为 ( )

完整版矩形的判定和性质练习题

完整版矩形的判定和性质练习题

矩形的判定和性质(基础练习)1. 在矩形ABCD中,对角线交于0点,AB=0.6, BC=0.8,那么△ AOB的面积为________________ ;周长为 _______________ .2. 一个矩形周长是12cm,对角线长是5cm,那么它的面积为__________________________ .3. 在厶ABC中,AM是中线, BAC= 90 , AB=6cm, AC=8cm,那么AM的长为4. 如图,矩形ABCD对角线交于O点,EF经过O点,那么图中全等三角形共有__________________________ 对.5. 在矩形ABCD中,AB=3, BC=4, P为形内一点,那么PA+PB+PC+PD的最小值为6.在矩形ABCD 内有一点Q,满足QA=1, QB=2, QC=3,那么QD的长为7. 如图,矩形ABCD的对角线交于O点,若OA=1, BC= .. 3 ,那么BDC的大小为 ___________________ .8. 如图,矩形ABCD对角线交于O点,且满足AM=BN,给出以下结论:① MN //DC;② DMN= MNC;③ S V OMD S ON c .其中正确的是_______________ .9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是10.如图,在矩形ABCD 中,AE平分BAD, CAE= 15 ,那么BOE的度数为.解题技巧11.在矩形ABCD中,三等分点,那么AB : A和B的平分线交边CD于点M和BC的值为_____________________ .N,若M、N是CD的D CDB E14. 如图,矩形ABCD 的周长为16cm, DE=2cm, 三角形的面积为 _____________________ .15. 如图,在矩形 ABCD中,AD=12, AB=7, DF在平面上是否存在点 Q,使得QA=QD=QE=QF? 若存在,求出 说明理由•16. 一个四边形满足:它的每个顶点到其它三个顶点的距离之和相等,试判断这个四边形的形状•17. 已知矩形ABCD ,试问:当边 AB 和BC 满足什么条件时,在边CD 上一定存在点P,使得 PA PB?12. 如图,在矩形 ABCD 中,DE BE= ______________________ .13. 如图,在矩形 ABCD 中,AP=DC, PH=PC,求证:PB 平分 CBH.AC 于点 E,QA 的长;若不存在,矩形的判定和性质(巩固练习)1. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是_____________2. 矩形的两条对角线的夹角是60°, —条对角线与矩形短边的和为15,那么矩形对角线的长为_______ ,短边长为_________3. 若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于4. 如图,E为矩形ABC%角线AC上一点,DE± AC于E,Z ADE: / EDC=2:3,则/ BDE为__________成立吗?试说明理由.11. 如图,在矩形ABCD中, AB=3, BC=4,如果将该矩形沿对角线BD重叠,求图中阴影部分的面积.5.矩形的两邻边分别为4 cm和3 cm,则其对角线为cm, 矩形面积为cm 6.若矩形的一条对角线与一边的夹角是40,则两条对角线相交所成的锐角是7. 矩形具有一般平行四边形不具有的性质是(A.对边相互平行B. 对角线相等8. 矩形具备而平行四边形不具有的性质是()C. 对角线相互平分D. 对角相等)A.对角线互相平分 B •邻角互补 C •对角相等D•对角线相等9. 在下列图形性质中,矩形不一定具有的是(A.对角线互相平分且相等B ).四个角相等.对角线互相垂直平分10.如图,四边形ABCD中,/ ABC=/ ADC=90 ,M N分别是AC BD?勺中点,那么MNL BD12. 如图,已知在四边形ABCD中,AC DB交于0 , E、F、G、H分别是四边的中点,求证:四边形EFGH是矩形.13.如图,平行四边形ABCD中,AQ、BN、CN、DQ分别是DAB、ABC、BCD、CDA的平分线,AQ与BN交于P,CN与DQ交于M ,A D 求证:四边形PQMN是矩形.14.如图矩形ABCD中,延长CB到E,使CE AC , F是AE中点. 求证:BF DF .15.如图,矩形ABCD中,CE BD于E , AF平分BAD交EC于F , 求证:CF BD .。

专题1.2 矩形的性质与判定(能力提升)(解析版)

专题1.2 矩形的性质与判定(能力提升)(解析版)

专题1.2 矩形的性质与判定(能力提升)(解析版)一、选择题。

1.(2022春•遵化市期末)如图,矩形ABCD中,对角线AC,BD交于点O,若∠AOB=60°,BD=8,则DC长为( )A.4B.4C.3D.5【答案】B。

【解答】解:由矩形对角线相等且互相平分可得AO=BO==4,即△OAB为等腰三角形,又∠AOB=60°,∴△OAB为等边三角形.故AB=BO=4,∴DC=AB=4.故选:B.2.(2021秋•沂水县期末)下列各图是由若干个正方形和长方形组成的,其中能表示等式(a+b)2=a2+2ab+b2的是( )A.B.C.D.【答案】B。

【解答】解:对于等式(a+b)2=a2+2ab+b2,可看作边长为(a+b)的正方形由一个边长为a的正方形、一个边长为b的正方形和一个长宽为a、b的矩形组成.故选:B.3.(2022•海曙区校级模拟)如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD 的垂直平分线,则EF的长为( )A.cm B.cm C.cm D.8cm【答案】C。

【解答】解:∵EF是BD的垂直平分线,∴OB=OD,∵∠OBF=∠ODE,∠BOF=∠DOE,∴△BOF≌△DOE,则OE=OF,∵∠OBF=∠ABD,∴△BOF∽△BAD∴=,∵BD==10cm,∴BO=5cm,∴FO=5×cm=cm,∴EF=2FO=cm.故选:C.4.(2021春•洛南县期末)如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA =OC,OB=OD.若要使四边形ABCD为矩形,则可以添加的条件是( )A.∠AOB=60°B.AC=BD C.AC⊥BD D.AB=BC【答案】B。

【解答】解:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故B选项符合题意,由∠AOB=60°无法判断平行四边形ABCD是矩形.故A选项不符合题意,由AC⊥BD无法判断平行四边形ABCD是矩形.故C选项不符合题意,由AB=BC无法判断平行四边形ABCD是矩形.故D选项不符合题意,故选:B.5.(2022春•黔南州期末)如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连接EF,则线段EF的最小值为( )A.24B.3.6C.4.8D.5【答案】C。

矩形的性质与判定典型例题

矩形的证明题目一.选择题(共5小题)1.(2016春•巴南区校级月考)如图矩形都是由大小不等的正方形按照一定规律组成的,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…,则第⑧个矩形的周长为()A.168 B.170 C.178 D.1882.(2016•姜堰区校级模拟)矩形ABCD中,AB=4,BC=8,矩形CEFG上的点G在CD边,EF=a,CE=2a,连接BD、BF、DF,则△BDF的面积是()A.32 B.16 C.8 D.16+a23.(2016•深圳模拟)如图所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下面的结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,其中正确结论有()A.1个B.2个C.3个D.4个4.(2015•十堰一模)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.8 B.8 C.4 D.65.(2015•天台县模拟)如图,矩形ABCD中,BC=1,连接AC与BD交于点E1,过E1作E1F1⊥BC 于F1,连接AF1交BD于E2,过E2作E2F2⊥BC于F2,连接AF2交BD于E3,过E3作E3F3⊥BC于F3,…,以此类推,则BF n(其中n为正整数)的长为()A.B.C.D.二.解答题(共25小题)6.(2015•龙岩)如图,E,F分别是矩形ABCD的边AD,AB上的点,若EF=EC,且EF⊥EC.(1)求证:AE=DC;(2)已知DC=,求BE的长.7.(2015•玉林)如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.(1)当△CDQ≌△CPQ时,求AQ的长;(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.8.(2015•石家庄二模)已知:如图所示,四边形ABCD是矩形,分别以BC、CD为一边作等边△EBC和等边△FCD,点E在矩形上方,点F在矩形内部,连接AE、EF.(1)求∠ECF的度数;(2)求证:AE=FE.9.(2015春•巴南区校级期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.10.(2015秋•开江县期末)已知,四边形ABCD是长方形,F是DA延长线上一点,CF交AB 于点E,G是CF上一点,且AG=AC,∠ACG=2∠GAF.(1)若∠ACB=60°,求∠ECB的度数.(2)若AF=12cm,AG=6.5cm,求△AEF中EF边上的高?11.(2015春•宜兴市校级期中)定义:如图①,在△ABC中,CD是AB边上的中线,那么△ACD 和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.12.(2015春•汕头校级期中)如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形OBB1C,对角线相交于点A1,再以A1B1、A1C为邻边作第2个平行四边形A1B1C1C,对角线相交于点O1;再以O1B1、O1C1为邻边作第3个平行四边形O1B1B2C1…依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形OBB1C的面积是第2个平行四边形A1B1C1C是第3个平行四边形OB1B2C的面积是(3)第n个平行四边形的面积是.13.(2015春•青山区期中)如图1,已知AB∥CD,AB=CD,∠A=∠D.(1)求证:四边形ABCD为矩形;(2)E是AB边的中点,F为AD边上一点,∠DFC=2∠BCE.①如图2,若F为AD中点,DF=1.6,求CF的长度:②如图2,若CE=4,CF=5,则AF+BC= ,AF= .14.(2015春•富顺县校级月考)矩形ABCD中,AB=3,AD=4;P是AD上的任意一点,过P作PE⊥OA,PF⊥OD,求PE+PF的值?15.(2015春•启东市校级月考)如图,已知矩形ABCD中,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD.(1)求证:BE=DC;(2)求证:∠MBE=∠MDC.(3)如果AB=6,AD=10,则四边形ABMD面积= .16.(2014•丹东一模)(1)如图1,四边形ABCD是矩形,E为AD上一点,且BE=ED,P为对角线BD上一点,PF⊥BE于点F,PG⊥AD于点G.判断PF、PG和AB的数量关系并说明理由.(2)如图2,当四边形ABCD变为平行四边形,其他条件不变,若∠ABC=60°,判断PF、PG 和AB的数量关系并说明理由.(3)如图3,当四边形ABCD满足∠ABD=90°,AB=3,BD=4,其它条件不变,判断PF、PG 和AB的数量关系并说明理由.17.(2014•南岸区一模)如图,在矩形ABCD中,点E是AD边上一点,点F是CB延长线上一点,连接EF交AB于点G,且DE=BF.AE的垂直平分线MN交AE于点N、交EF于点M.若∠AFG=2∠BFG=45°,AF=2.(1)求证:AF=CE;(2)求△CEF的面积.18.(2014春•涪陵区期末)如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T 处,求线段CT长度的最大值与最小值之和.19.(2014春•郯城县期末)如图1,在平面直接坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0)、(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,求点P的坐标.(友情提示: 图2、图3备用, 不要漏解)20.(2013秋•渝中区校级期末)如图,点E是矩形ABCD的边BC延长线上一点,连接AE,交CD于点F,G是AF的中点,再连接DG、DE,且DE=DG.(1)求证:∠DEA=2∠AEB;(2)若BC=2AB,求∠AED的度数.21.(2014春•宜昌校级期末)在矩形ABCG中,点D是AG的中点,点E是AB上一点,DE⊥DC,CE交BD于F,(1)求证:ED平分∠AEC;(2)当∠BEC=60°,且AE=1时,求矩形ABCG的面积;(3)当BE=BC,求证:BD平分∠CDE.22.(2014春•沂水县期末)数学学习总是如数学知识自身的生长历史一样,往往起源于猜测中的发现,我们所发现的不一定对,但是当利用我们已有的知识作为推理的前提论证之后,当所发现的在逻辑上没有矛盾之后,就可以作为新的推理的前提,数学中称之为定理.(1)尝试证明:等腰三角形的探索中借助折纸发现:直角三角形斜边上的中线等于斜边的一半.但是当时并未说明这个结论的合理.现在我们学些了矩形的判定和性质之后,就可以解决这个问题了.如图1若在Rt△ABC中CD是斜边AB的中线,则,你能用矩形的性质说明这个结论吗?请说明.(2)迁移运用:利用上述结论解决下列问题:①如图2所示,四边形ABCD中,∠BAD=90°,∠DCB=90°,EF分别是BD、AC的中点,请你说明EF与AC的位置关系.②如图3所示,▱ABCD中,以AC为斜边作Rt△ACE,∠AEC=90°,且∠BED=90°,试说明平行四边形ABCD是矩形.23.(2014春•金川区校级期中)如图,在正方形ABCD的边BC上任取一点M,过点C作CN⊥DM 交AB于N,设正方形对角线交点为O,试确定OM与ON之间的关系,并说明理由.24.(2014春•合川区校级期中)如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE 翻折后点C恰好落在AD边上的点F处,过F作FH⊥BC于H,交BE于G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积.25.(2014春•仙桃期中)矩形ABCD绕点A顺时针旋转至矩形AEFG,使B点正好落在CD上的点E处,连BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论.26.(2014春•青县校级期中)如图1,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿线段AB方向向B运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点P运动到点B 时,P、Q同时运动停止,设运动时间为t秒.(1)求CD的长;(2)当t为何值时,四边形PBQD为平行四边形?(3)在运动过程中,是否存在四边形BCQP是矩形?若存在,请求出t的值;若不存在,请说明理由.27.(2013•遵义)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN;(2)若△CMN的面积与△CDN的面积比为3:1,求的值.28.(2013•郑州模拟)(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD 于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥A C的延长线于点G,CH⊥BD于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.29.(2013•重庆模拟)如图,矩形ABCD中,点E为矩形的边CD上任意一点,点P为线段AE中点,连接BP并延长交边AD于点F,点M为边CD上一点,连接FM,且∠1=∠2.(1)若AD=2,DE=1,求AP的长;(2)求证:PB=PF+FM.30.(2013•南岸区校级模拟)如图,在矩形ABCD中,点M、N在线段AD上,∠MBC=∠NCB=60°,点E、F分别为线段CN、BC上的点,连接EF并延长,交MB的延长线于点G,EF=FG.(1)点K为线BM的中点,若线段AK=2,MN=3,求矩形ABCD的面积;(2)求证:MB=NE+BG.。

矩形的判定和性质经典习题

矩形的判定和性质经典习题[矩形的判定和性质]基础练习1. 在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_______________; 周长为_______________.2. 一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.3. 在△ABC 中, AM是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为___________. 4. 如图, 矩形ABCD 对角线交于O 点, EF经过O 点, 那么图中全等三角形共有_________对. 5. 在矩形ABCD 中, AB=3, BC=4, P为形内一点, 那么PA+PB+PC+PD 的最小值为_________.6. 在矩形ABCD 内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD 的长为________________. 7. 如图, 矩形ABCD 的对角线交于O 点, 若那么∠BDC 的大小为________. 8. 如图, 矩形ABCD 对角线交于O 点, 且满足AM=BN, 给出以下结论: ①MN //DC; ②∠DMN=∠MNC; ③S OMD =S ONC . 其中正确的是______________.9. 一个平行四边形的四个内角的角平分线相交围成的四边形的形状是________________. 10. 如图, 在矩形ABCD 中, AE平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为_________.B D A B A AD C C D C B1二. 解题技巧1. 在矩形ABCD 中,∠A 和∠B 的平分线交边CD 于点M 和N ,若M 、N 是CD 的三等分点,那么AB :BC 的值为___________________.2. 如图, 在矩形ABCD 中,DE ⊥AC 于点E,BC=, CD=2, 那么BE=_______________________.3. 如图, 在矩形ABCD 中, AP=DC, PH=PC, 求证: PB平分∠CBH.4. 如图, 矩形ABCD 的周长为16cm, DE=2cm, 若△CEF 是等腰直角三角形, 那么这个三角形的面积为______________.C B B A AD B CF C D D D A B三.简答题1. 如图, 在矩形ABCD 中, AD=12, AB=7, DF平分∠ADC, AF⊥EF, (1)求EF 长; (2)在平面上是否存在点Q, 使得QA=QD=QE=QF? 若存在, 求出QA 的长; 若不存在, 说明理由.2. 一个四边形满足: 它的每个顶点到其它三个顶点的距离之和A D 相等, 试判断这个四边形的形状.E3. 已知矩形ABCD ,试问:当边AB 和BC 满足什么条件时, 在边CD 上一定存在点P, 使得PA ⊥PB?二巩固练习基本知识点:矩形的性质及判定,直角三角形斜边中线定理.1. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________. 2. 矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.3. 若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .4. 如图,E 为矩形ABCD 对角线AC 上一点,DE ⊥AC 于E ,∠ADE: ∠EDC=2:3,则∠BDE 为_______. 5. 矩形的两邻边分别为4㎝和3㎝,则其对角线为㎝,矩形面积为 cm. 6.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是__________. 7. 矩形具有一般平行四边形不具有的性质是()A. 对边相互平行B. 对角线相等C. 对角线相互平分D. 对角相等228. 矩形具备而平行四边形不具有的性质是()A .对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等 9. 在下列图形性质中,矩形不一定具有的是()A .对角线互相平分且相等 B.四个角相等C .是轴对称图形 D.对角线互相垂直平分 10. 如图,四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD•的中点,那么MN ⊥BD 成立吗?试说明理由.11. 如图,在矩形ABCD 中,AB=3,BC=4,如果将该矩形沿对角线BD 重叠,求图中阴影部分的面积.AC D12. 如图,已知在四边形ABCD 中,AC ⊥DB 交于O ,E 、F求证:四边形EFGH 是矩形.AFBBCDOHC13. 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,ADQC求证:四边形PQMN 是矩形.★14. 如图矩形ABCD 中,延长CB 到E ,使CE =AC ,F 是AE 中点.求证:BF ⊥DF .3BNPADFE BC★15. 如图,矩形ABCD 中,CE ⊥BD 于E ,AF 平分∠BAD 交EC 于F , 4ADBCF求证:CF =BD .。

矩形的性质与判定练习(含答案)



17.在四边形 ABCD 中,对角线 AC , BD 交于点 O ,OA OC ,OB OD ,添加一个条件
使四边形 ABCD 是矩形,那么所添加的条件可以是
(写出一个即可).
18.如图,在矩形 ABCD 中,对角线 AC 与 BD 相交于点 O ,CE BD ,垂足为点 E ,CE 5 ,
A.5
B. 5 3
C.10
D.10 3
7.如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE BD ,连接 AE ,如果 ADB 38 ,则 E 的值是 ( )
A. 19
B. 18
C. 20
D. 21
8.如图,在矩形 ABCD 中,对角线 AC 、 BD 交于 O , BC 2 , AE BD ,垂足为 E ,

24.如图,已知 BEFG 是长方形, A 为 EB 延长线上一点, AF 交 BG 于点 C , D 为 AC 上 一点,且 AD BD BF ,若 BFG 60 ,则 AFG 的度数为 .
B.②③
3.下列对矩形的判定中,正确的个数有 (
C.③④ )
D.②④
(1)对角线相等的四边形是矩形;
(2)对角线互相平分且相等的四边形是矩形;
(3)有一个角是直角的四边形是矩形;
(4)有四个角是直角的四边形是矩形;
(5)四个角都相等的四边形是矩形;
(6)对角线相等,且有一个直角的四边形是矩形;
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;
A. 12 5
B. 24 5
C. 18 5
D.5
11.如图所示,矩形 ABCD 中, AE 平分 BAD 交 BC 于 E ,CAE 15 ,则下面的结论中 正确的有 ( ) ① ODC 是等边三角形; ② BC 2 AB ; ③ AOE 135 ; ④ SAOE SCOE .

矩形的性质和判定典型试题综合训练(含解析)完美打印版

矩形的性质和判定典型试题综合训练(含解析)一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.127.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S28.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S29.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA 为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.510.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.513.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH 是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为.25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有(将正确结论的序号填在横线上)27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是.矩形的性质和判定典型试题综合训练参考答案与试题解析一.选择题(共15小题)1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB【分析】由矩形和菱形的判定方法即可得出答案.【解答】解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.3.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.4.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故选:B.5.下列图形是用矩形纸片来折出阴影部分为等腰三角形,其中正确的有()A.1个B.2个C.3个D.4个【分析】根据等腰三角形的定义,即可一一判断.【解答】解:如图图1中,∵∠1=∠3,∠2=∠3,∴∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图3中,同法可证∠1=∠2,∴BA=BC,∴△ABC是等腰三角形.图4中,△ABC是等腰直角三角形,故选C.6.如图,EF过矩形ABCD对角线的交点O,且分别交AD、BC于点E、F已知AB=3,BC=4,则图中阴影部分的面积是()A.3 B.4 C.6 D.12【分析】由全等三角形的判定得到△OFB≌△OED,将阴影部分的面积转化为规则的几何图形的面积进行计算.【解答】解:在矩形ABCD中,OB=OD,∠FBO=∠EDO,∴在△OFB与△OED中,∴△FBO≌△EDO,∴S阴影部分=S△ABO=S矩形=×3×4=3.故选A.7.如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP 的面积S1与矩形QCNK的面积S2的关系是()A.S1>S2B.S1=S2C.S1<S2D.S1=2S2【分析】根据矩形的性质,可知△ABD的面积等于△CDB的面积,△MBK的面积等于△QKB的面积,△PKD的面积等于△NDK的面积,再根据等量关系即可求解.【解答】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故选:B.8.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.3S1=2S2【分析】由于矩形ABCD的面积等于2个△ABC的面积,而△ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系.【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=S矩形AEFC,即S1=S2,故选B.9.如图,矩形ABCD中,AB=12,BC=13,以B为圆心,BA为半径画弧,交BC于点E,以D为圆心,DA为半径画弧,交BC于点F,则EF的长为()A.3 B.4 C.D.5【分析】连接DF,在Rt△CDF中,求出CF,再求出CE即可解决问题.【解答】解:连接DF.∵四边形ABCD是矩形,∴AB=CD=BE=12,DA=BC=DF=13,∠C=90°,∴CF===5,∵EC=BC﹣BE=13﹣12=1,∴EF=CF﹣CE=4.故选B.10.如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为()A.35°B.45°C.55°D.65°【分析】根据三角形内角和定理和等腰三角形两底角相等求出∠MCP,然后求出∠BCP,再根据等腰三角形两底角相等和三角形内角和定理求解即可.【解答】解:∵以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,∴BP=BC,MP=MC,∵∠PMC=110°,∴∠MCP=(180°﹣∠PMC)=(180°﹣110°)=35°,在长方形ABCD中,∠BCD=90°,∴∠BCP=90°﹣∠MCP=90°﹣35°=55°,∴∠BCP=∠BPC=55°.故选C.11.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对【分析】先由两组对边分别相等的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断甲的作业正确;先由对角线互相平分的四边形是平行四边形得出四边形ABCD是平行四边形,再根据有一个角是直角的平行四边形是矩形判断乙的作业也正确.【解答】解:由甲同学的作业可知,CD=AB,AD=BC,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以甲的作业正确;由乙同学的作业可知,CM=AM,MD=MB,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴▱ABCD是矩形.所以乙的作业正确;故选A.12.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【分析】设FC′=x,则FD=9﹣x,根据矩形的性质结合BC=6、点C′为AD的中点,即可得出C′D的长度,在Rt△FC′D中,利用勾股定理即可找出关于x的一元一次方程,解之即可得出结论.【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选D.13.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小【分析】首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【解答】解:如图,过A作AG⊥BD于G,则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,∴OA=OD,∴PE+PF=AG,∴PE+PF的值是定值,故选C.14.如图,矩形ABCD中,AB=4,BC=6,P是CD边上的中点,E是BC边上的一动点,点M、N分别是AE、PE的中点,则线段MN长为()A.2B.3 C.D.【分析】连接AP,根据矩形的性质求出AP的长度,再根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AP,问题得解.【解答】解:连接AP,∵矩形ABCD中,AB=DC=4,P是CD边上的中点,∴DP=2,∴AP==2,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP=.故选D.15.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为()A.cm2B.cm2C.5cm2D.cm2【分析】根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.【解答】方法一:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.二.填空题(共12小题)16.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.【分析】利用平行四边形的判定与性质得到四边形DBCE为平行四边形,结合“对角线相等的平行四边形为矩形”来添加条件即可.【解答】解:添加EB=DC.理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴DE∥BC,又∵DE=AD,∴DE=BC,∴四边形DBCE为平行四边形.又∵EB=DC,∴四边形DBCE是矩形.故答案是:EB=DC.17.如图,矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是9.【分析】连接EO,延长EO交AB于H.只要证明四边形ADEO是平行四边形,推出OE=AD,再证明OH 是△ADB的中位线,可得OE=AD,延长即可求出EH解决问题.【解答】解:连接EO,延长EO交AB于H.∵DE∥OC,CE∥OD,∴四边形ODEC是平行四边形,∵四边形ABCD是矩形,∴OD=OC,∴四边形ODEC是菱形,∴OE⊥CD,∵AB∥CD,AD⊥CD,∴EH⊥AB,AD∥OE,∵OA∥DE,∴四边形ADEO是平行四边形,∴AD=OE=6,∵OH∥AD,OB=OD,∴BH=AH,∴OH=AD=3,∴EH=OH+OE=3+6=9,故答案为9.18.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证四边形EFGH是矩形.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.19.如图,在矩形ABCD中,∠ABC的平分线交AD于点E,连接CE.若BC=7,AE=4,则CE=5.【分析】首先证明AB=AE=CD=4,在Rt△CED中,根据CE=计算即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AB=CD,BC=AD=7,∠D=90°,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴AB=AE=CD=4,在Rt△EDC中,CE===5.故答案为520.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是6.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.21.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD 的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.22.如图矩形ABCD中,AB=8cm,CB=4cm,E是DC的中点,BF=BC,则四边形DBFE的面积为10cm2.【分析】本题主要考查矩形的性质,找出题里面的等量关系求解即可.【解答】解:AB=8cm,CB=4cm,E是DC的中点,BF=BC,∴CE=4,CF=3.∴四边形DBFE的面积=8×4﹣8×4÷2﹣4×3÷2=10cm2.23.已知:Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB上任意一点,PF⊥AC于F,PE⊥BC于E,则EF 的最小值是 2.4.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:×4×3=×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.24.如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(10,4),点D是OA的中点,点P在边BC上运动,当△ODP是等腰三角形时,点P的坐标为(2,4)或(3,4)或(8,4)或(2.5,4).【分析】分为三种情况:①OP=OD时,②DO=DP时,③OP=PD时,根据点B的坐标,根据勾股定理和等腰三角形的性质即可求出答案.【解答】解:∵B的坐标是(10,4),四边形OCBA是矩形,∴OC=AB=4,∵D为OA中点,∴OD=AD=5,∵P在BC上,∴P点的纵坐标是4,以O为圆心,以OD为半径作弧,交BC于P,如图1所示:此时OP=OD=5,由勾股定理得:CP=3,即P的坐标是(3,4);由勾股定理得:CP=3,即P的坐标是(3,4);以D为圆心,以OD为半径作弧,交BC于P、P′,如图2所示:此时DP=OD=DP′=5,由勾股定理得:DM=DN=3,即P的坐标是(2,4),P′的坐标是(8,4);③作OD的垂直平分线交BC于P,如图3所示:此时OP=DP,P的坐标是(2.5,4);故答案为:(2,4)或(3,4)或(8,4)或(2.5,4).25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是16.【分析】由把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,∠EFB=60°,易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.26.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中一定成立的结论有①③④(将正确结论的序号填在横线上)【分析】①正确.只要证明BO=BC,OF=FO即可解决问题;②错误.可以证明△EOB≌△FCB,由此即可判断;③正确.只要证明△DEF是等边三角形即可.④正确.只要证明S△BCM=S△ACB,S△AOE=S△AOB=S即可;△ABC【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,OA=OC,∴OB=OA=OB,∵∠COB=60°,∴△BOC是等边三角形,∴∠OCB=60°,∴∠DCA=30°,∵FO=FC,BO=BC,∴BF垂直平分OC,故①正确,∴∠FBC=∠OBE=30°,∴∠FOC=∠FCO=30°,∴∠FOB=90°,∵CD∥AB,∴∠FCO=∠EAO,∵∠FOC=∠AOE,OA=OC,∴△FOC≌△EOA,∴OE=OF,∴BF=BE,∵∠BOE=∠BCF=90°,∠EBO=∠CBF,∴△EBO≌△FBC,故②错误,∵DF∥EB,DF=BE,∴四边形DEBF是平行四边形,∴∠EDF=∠FBE=60°,∵∠DFE=180°﹣∠CFO=60°,∴△EDF是等边三角形,∴DE=EF,故③正确,易知CM=AC,AE=CF=BF=BE,∴S△BCM=S△ACB,S△AOE=S△AOB=S△ABC,∴S△AOE:S△BCM=2:3.故④正确,故答案为①③④27.如图,矩形ABCD中,AD=,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF﹣∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.【解答】解:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°﹣∠ACG﹣∠AGC=180°﹣2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF﹣∠BAF=120°﹣90°=30°,在Rt△ABC中,AC=2BC=2AD=2,由勾股定理,AB===.故答案为:.三.解答题(共7小题)28.如图,在△ABC中,AB=AC,D为边BC的中点,四边形ABDE是平行四边形,AC,DE相交于点O.(1)求证:四边形ADCE是矩形;(2)若∠AOE=60°,AE=2,求矩形ADCE对角线的长.【分析】(1)根据四边形ABDE是平行四边形和AB=AC,推出AD和DE相等且互相平分,即可推出四边形ADCE是矩形.(2)根据∠AOE=60°和矩形的对角线相等且互相平分,得出△AOE为等边三角形,即可求出AO的长,从而得到矩形ADCE对角线的长.【解答】(1)证明:∵四边形ABDE是平行四边形,∴AB=DE,又∵AB=AC,∴DE=AC.∵AB=AC,D为BC中点,∴∠ADC=90°,又∵D为BC中点,∴CD=BD.∴CD∥AE,CD=AE.∴四边形AECD是平行四边形,又∴∠ADC=90°,∴四边形ADCE是矩形.(2)解:∵四边形ADCE是矩形,∴AO=EO,∵∠AOE=60°∴△AOE为等边三角形,∴AO=AE=2,∴AC=2OA=4.29.如图,在▱ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,连接AE交CD于点F.(1)求证:四边形ADEC是矩形;(2)在▱ABCD中,取AB的中点M,连接CM,若CM=5,且AC=8,求四边形ADEC的面积.【分析】(1)利用平行四边形的性质可得AD∥BC,结合条件可先证得四边形ADEC为平行四边形,结合AC⊥BC,可证得结论;(2)由直角三角形的性质可求得AB的长,在Rt△ABC中,由勾股定理可求得BC的长,再利用矩形的性质可求得AD的长,结合AC可求得矩形ADEC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵DE∥AC,∴四边形ADEC是平行四边形.又∵AC⊥BC,∴∠ACE=90°.∴四边形ADEC是矩形;(2)解:∵AC⊥BC,∴∠ACB=90°.∵M是AB的中点,∴AB=2CM=10.∵AC=8,∴BC==6.又∵四边形ABCD是平行四边形,∴BC=AD.又∵四边形ADEC是矩形,∴EC=AD.∴EC=BC=6.∴矩形ADEC的面积=6×8=48.30.如图,O为△ABC内一点,把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.(1)四边形DEFG是什么四边形,请说明理由;(2)若四边形DEFG是矩形,点0所在位置应满足什么条件?说明理由.【分析】(1)可用三角形中位线定理求解,易知DG、EF分别是△ABC和△BOC的中位线,那么DG、EF 都平行且相等于BC,即DG与EF平行且相等,由此可证得四边形DEFG是平行四边形.(2)连接OA,则DE∥OA∥GF;若四边形DEFG是矩形,则DG和DE互相垂直;因此OA和BC也互相垂直,由此可判断出O点所处的位置.【解答】解:(1)四边形DEFG是平行四边形.理由如下:∵D、G分别是AB、AC的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上(且不与点A和垂足重合)理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵O点在BC边的高上,∴AO⊥BC,∴AO⊥EF,∵DE∥OA,∴DE⊥EF,∴四边形DEFG是矩形.31.△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠DCA的平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.【分析】(1)由于CE平分∠BCA,那么有∠1=∠2,而MN∥BC,利用平行线的性质有∠1=∠3,等量代换有∠2=∠3,于OE=OC,同理OC=OF,于是OE=OF;(2)OA=OC,那么可证四边形AECF是平行四边形,又CE、CF分别是∠BCA及其外角的角平分线,易证∠ECF是90°,从而可证四边形AECF是矩形.【解答】(1)解:当点O运动到AC中点时,四边形AECF是矩形;理由如下:如图所示:∵CE平分∠BCA,∴∠1=∠2,又∵MN∥BC,∴∠1=∠3,∴∠3=∠2,∴EO=CO,同理,FO=CO,∴EO=FO;(2)解:∵OA=OC,∴四边形AECF是平行四边形,∵CF是∠BCA的外角平分线,∴∠4=∠5,又∵∠1=∠2,∴∠1+∠5=∠2+∠4,又∵∠1+∠5+∠2+∠4=180°,∴∠2+∠4=90°,∴平行四边形AECF是矩形.32.如图,在▱ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连结CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=2,AD=6时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL)),∴DQ=PQ,设AQ=x,则DQ=PQ=6﹣x在Rt△APQ中,AQ2+AP2=PQ2 ∴x2+22=(6﹣x)2,解得:x=∴AQ的长是.33.如图,在△ABC中,AB=AC,AD平分∠BAC,CE∥AD且CE=AD.(1)求证:四边形ADCE是矩形;(2)若△ABC是边长为4的等边三角形,AC,DE相交于点O,在CE上截取CF=CO,连接OF,求线段FC 的长及四边形AOFE的面积.【分析】(1)根据平行四边形判定得出平行四边形,再根据矩形判定推出即可;(2)分别求出AE、OH、CE、CF的长,再求出三角形AEC和三角形COF的面积,即可求出答案.【解答】(1)证明:∵CE∥AD且CE=AD,∴四边形ADCE是平行四边形,∵在△ABC中,AB=AC,AD平分∠BAC,∴AD⊥BC(等腰三角形三线合一性质),∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵△ABC是等边三角形,边长为4,∴AC=4,∠DAC=30°,∴∠ACE=30°,AE=2,CE=2,∵四边形ADCE为矩形,∴OC=OA=2,∵CF=CO,∴CF=2,过O作OH⊥CE于H,∴OH=OC=1,∴S四边形AOFE=S△AEC﹣S△COF=×2×2﹣×2×1=2﹣1.34.已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=20.(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是20≤m<28.【分析】(1)利用勾股定理求出矩形对角线的长度,再利用三角形中位线的性质得出EH=BD,EF=AC,FG=BD,HG=AC,进而求出即可;(2)①利用轴对称图形的性质得出答案即可;②利用两点之间线段最短以及三角形三边关系得出m的取值范围即可.【解答】解:(1)如图2,连接AC,BD,∵在矩形ABCD中,AB=6,BC=8,∴AC=BD==10,∵E、F、G、H分别是AB、BC、CD、DA四边中点,∴EH,EF,FG,HG,分别是△ABD,△ABC,△BCD,△ACD的中位线,∴EH=BD,EF=AC,FG=BD,HG=AC,∴m=EF+FG+GH+HE=AC+BD=10+10=20;(2)①如图3所示(虚线可以不画),②由图形可知,四边形的周长即折线HM的长,由两点之间线段最短可知,折线HM≥20,即周长不小于20;又由题可知,四边形周长小于矩形ABCD的周长,即周长小于28,故20≤m<28.故答案为:20;20≤m<28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.矩形的性质:
1、矩形的定义
2、矩形的性质 1)边
2)角
3)对角线
4)对称性
二.精讲精练:
例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。

1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )
A .5
B .6
C .7
D .8
2、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.
3.已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.
4.如图,已知BD 、CE 是ABC 的两条高,M 、N 分别是BC 、DE 的中点,MN 与DE 有怎样的位置关系。

请证明。

5. 已知,如图,矩形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OB的中点.(1)求证:△ADE≌△BCF;(2)若AD=4cm,AB=8cm,求OF的长.
6.如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D落在BC边的中点F处,折痕为AE,求CE的长.
一.矩形的判定定理:
归纳矩形的四种判定方法:1.
2.
3.
4.
二.精讲精练:
例1、已知:如图,ABCD的四个内角的平分线分别相交于点E、F、G、H。

求证:四边形EFGH是矩形。

1如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE是矩形.
2.在四边形ABCD 中,AB=CD,180,A D ∠+∠=︒AC 、BD 相较于点O ,AOB 是等边三角形。

求证:四边形ABCD 是矩形。

3.在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE.
(1)求∠CAE 的度数;
(2)取AB 边的中点F ,连接CF 、CE ,试证明四边形AFCE 是矩形.
4.如图,在Rt△ABC 中,∠C=90°,E 、O 是边AC ,AB 上的中点,BF∥AC,连接EO 交BE 于F .
(1)求证:△AOE≌△BOF;
(2)求证:四边形BCEF 是矩形.
5.已知:如图,ABC 中,AB=AC ,P 是BC 上一点,PE AB ⊥于E ,PF AC ⊥于F ,CG AB ⊥于G 。

求证:PE+PF=CG
6.在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.
(1)求证:△BEC≌△DFA;
(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
7.如图,在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△CBE.
求证:(1)∠A=90°;(2)四边形ABCD是矩形.
8.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN,求证:四边形NDMB为矩形.。

相关文档
最新文档