数列求和习题及答案
高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.数列的通项,其前项和为,则为()A.B.C.D.【答案】A【解析】,注意到数列的周期为3,并且【考点】1.三角恒等变换;2.数列求和2.设等比数列都在函数的图象上。
(1)求r的值;(2)当;(3)若对一切的正整数n,总有的取值范围。
【答案】(1)(2)(3)【解析】(1)由已知可得,当时,是等比数列, 4分(2)由(1)可知,8分(3)递增,当时,取最小值为所以一切的 12分【考点】数列求通项求和点评:数列求和采用的错位相减法,此法适用于通项公式为关于n的一次式与指数式的乘积形式的数列,第三问不等式恒成立转化为求数列前n项和的最值,期间借助了数列的单调性}中,,试猜想这个数列的通项公式。
3.在数列{an【答案】【解析】因为,,所以,。
【考点】本题主要考查数列的递推公式,等差数列的通项公式。
点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。
4.对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是【答案】=-2n-1(n+2),所以,切线方程为:y+2n=-2n-1(n+2)(x-2),【解析】因为y'|x=2=(n+1)2n,令x=0,求出切线与y轴交点的纵坐标为y=。
所以,则数列{}的前n项和Sn【考点】本题主要考查导数的几何意义,直线方程,等比数列的求和公式。
点评:中档题,切线的斜率等于函数在切点的导函数值。
最终转化成等比数列的求和问题。
5.在数列中,=1,,其中实数.(I)求;(Ⅱ)猜想的通项公式, 并证明你的猜想.【答案】(Ⅰ)(Ⅱ)猜想:应用数学归纳法证明。
【解析】(Ⅰ)由6分(Ⅱ)猜想:①当时,,猜想成立;②假设时,猜想成立,即:,则时,=猜想成立.综合①②可得对,成立. 12分【考点】本题主要考查归纳法及数学归纳法。
点评:中档题,“归纳,猜想,证明”是创造发明的良好方法。
利用数学归纳法证明命题的正确性,要注意遵循“两步一结”。
数列求和习题及答案.docx

§数列求和( : 45分 分: 100分)一、 ( 每小 7分,共 35 分 )*11.在等比数列 {a n } (n ∈ N ) 中,若 a 1= 1, a 4= 8, 数列的前10 和 ()A . 2- 18B . 2- 192 2 C . 2-110D . 2-111222.若数列 {a n } 的通 公式a n =2n + 2n - 1, 数列 {a n } 的前 n 和 ()n2 n + 12A . 2 + n -1B . 2 + n - 1C . 2n +1+ n 2- 2D . 2n + n - 23.已知等比数列 {an } 的各 均 不等于 1 的正数, 数列 {b } 足 b = lga ,b = 18,b = 12,nnn36数列 {b n } 的前 n 和的最大 等于 ( )A . 126B . 130C . 132D . 1344.数列 {a } 的通 公式n - 1 ·(4 n - 3) , 它的前 100 之和 S等于 ()n a = ( - 1)n100A . 200B .- 200C . 400D .- 4005.数列 1·n , 2(n -1),3(n-2) ,⋯, n ·1的和 ( )n(n + 1)(n + 2) n(n + 1)(2n + 1) n(n + 2)(n + 3)n(n + 1)(n + 2)二、填空 ( 每小 6 分,共 24 分 )6.等比数列 {a } 的前 n 和 n2 22S =2 - 1, a+ a +⋯+ a= ________.n n12n7.已知数列 {a } 的通 a与前 n 和 S之 足关系式S = 2- 3a , a = __________.nnnnnn8.已知等比数列 {a } 中, a 1= 3,a 4= 81,若数列 {b} 足 b =log 3a , 数列的前 nnnnn1b bn + 1n 和 S = ________.n9. 关于 x 的不等式 x 2- x<2nx (n ∈ N * ) 的解集中整数的个数a n ,数列 {a n } 的前 n 和S n , S 100 的 ________.三、解答 ( 共 41 分 )10. (13 分 ) 已知数列 nn和, 于任意的*{a } 的各 均 正数, S 其前 nn ∈N 足关系式2S n = 3a n -3. (1) 求数列 {a } 的通 公式;n(2) 数列 {b} 的通 公式是 b =1 ,前 n 和 T ,求 : 于任意的nnnlog 3a n ·log 3a n + 1正数 n , 有 T n <1.} 足 a + a + a = 28,且 a + 2 是 a , a 的等差11. (14 分) 已知 增的等比数列 {an23432 4中.(1)求数列 {a n} 的通公式;(2) 若 b n= a n log 1n+1成立的最小正整数n 的.a n,S n= b1+b2+⋯+b n,求使S n+ n·2 >50212. (14 分 ) 已知等差数列 {a} 的首 a = 1,公差 d>0,且第二、第五、第十四分n1是一个等比数列的第二、第三、第四.(1)求数列 {a n} 的通公式;n1*n n,是否存在最大的整数t ,使得任意(2)b=n(a n+3) (n ∈N) ,S = b1+b2+⋯+ bn t成立?若存在,求出t ;若不存在,明理由.的 n 均有 S >36答案1 n7.1 3 n-18.n1006. 3(4- 1) 2 4+ 1n2S= 3a-3,10. (1)n n( n≥2) .解由已知得n n- 32S-1= 3a-1故2(S n-S n-1) =2a n= 3a n- 3a n-1,即 a n= 3a n-1 (n ≥2) .故数列 {a n} 等比数列,且公比q= 3.又当 n= 1 , 2a1= 3a1- 3,∴ a1=3. ∴ a n= 3n.(2) 明1∵ b n=n( n+ 1)=1-1.n n+1∴ T n= b1+b2+⋯+ b n111+⋯+11= 1-+-3-n+122n1= 1-n+1<1.11 解 (1) 此等比数列a1,a1q, a1q2, a1q3,⋯,其中 a1≠0, q≠ 0.11213= 28,①由意知: a q+ a q + a qa1q+ a1q3= 2(a 1q2+ 2) .②②× 7-①得 6a 13121q -15a q+ 6a q=0,1即2q2- 5q+ 2= 0,解得 q= 2 或 q= .2∵等比数列 {a n} 增,∴ a1= 2, q=2,∴ a n= 2n.n(2) 由 (1) 得 b n=- n·2,2 n.∴ S = b +b +⋯+ b =- (1 ×2+2×2 +⋯+ n ·2)n 12nn2nT =1×2+2×2 +⋯+ n ·2,③23n + 12T n =1×2+2×2+⋯+ n ·2 . ④由③-④,得-n2 +⋯+ nn + 1T =1×2+1×21·2 - n ·2n +1n + 1n +1= 2 - 2- n ·2 = (1- n) ·2 - 2,∴- T n =- ( n -1) ·2n +1- 2.∴ S n =- ( n -1) ·2n +1- 2.n +1要使 S n +n ·2>50 成立,n + 1n +1>50,即 n即- (n -1) ·2 - 2+n ·22 >26.45x是 增函数,∵2= 16<26,2 = 32>26,且 y = 2 ∴ 足条件的 n 的最小 5.12 解 (1)由 意得 (a 1+ d)(a 1+ 13d) = (a 1 + 4d) 2,整理得 2a 1d = d 2.∵ a 1= 1,解得 d =2, d = 0( 舍 ) .∴ a n = 2n - 1 (n ∈N * ) .(2)b n =1= 1 = 1 1 1n ( a n +3) + 1) 2 n - n + 1 ,2n ( n∴ S = b +b +⋯+ b nn 1 21 1 1 111= 21- 2 + 2- 3+ n-n +111=2(n= 21-n + 1+ 1) .nt假 存在整数 t 足 S n >36 成立,n + 1 -2(n =2(1+ 1)>0,又 S n +1- S n = 2(n + 2)n + 1) n + 2)(n∴数列 {S n } 是 增的.1t 1∴ S 1= 4 S n 的最小 ,故 36<4,即 t<9.又∵ t ∈Z ,∴适合条件的 t 的最大 8.。
高三数学数列求和试题答案及解析

高三数学数列求和试题答案及解析1.设数列的前项积为,且(n∈N*).(1)求,并证明:;(2)设,求数列的前项和.【答案】(1),祥见解析;(2).【解析】(1)n取1,2,3求出,再利用与的关系将已知等式用表示即可证明;(2)由(1)问的结论利用等差数列的通项公式先求出的通项,再由通项利用裂项相消法求.试题解析:(1)由题意可得:,所以 5分(2)数列为等差数列,,, 10分【考点】1.数列的通项公式;2.数列的前n项和.2.已知函数且an =f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0 B.100 C.-100 D.10200【答案】B【解析】由题意,a1+a2+a3+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,选B.3.已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.【答案】(1),;(2).【解析】(1)解法1是先令求出的表达式,然后令,得到计算出在的表达式,利用为等差数列得到满足通式,从而求出的值,然后利用条件、成等比数列列方程求出的值,从而求出、的值;解法2是在数列是等差数列的前提下,设其公差为,利用公式以及对应系数相等的特点得到、和、之间的等量关系,然后利用条件、成等比数列列方程求出的值,从而求出、的值;(2)解法1是在(1)的前提下求出数列的通项公式,然后利用错位相减法求数列的和;解法2是利用导数以及函数和的导数运算法则,将数列的前项和视为函数列的前项和在处的导数值,从而求出. 试题解析:(1)解法1:当时,, 当时,.是等差数列, ,得. 又,,,、、成等比数列, ,即,解得.解法2:设等差数列的公差为,则., ,,.,,.、、成等比数列,,即,解得.;(2)解法1:由(1)得.,.,①,② ①②得..解法2:由(1)得.,.,① 由,两边对取导数得,.令,得..【考点】1.定义法求通项;2.错位相减法求和;3.逐项求导4. 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ). A .3 690 B .3 660 C .1 845 D .1 830【答案】D【解析】∵a n +1+(-1)n a n =2n -1, 当n =2k 时,a 2k +1+a 2k =4k -1, 当n =2k -1时,a 2k -a 2k -1=4k -3,从而a2k+1+a2k-1=2,a2k+3+a2k+1=2,因此a2k+3=a2k-1,∴a1=a5=a9=…=a61,于是S60=a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)==1 830.5.如图,是一问题的程序框图,则输出的结果是 .【答案】【解析】根据流程图可知它的作用是求的值,由等差数列的前项和公式可知,.【考点】1.程序框图及其应用;2.等差数列的前项和6.阅读如图程序框图,若输入的,则输出的结果是()A.B.C.D.【答案】A【解析】,,不成立,执行第一次循环,,;不成立,执行第二次循环,,;不成立,执行第三次循环,,;;不成立,执行第一百次循环,,;成立,输出,故选A.【考点】1.数列求和;2.算法与程序框图7.数列中,已知且,则前项和为,则的值为__________.【答案】【解析】因为,所以公差,由得,所以.【考点】1、等差数列的定义;2、等差数列的前项和公式.8.已知数列满足,.(1)求数列的通项公式;(2)令,数列{bn }的前n项和为Tn,试比较Tn与的大小,并予以证明.【答案】(1);(2)详见解析.【解析】(1)由于数列的递推式的结构为,在求数列的通项的时候可以利用累加法来求数列的通项公式;(2)先求出数列的通项公式,根据其通项结构选择错位相减法求出数列的前项和,在比较与的大小时,一般利用作差法,通过差的正负确定与的大小,在确定差的正负时,可以利用数学归纳法结合二项式定理进行放缩来达到证明不等式的目的.试题解析:(1)当时,.又也适合上式,所以.(2)由(1)得,所以.因为①,所以②.由①-②得,,所以.因为,所以确定与的大小关系等价于比较与的大小.当时,;当时,;当时,;当时,;……,可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,.【考点】累加法、错位相减法、二项式定理9.已知数列的通项公式为,那么满足的整数()A.有3个B.有2个C.有1个D.不存在【答案】B【解析】时,,所以,此时从到共项,从到共项,或,有2个值【考点】数列求和点评:本题中数列求和要依据通项公式特点分两种情况,分别讨论所求各项所属的范围及应代入的公式,第二种情况找到各项中正负项分界的位置是难点10.已知数列满足,则的前n项和_____【答案】【解析】根据题意,由于故可知的前n项和,故答案为【考点】数列的递推关系点评:主要是考查了数列的递推关系的运用,来求解数列的通项公式以及数列的和的运用,属于中档题。
数列求和的八种方法及题型

数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列裂项求和模拟题(含答案解析)

= log2 。
17. 已知数列 { } 是首项为 1 的等差数列,若 (1)求数列 { } 的通项公式。
(2)设 = 1 ,求数列 { } 的前 项和
⋅ +1
, 3 + 1 , 4 成等比数列。 。
18. 已知数列 { } 满足 1 + 2 + 3 + ⋯ + = ,设数列 { } 的前
1+1 2+1 3+1
1. 已知数列 { } 满足
+1 + 1 =
+1 ,
+2
≠− 1 且 1 = 1 。
(1)求证:数列 { 1 } 是等差数列,并求出数列 { } 的通项公式。
+1
(2)令 = 1 ,求数列 { 1 } 的前 项和 。
+1
+1
2. 已知数列 { } 的前 项和为
,
1=1,ຫໍສະໝຸດ 1+ 2+
12
. . . + −1 +
+1 2
。
(1)求数列 { } 的通项公式。
(
2
)
项和为 令
,求 {
1 ⋅
} 的前
项和
。
19. 设正项数列 { } 的前 项和为 。
在公比为 2 的等比数列 { } 中,_____。 (1)求数列 { } 的通项公式。
(2)若
= ( + 1)log2
,求数列
{2
2+2
2
}
的前
项和
。
1,
(注:如选择两个条件分别解答,按第一个解答计分)
15. 设首项为 1 的数列 { } 的前 项和为
高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且,;数列中,点在直线上.(1)求数列和的通项公式;(2)设数列的前和为,求;【答案】(1),(2)【解析】(1)求数列的通项公式用公式法即可推导数列为等比数列,根据等比数列通项公式可求。
求的通项公式也用公式法,根据已知条件可知数列为等差数列,根据等差数列的通项公式可直接求得。
(2)用列项相消法求和。
试题解析:解:(1)∵,∴当时,…2分所以,即∴数列是等比数列.∵,∴∴. 5分∵点在直线上,∴,即数列是等差数列,又,∴.…7分(2)由题意可得,∴, 9分∴,…10分∴. 14分【考点】1求数列的通向公式;2数列求和。
2.数列的通项公式,则该数列的前()项之和等于.A.B.C.D.【答案】B【解析】,令,解得.故选B.【考点】数列求和的其他方法(倒序相加,错位相减,裂项相加等)3.设数列中,,则通项 ___________.【答案】.【解析】由已知得,即数列后项与前项的差,求它的通项公式的方法是的累加法,,=.【考点】数列的求和.4.已知数列的前n项和,则()A.20B.19C.18D.17【答案】C【解析】当时,有【考点】数列求通项点评:由数列前n项和求通项5.观察下列三角形数表:第一行第二行第三行第四行第五行………………………………………….假设第行的第二个数为.(1)依次写出第八行的所有8个数字;(2)归纳出的关系式,并求出的通项公式.【答案】(1)根据已知条件可知每一个数字等于肩上两个数之和,那么可知第八行中的8个数字为8,29,63,91,91,63,29,8(2)【解析】(1)8,29,63,91,91,63,29,8(规律:每行除首末数字外,每个数等于其肩上两数字之和)(2)由已知:,所以有:,, ,……,,将以上各式相加的:所以的通项公式为:。
【考点】累加法求解数列的通项公式点评:主要是考查了递推关系式的运用,结合累加法来求解数列的通项公式,属于基础题。
数列求和方法(带例题和练习题)
数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。
例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。
小学奥数等差数列求和习题及答案
等差数列求和知识精讲一、定义:一个数列的前〃项的和为这个数列的和.二、表达方式:常用S.来表示.三:求和公式:和=(首项+末项)X项数+2, = (%+%)x/? + 2.对于这个公式的得到可以从两个方而入手:(思路1) 1 + 2+3 +…+98 + 99 + 100= (14-100)+(2 + 99)+(3 + 98) + ... + (50 + 51) =101x50 = 5050共50个1.1(思路2)这道题目,还可以这样理解:和=1 + 2 + 3 + 4 +・・・+ 98 + 99 +100+ 和=ioo+ 99 + 98 + 97+…+ 3 + 2+12 倍和= 101+ 101+ 101+ 101+…+ 101+ 101+ 101即,和=(100 + 1)x100 + 2=101x50=5050.四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半:或者换句话说,各项和等于中间项乘以项数.譬如:① 4+8 + 12+…+ 32 + 36 = (4 + 36)x9 + 2 = 20x9 = 1800,题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于20x9;②65 + 63 + 61+…+5 + 3 + 1 = (1 + 65)x33 + 2 = 33x33=1089,题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于33x33 o例题精讲:例1:求和:(1) 1+2+3+4+5+6 = (2) 1+4+7+11+13=(3) 1+4+7+11+13+-+85=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如(3)式项数二(85-1) 4-3+1=29和二(1+85) X294-2=1247答案:(1) 21 (2) 36 (3) 1247例2:求以下各等差数列的和.(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和.例如⑴式二(1+199) X 1994-2=19900答案:(1) 19900 (2) 1160 (3) 5355例3: 一个等差数列2, 4, 6, 8, 10, 12, 14,这个数列的和是多少?分析:根据中项定理,这个数列一共有7项,各项的和等于中间项乘以项数,即为:8x7 = 56答案:56例4:求1+5+9+13+17……+401该数列的和是多少.分析:这个数列的首项是1,末项是401,项数是(401-1) =4+1=101,所以根据求和公式, 可有:和二(1+401) X101-? 2=20301答案:20301例5:有一串自然数2、5、8、11、……,问这一串自然数中前61个数的和是多少?分析:即求首项是2,公差是3,项数是61的等差数列的和,根据末项公式:末项=2+ (61-1) X3=182根据求和公式:和二(2+182) X614-2=5612例6:把自然数依次排成“三角形阵",如图.第一排1个数;第二排3个数:第三排5个数:…求:1(1)第十二排第一个数是几?最后一个数是几? 2 3 45 6 7 8 910 11 12 13 14 15 16(2) 207排在第几排第几个数?...................(3)第13排各数的和是多少?分析:整体看就是自然数列,每排的个数的规律是1,3, 5, 7...即为奇数数列假设排数为n(n>2de自然数),那么这排之前的数共有(n-1) (n-1)个.(1)第十二排共有23个数.前而共有(1+21) Xll+2=121个数,所以第十二排的第一个数为122,最后一个数为122+ (23-1) X 1=144(2)前十四排共有196个数,前十五排共有225个数,所以207在第十五排,第十五排的第一个数是197,所以207是第(207-197=10)个数(3)前十二排共有144个数,所以第十三排的第一个数是145,而第十三排共有25 个数,所以最后一个数是145+ (25-1) X 1=169,所以和二(145+169) X25^-2=3925答案:(1) 122; 144 (2)第十五排第10个数(3) 3925例7: 15个连续奇数的和是1995,其中最大的奇数是多少?分析:由中项定理,中间的数即第8个数为:1995 - 15 = 133,所以这个数列最大的奇数即第15个数是:133 + 2x(15-8) = 147 0答案:147.例8:把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?分析:由题可知:由210拆成的7个数必构成等差数列,那么中间一个数为210 + 7=30,所以, 这7 个数分别是15、20、25、30、35、40、45.即第1个数是15,第6个数是40.答案:第1个数:15:第6个数:40.例9:等差数列15, 19, 23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?分析:公差二19T5=4项数二(443-15) 4-4+1=108倒数第二项=443-4=439奇数项组成的数列为:15, 23, 31……439,公差为8,和为(15+439) X 544-2=12258 偶数项组成的数列为:19, 27, 35……443,公差为8,和为(19+443) X544-2=12474 差为12474-12258=216答案:216例10:在1〜100这一百个自然数中,所有能被9整除的数的和是多少?分析:每9个连续数中必有一个数是9的倍数,在1〜100中,我们很容易知道能被9整除的最小的数是9 = 9x1,最大的数是99 = 9x11,这些数构成公差为9的等差数列,这个数列一共有:11 — 1 + 1 = 11 项,所以,所求数的和是:9 + 18 + 27 +…+99 = (9 +99)x11+2 = 594. 也可以从找规律角度分析.答案:594例11: 一串数按下面的规律排列:1、2、3、2、3、4、3、4、5、4、5、6……问:从左面第一个数起,前105个数的和是多少?分析:这些数字直接看没有什么规律,但是如果3个一组,会发现这样一个数列:6, 9,12, 15 ............即求首项是6,公差是3,项数是105+3=35的和末项末+3* (35-1) =108和二(6+108) *35+2=1995例12:在下而12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16 已经填好,这12个数的和为.□ □□ □□画□□画□□□分析:由题意知:这个数列是一个等差数列,又由题目给出的两个数10和16知:公差为2, 那么第一个方格填26 ,最后一个方格是4 ,由等差数列求和公式知和为:(4 + 26)x12 + 2 = 180.答案:180.本讲小结:L 一个数列的前〃项的和为这个数列的和,我们称为.2.求和公式:和=(首项+末项)x项数+2 , = (% + %)x〃 +2.3.对于任意一个奇数项的等差数列,各项和等于中间项乘以项数.练习:1.求和:(1) 1+3+5+7+9= (2) 1+2+3+4+・・・+21 二(3) 1+3+5+7+94-- + 39=分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 25 (2) 231 (3) 4002.求以下各等差数列的和.(1)1+2+3+…+100(2)3+6+9+…+39分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和. 答案:(1) 5050 (2) 2733. 一个等差数列4, 8, 12,16, 20, 24, 28, 32, 36这个数列的和是多少?分析:根据中项定理,这个数列一共有9项,各项的和等于中间项乘以项数,即为:20X9=180答案:1804.所有两位单数的和是多少?分析:即求首项是11,末项是99的奇数数列的和为多少.和二(11+99) X 45+2=2475答案:24755.数列1、5、9、13、……,这串数列中,前91个数和是多少?分析:首项是1,公差是4,项数是91,根据重要公式,可得:末项= 1+ (91-1) X4=361和二(1+361) X914-2=16471答案:164716.如图,把边长为1的小正方形叠成“金字塔形〞图,其中黑白相间染色,如果最底层有15个正方形,问:“金字塔〞中有多少个染白色的正方形,有多少个染黑色的正方于分析:由题意可知,从上到下每层的正方形个数组成等差数列, 厂其中4=1, 〞 = 2,?=15,所以〃 = (15-D+2 + l=8,所以,白色方格数是:1 + 2 + 3 +…+ 8=(l + 8)x8 + 2 = 36黑色方格数是:1 + 2 + 3 +…+7=(l + 7)x7 + 2 = 28.答案:287. (2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021^ 2021 =.分析:根据中项定理知:2005 + 2006 + 2007 + 2021 + 2021 + 2021 + 2021=2021 x 7,所以原式= 2021x7^2021 = 7 o答案:7.8.把248分成8个连续偶数的和,其中最大的那个数是多少?分析:公差为2的递增等差数列.平均数:248 ・ 8=31,第4 个数:31-1=30:首项:30-6=24:末项:24+ (8-1) X2=38O即:最大的数为38.答案:389.求从1到2000的自然数中,所有偶数之和与所有奇数之和的差.分析:解法1:可以看出,2, 4, 6, 2000是一个公差为2的等差数列,1, 3, 5,…,1999也是一个公差为2的等差数列,且项数均为1000.所以:原式二(2+2000)X10004-2- (1+1999) X1000-?2=1000解法2:注意到这两个等差数列的项数相等,公差相等,且对应项差1,所以1000项就差了1000个1,即原式二1000X1=100010.在1~ 100这一百个自然数中,所有不能被9整除的数的和是多少?分析:先计算1~ 100的自然数和,再减去能被9整除的自然数和,就是所有不能被9整除的自然数和了^ 1 + 2 +…+100 = (1 + 100)x100 +2 = 5050 ,9 + 18 + 27 +…+99 = (9 + 99)x11+2 = 594 ,所有不能被9整除的自然数和:5050-594 = 4456.如果直接计算不能被9整除的自然数和,是很麻烦的,所以先计算所有1~100的自然数和,再排除掉能被9整除的自然数和,这样计算过程变得简便多了.答案:59411.一个建筑工地旁,堆着一些钢管(如图),聪明的小朋友,你能算出这堆钢管一共有多少根吗?分析:观察发现,这堆钢管的排列就是一个等差数列:首项是3,公差是1 ,末项是10, 项数是8根据求和公式,和二(3+10)根+2=52 (根)所以这堆钢管共有52根.答案:52根.12.求100以内除以3余2的所有数的和.解析:100以内除以3余2的数为2、5、8、11、……98公差为3的等差数列,首先求出一共有多少项,(98-2)+3+1 = 33 ,再利用公式求和(2+98)x 33 + 2 = 1650 0。
高考数学解答题(新高考)数列求和(奇偶项讨论求和)(典型例题+题型归类练)(解析版)
专题08 数列求和(奇偶项讨论求和)(典型例题+题型归类练)一、必备秘籍有关数列奇偶项的问题是高考中经常涉及的问题,解决此类问题的难点在于搞清数列奇数项和偶数项的首项、项数、公差(比)等.本专题主要研究与数列奇偶项有关的问题,并在解决问题中让学生感悟分类讨论等思想在解题中的有效运用.因此,在数列综合问题中有许多可通过构造函数来解决.类型一:通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T角度2:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T类型二:通项含有(1)n -的类型;例如:(1)nn n c a =-类型三:已知条件明确的奇偶项或含有三角函数问题二、典型例题类型一:通项公式分奇、偶项有不同表达式通项公式分奇、偶项有不同表达式;例如:n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数角度1:求n n na n cb n ⎧⎪=⎨⎪⎩为奇数为偶数的前2n 项和2n T例题1.(2022·浙江嘉兴·模拟预测)已知公差不为零的等差数列{}n a 满足24692,,,a a a a =成等比数列.数列{}n b 的前n 项和为n S ,且满足()22N n n S b n *=⋅-∈(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足211,,n n n n n n a a c a n b ++⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,求数列{}n c 的前2n 项和2n T .第(2)问解题思路点拨:由(1)知:,,可代入到第(2)问中,求出的通项公式:,即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧,由于奇偶项通项比较复杂,可设;,则(注意到本例求解的为偶数项和,最后一项一定是代入偶数的通项公式,否则,若是求,最后一项是代入奇数项通项,还是代入偶数项通项,则需要讨论)分组求和当为奇数 当为偶数,两式相减得:综上:【答案】(1)n a n =;2nn b =(2)2255212n n n n T n +=+-+ (1)由题:46922,24,27a d a d a d =+=+=+,∵2649a a a =⋅,即()()()2242227d d d +=++得:1d =,即n a n = 当1n =时,12b =,当2n ≥时,22n n S b =⋅-,1122n n S b --=⋅-,两式相减整理得12nn b b -=, 即数列{}n b 是以首项12b =,公比2q的等比数列∴2nn b =(2)当n 为奇数时,1111(2)22n c n n n n ⎛⎫==- ⎪++⎝⎭1352111111112335212121n n nA c c c c n n n -⎛⎫=++++=-+-++-= ⎪-++⎝⎭ 当n 为偶数时,n c =23521222n n n B +=+++, 231135212122222n n n n n B +-+=++++ 两式相减得:23111113222213121525122222222222n n n n n n n n n B +-+++++=++++-=+--=- 得:2552n nn B +=-2255212n n n n n n T A B n +=+=+-+角度2:求n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数的前n 项和n T例题2.(2022·山东日照·模拟预测)已知数列{}n a 中,11a =,22a =,2n n a ka +=(1k ≠),n *∈N ,23a a +,34a a +,45a a +成等差数列.(1)求k 的值和{}n a 的通项公式;(2)设22log n n na nb a n ⎧=⎨⎩,为奇数,为偶数,求数列{}n b 的前n 项和n S .第(2)问解题思路点拨:由(1)知,代入即:注意到奇偶项通项不同,直接考虑分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧当为偶数时,数列{的前项中有个奇数项,有个偶数项.(注意到本例求解的,最后一项是代入奇数项通项,还是代入偶数项通项,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:21n b -++1n a -+,注意到最后一项n 为偶数,再利用1n n a -+,其中奇数项,偶数项各为【答案】(1)2k =,12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数(2)12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数 (1)解:23a a +,34a a +,45a a +成等差数列, 所以()3423452a a a a a a +=+++,得5342a a a a -=-,得()()2311k a k a -=-, 因为1k ≠,所以322a a ==,所以312a k a ==,得12222n n n n a n -⎧⎪=⎨⎪⎩,为奇数,为偶数. (2)由(1)知,122n n n b n n -⎧⎪=⎨⎪⎩,为奇数,为偶数当n 为偶数时,设n =2k ,可得21321242n k k k S S b b b b b b -==++⋅⋅⋅+++++()022212222422k k -=++⋅⋅⋅++++⋅⋅⋅+ ()()22114141142232k k k k k k ++--=+⨯=+-,即()22138n n n nS +-=+; 当n 为奇数时,设n =2k -1,可得2113212422n k k k S S b b b b b b ---==++⋅⋅⋅++++⋅⋅⋅+ ()0222122224222k k -=++⋅⋅⋅++++⋅⋅⋅+- ()()()2221114141142232k k k k k k +-----=+⨯=+-, 即1221138n n n S +--=+. 综上所述,()12221,38211,38n n n n nn S n n +⎧+-+⎪⎪=⎨--⎪+⎪⎩为偶数为奇数.类型二:通项含有(-1)n的类型通项含有(1)n -的类型;例如:(1)nn n c a =-例题3.(2022·河南·开封高中模拟预测(理))在数列{}n a 中,33a =,数列{}n a 的前n 项和n S 满足()()*112n n S a n n =+∈N . (1)求数列{}n a 的通项公式; (2)若()21nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)()*n a n n =∈N (2)2*2*,,2,.2n n nn N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数 第(2)问解题思路点拨:由题意知,求,代入:注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,整理:综上:(1)因为()112n n S a n =+,所以()12n n nS a =+. 所以当2n ≥时,()11112n n n S a ---=+. 两式相减,得()()1211n n n a na n n a n -=+----, 即()()1211n n n a n a --=--. 所以()111n n n a na +-=-.相减得()()()11121n n n n n a n a na n a +----=--, 即112n n n a a a -+=+. 所以数列{}n a 是等差数列. 当n =1时,()11112a a =+,解得11a =. 所以公差31131a a d -==-. 所以()()*11n a n n n =+-=∈N . (2)()()2211nnn nb a n =-=-⨯, 当n 为奇数时,()()22222212311212n n nT n n n +=-+-+⋅⋅⋅+-⨯=++⋅⋅⋅+--=-⎡⎤⎣⎦;当n 为偶数时,22222123122n n n T n n +=-+-+⋅⋅⋅+=++⋅⋅⋅+=.综上所述,2*2*,,2,.2n n n n N n T n n n N n ⎧+-∈⎪⎪=⎨+⎪∈⎪⎩且是奇数且是偶数例题4.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式;(2)设数列()()24141nnn a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T感悟升华(核心秘籍)(1)对比例题3,例题4,通项都含有“(1)n-”,在求和时都使用(连续两项分组求和法:即连续的两项分一组);不同的是,例题3求前n 项和nT ;例题4求前2n 项和2nT ;(2)对于例题3求123n n T b b b b =+++⋅⋅⋅+,其中最后一项代入,是取“正”还是取“负”不确定,故需讨论n 为奇数还是偶数,在讨论时,作为核心技巧,先讨论n 为偶数,再利用n 为偶数的结论,快速求n 为奇数的和;;(3)对于例题4求21234212n n n T b b b b b b -=++++++,注意到最后一项2n b 一定是正,故不需要讨论;【答案】(1)*,N na n n =∈(2)21141n T n =-++ (1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.第(2)问解题思路点拨:由(1)知:,可代入到第(2)问中,求出的通项公式:,注意到通项中含有“”,会影响最后一项取“正还是负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的为偶数项和,代入最后一项,一定是正,故不需要讨论)分组求和又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++, 类型三:已知条件明确的奇偶项或含有三角函数问题例题5.(2022·江西赣州·二模(文))已知数列{}n a 的前n 项和为n S ,且满足()22n n S a n *=-∈N(1)求数列{}n a 的通项公式;(2)已知()2cos log n n b n a π=⋅,求数列{}n b 的前n 项和n T .感悟升华(核心秘籍)第(2)问解题思路点拨:由题意知,求,注意,所以可化简为:,注意到通项中含有“”,会影响最后一项取“正”还是取“负”,通过讨论的奇偶,结合分组求和.奇偶项通项不同,采用分组求和可作为一个解题技巧(注意到本例求解的,代入最后一项,是正,还是负,需要讨论)(讨论时优先讨论为偶数)为奇数为偶数当为奇数时,为偶数,即:注意到为偶数,所以可使用偶数项和的结论,代入左侧求和结果:,则:,,整理:综上:【答案】(1)2n n a =(2),;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数(1)当1n =时,1122S a =-,即12a = 当2n ≥时,1122n n S a --=-,即12a =所以1122n n n n n a S S a a --=-=-得()122n n a a n -=≥ 即{}n a 以12a =为首相,公比为2的等比数列 所以数列{}n a 的通项公式为2n n a =(2)()()()cos 2cos 12nn n b n a n n n ππ=⋅=⋅=-⋅①当n 为偶数时,1232468102n n T b b b b n =+++⋅⋅⋅+=-+-+-+⋅⋅⋅+ 22nn =⋅= ②当n 为奇数时,1231n n n n T b b b b T b -=+++⋅⋅⋅+=+ ()12212n n n -=⋅+-=-- 综上:,;1,.n n n T n n ⎧=⎨--⎩ 为偶数为奇数三、题型归类练1.(2022·湖北·荆门市龙泉中学二模)已知数列{}n a 的前n 项和为112n n S a +=-,且214a = (1)求数列{}n a 的通项公式;(2)()0.5*log ,,n n n a n b n N a n ⎧=∈⎨⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T ; 【答案】(1)12nn a ⎛⎫= ⎪⎝⎭(2)211334nn +-⨯ (1)在数列{}n a 中, 由112n n S a +=-可知1212n n S a ++=-, 两式作差可得()()1211212n n n n S a S a +++---=-,即2112n n a a ++=, 当1n =时,1212S a =-,,即112a =,211412a a ==, 所以数列{}n a 是以12为首项,12为公比的等比数列,即1111222n nn a -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭; (2)由(1)知()*,1,2nn n n b n N n ⎧⎪=∈⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数, 所以()()21321242n n n T b b b b b b -=+++++++()211113214162n n ⎛⎫=+++-++++ ⎪⎝⎭()111441211214nn n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+-⎢⎥⎣⎦=+-211334nn =+-⨯.2.(2022·全国·模拟预测)已知数列{}n a 满足11a =,14nn n a a +⋅=,*n ∈N .(1)求数列{}n a 的通项公式n a ;(2)若2log ,,1,,n n n a n b a n ⎧=⎨+⎩为奇数为偶数求数列{}n b 的前2n 项和2n S .【答案】(1)12,,2,.n n n n a n -⎧=⎨⎩为奇数为偶数(2)1224433n n S n +=+-(1)由题意,当1n =时,24a =,因为14n n n a a +⋅=①,则1124n n n a a +++⋅=②,可得24n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为4的等比数列.因为11a =,24a =,所以当n 为奇数时,1112142n n n a a +--=⨯=;当n 为偶数时,12242nn n a a -=⨯=.综上,12,,2,.n n nn a n -⎧=⎨⎩为奇数为偶数 (2)由(1)得1,,21,,n n n n b n -⎧=⎨+⎩为奇数为偶数∴()()21321242n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+()()41422214nn n n ⎡⎤--⎡⎤⎢⎥=++⎢⎥-⎢⎥⎣⎦⎣⎦124433n n +=+-. 3.(2022·山东·肥城市教学研究中心模拟预测)已知数列{}n a 满足11a =,19nn n a a +⋅=,N n *∈.(1)求数列{}n a 的通项公式n a ;(2)若13log ,1,n n n a n b a n ⎧⎪=⎨⎪-⎩为奇数为偶数,求数列{}n b 的前2n 项和2n S .【答案】(1)13,3,n n nn a n -⎧=⎨⎩为奇数为偶数(2)1229898n n n S +--= (1)解:由题意,当1n =时,129a a =,可得29a =,因为19n n n a a +⋅=,可得1129n n n a .a +++=,所以,29n na a +=, 所以数列{}n a 的奇数项和偶数项都是公比为9的等比数列.所以当n 为奇数时,设()21N n k k *=-∈,则1221211933k k n n k a a ----==⋅==, 当n 为偶数时,设()2N n k k *=∈,则12299933k k k nn k a a -==⋅===.因此,13,3,n n nn a n -⎧=⎨⎩为奇数为偶数. (2)解:由(1)得1,31,n n n n b n -⎧=⎨-⎩为奇数为偶数,()()21321242n n n S b b b b b b -∴=+++++++()()2462024223333n n n =-----+++++-⎡⎤⎣⎦()()12919229892198nn n n n n +----=-+-=-.4.(2022·福建三明·模拟预测)设数列{}n a 的前n 项和为n S ,()122n n S n a +-+=,210a =,1n n b a =-. (1)求证:{}n b 是等比数列;(2)设332,1,log log n n nn b n c n b b +⎧⎪=⎨⎪⋅⎩为奇数为偶数,求数列{}n c 的前21n 项和21n T +.【答案】(1)证明见解析(2)()232133841n n nT n ++-=++ (1)证明:对任意的N n *∈,1224n n S a n +=+-, 当1n =时,则有12228a a =-=,解得14a =,当2n ≥时,由1224n n S a n +=+-可得1226n n S a n -=+-,上述两个等式作差得122n n n a a a +=-+,所以,132n n a a +=-,则()1131n n a a +-=-, 所以,13n n b b +=且1113b a =-=,所以,数列{}n b 是等比数列,且首项和公比均为3.(2)解:由(1)可知1333n nn b -=⨯=,所以,()3,1,2n n n c n n n ⎧⎪=⎨⎪+⎩为奇数为偶数,所以,()1321211113332446222n n T n n ++=++++++⨯⨯+()()3211113332446222n n n +⎡⎤=+++++++⎢⎥⨯⨯+⎣⎦()21339111119412231n n n +⎡⎤-⨯=++++⎢⎥-⨯⨯+⎣⎦()232333111111331842231841n n nn n n ++--⎛⎫=+⨯-+-++-=+ ⎪++⎝⎭. 5.(2022·江西·新余四中模拟预测(理))在数列{}n a 中,21,,2,n nn n a n -⎧=⎨⎩为奇数为偶数 (1)求1a ,2a ,3a ;(2)求数列{}n a 的前n 项和n S .【答案】(1)11a =,24a =,35a =(2)212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 (1)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数所以12111a =⨯-=,2224a ==,32315a =⨯-=,(2)因为21,,2,,n n n n a n -⎧=⎨⎩为奇数为偶数 所以1a ,3a ,5a ,是以1为首项,4为公差的等差数列,2a ,4a ,6a ,是以4为首项,4为公比的等比数列.当n 为奇数时,数列的前n 项中有12n +个奇数项,有12n -个偶数项.所以()()1231322431n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++12211141411242214221423n n n n n n n -+⎛⎫++⎛⎫-- ⎪ ⎪++-⎝⎭⎝⎭=⨯+⨯+=+-; 当n 为偶数时,数列{{}n a 的前n 项中有2n 个奇数项,有2n个偶数项.所以()()1231331242n n n n n n S a a a a a a a a a a a a ---=+++⋅⋅⋅+=++⋅⋅⋅+++++⋅⋅⋅++2224141242214221423nn n n n n n +⎛⎫⎛⎫-- ⎪ ⎪--⎝⎭⎝⎭=⨯+⨯+=+-. 所以212224,,2324,.23n n n n n n S n n n ++⎧+-+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数 6.(2022·安徽省舒城中学模拟预测(理))已知数列{}n a 的前n 项和为,239n n n S S a =-. (1)求数列{}n a 的通项公式;(2)若()31log nn n b a =-,求数列{}n b 的前n 项和n T .【答案】(1)13n n a +=;(2),23,2n nn T n n ⎧⎪⎪=⎨+⎪-⎪⎩为偶数为奇数 【详解】(1)当1n =时,11239S a =-.因为11S a =,所以11239a a =-,所以19a =. 因为239n n S a =-,所以11239n n S a ++=-. 两式相减,得11233n n n a a a ++=-,即13n n a a += 又因为19a =,所以0n a >.所以数列{}n a 是以9为首项,3为公比的等比数列.所以11933n n n a -+=⨯=.(2)由(1)可知()()()31log 11n nn n b a n =-=-+故当n 为偶数时,()()()234512n nT n n ⎡⎤=-++-++⋯+-++=⎣⎦当n 为奇数时,()()()()()123451112n n T n n n n -⎡⎤=-++-++⋯+--+-+=-+⎣⎦ 32n +=-所以,23,2n nn T n n 为偶数为奇数⎧⎪⎪=⎨+⎪-⎪⎩ 7.(2022·全国·模拟预测)已知数列{}n a 中,()112,1n n n a n a a a +=-=+. (1)求证:数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列;(2)令(1),nn n n b a S =-为数列{}n b 的前n 项和,求使得99n S ≤-的n 的最小值.【答案】(1)证明见解析;(2)最小值为67. (1)由()11n n n n a a a +-=+得:()111n n na n a +=++,即()1111n n a a n n n n +=+++ 11111n n a a n n n n +∴=+-++,即有111,1n n a a n n +++=∴+数列1n a n +⎧⎫⎨⎬⎩⎭是常数数列; (2)由(1)知:()1113,31,(1)31n n n n a a a n b n n+=+=∴=-∴=-- 即()31,31,n n n b n n -⎧⎪=⎨--⎪⎩为偶数为奇数,∴当n 为偶数时,()()()()32581134312n nS n n ⎡⎤=-++-+++--+-=⎣⎦,显然99n S -无解; 当n 为奇数时,()()11313131122n n n n n S S a n ++++⎡⎤=-=-+-=-⎣⎦,令99n S ≤-,解得:66n , 结合n 为奇数得:n 的最小值为67. 所以n 的最小值为67.8.(2022·重庆八中模拟预测)已知{n a }是各项都为正数的数列,其前n 项和为n S ,且满足12n n nS a a =+. (1)求证:数列{2n S }为等差数列; (2)设()1nnnb a =-,求{n b }的前64项和64T .【答案】(1)证明见解析;(2){}n b 的前64项和648T =. (1)∵ 12n n nS a a =+,所以221n n n S a a -= 当2n ≥时,有1n n n a S S -=-,代入上式得()12n n n S S S -- ()211n n S S ---=整理得()22112n n S S n --=≥.又当1n =时, 211121S a a -=解得11S =;∴数列{}2n S 是首项为1,公差为1的等差数列. (2)由(1)可得211n S n n =+-=,∵{}n a 是各项都为正数,∴n S ,∴12)n n n a S S n -=-=≥, 又111a S ==,∴n a则(1)(1)n nn n n b a -===-,6411)T ∴=-+-+⋅⋅⋅-+=11-+⋅⋅⋅8,即:648T =.∴{}n b 的前64项和648T =.9.(2022·辽宁·模拟预测)已知n S 为等差数列{}n a 的前n 项和,1522a a +=,()22n n S n a n =-+. (1)求{}n a 的通项公式; (2)设()1821nn n n n b a a ++=-⋅,求数列{}n b 的前21n 项和21n T +. 【答案】(1)41n a n =-(2)8102421n n +-+(1)解:设等差数列{}n a 的公差为d . 由1522a a +=,得311a =,由()22n n S n a n =-+,得()2222S a =-, 又21222S a a a d =+=-,解得4d =, 所以()3341n a a n d n =+-=-. (2)由(1)得()1821nn n n n b a a ++=-⋅, ()()()8214143+=-⋅-+nn n n ,()1114143⎛⎫=-+ ⎪-+⎝⎭n n n ,所以21123221++=+++++n n n T b b b b b ,111111113771111158183⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭n n 118387⎛⎫-+ ⎪++⎝⎭n n , 11387=--+n ,8102421+=-+n n .10.(2022·山东济宁·三模)已知等差数列{}n a 的前n 项和为n S ,且31a =,67S =,数列{}n b 满足11222n n b b b ++++=-.(1)求数列{}n a 和{}n b 的通项公式;(2)记()tan n n n c b a π=⋅,求数列{}n c 的前3n 项和. 【答案】(1)3n n a =,2nn b =(2))187n - (1)解:设等差数列{}n a 的公差为d ,则3161216157a a d S a d =+=⎧⎨=+=⎩,解得113a d ==,所以,()111333n na n =+-=,当1n =时,21222b ,当2n ≥时,112122n n n b b b b +-++++=-,可得12122n n b b b -+++=-,上述两个等式作差可得1222n n nn b +=-=,12b =也满足2n n b =,故对任意的N n *∈,2n n b =.(2)解:由(1)可得2tan3nn n c π=, 设(323132323132202n n n n n n n p c c c -----=++=⨯+=,所以,18nn p p +==,所以,数列{}n p 是等比数列,且首项为1p =-8, 因此,数列{}n c 的前3n 项和为))31818187n n n T ---==-.11.(2022·陕西西安·三模(理))设公差不为零的等差数列{}n a 的前n 项和为n S ,36S =,2a ,4a ,8a 成等比数列,数列{}n b 满足11b =,121n n b b +=+. (1)求数列{}n a 和{}n b 的通项公式; (2)求10021πsin 2kk k aa =⎛⎫⋅⋅ ⎪⎝⎭∑的值.【答案】(1)n a n =,21nn b =-;(2)5000-.(1)设等差数列{}n a 的公差为d (0d ≠),由题意得()()()31211133637S a d a d a d a d =+=⎧⎪⎨+=++⎪⎩,解得111a d =⎧⎨=⎩, 故数列{}n a 的通项公式n a n =. ∵121n n b b +=+,∴()1121n n b b ++=+,即1121n n b b ++=+(*n ∈N ),又11b =, ∴{}1n b +是以2为首项,2为公比的等比数列,12nn b +=, ∴21nn b =-.(2)当2k m =,*m ∈N 时,()22πsin 2sin π02k k a a m m ⎛⎫⋅⋅== ⎪⎝⎭,当21k m =-,*m ∈N 时,()()()2122π21sin 21sinπ12122m k k m a a m m +-⎛⎫⋅⋅=-=-⋅- ⎪⎝⎭, ∴10022222221πsin 135797992kk k aa =⎛⎫⋅⋅=-+-+⋅⋅⋅+- ⎪⎝⎭∑()()()()()()1313575797999799=-++-++⋅⋅⋅+-+()2135797995000=-⨯++++⋅⋅⋅++=-.12.(2022·江苏·南京市第一中学三模)数列{}n a 满足116nn n a a +=,12a =.(1)求{}n a 的通项公式;(2)若2sin 2n n n b a π=,求数列{}n b 的前20项和20S .【答案】(1)212n n a -=(2)()4022115- (1)116nn n a a +=11216n n n a a +++∴=,两式相除得:216n na a +=, 当21n k =-时, 1357211352316k k k a a a a a a a a ---⨯⨯⨯⨯= 121216k k a --∴=⨯ ,212n n a -∴=当2n k =时, 168242462216k kk a a a a a a a a --⨯⨯⨯⨯= 12816k k a -∴=⨯,212n n a -∴=综上所述,{}n a 的通项公式为:212n n a -=(2)由(1)知:212n n a -∴=2212sin 2n n n b π-∴= ∴ 数列{}n b 的前20项和:20123419201357373949163614002sin2sin2sin 2sin 2sin2sin 222222S b b b b b b ππππππ=++++++=⋅+⋅+⋅+⋅++⋅+⋅1537373993614164002sin 2sin 2sin2sin 2sin 2sin222222ππππππ⎛⎫⎛⎫=⋅+⋅++⋅+⋅+⋅++⋅ ⎪ ⎪⎝⎭⎝⎭()()()104401593337404421222122222221122115⎡⎤--⎢⎥⎣⎦=+++++===--- 13.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n N ∈. (1)求数列{}n a 的通项公式; (2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 【答案】(1)()2nn a =-,n *∈N (2)101225- (1)当2n ≥时,()()11221133n n n n n a S S a a --=-=---, 整理得12nn a a -=-, 又()111213a S a ==-,得12a =- 则数列{}n a 是以-2为首项,-2为公比的等比数列. 则()2nn a =-,n *∈N(2)当4,n k k N *=∈时,()4442sin 02k kk b π=-⋅=, 当41,n k k N *=-∈时,()()444111412sin22k k k k b π----=-⋅=, 当42,n k k N *=-∈时,()()4242422sin 02k k k b π---=-⋅=, 当43,n k k N *=-∈时,()()444333432sin22k k k k b π----=-⋅=-,则()()5973799100123100222222T b b b b =++++=-+++++++()()25254334101442222222212125-⋅-⋅-=-+=--。
(完整版)数列求和合集例题与标准答案)
数列求和汇总答案一、利用常用求和公式求和利用下列常用求和公式求和是数列求和地最基本最重要地方法.1、等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q qa a qq a q na S n nn 例1、已知,求地前n 项和.3log 1log 23-=x ⋅⋅⋅++⋅⋅⋅+++nx x x x 32解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得(利用常用公式)nn x x x x S +⋅⋅⋅+++=32===1-x x x n --1)1(211)211(21--n n 21练习:求地和.22222222123456...99100-+-+-+--+解:2222222212345699100-+-+-+--+ ()()()()2222222221436510099=-+-+-++- ()()()()()()()()2121434365651009910099=-++-++-++-+ 3711199=+++ +由等差数列地求和公式得()50503199S 50502+==二、错位相减法求和这种方法是在推导等比数列地前n 项和公式时所用地方法,这种方法主要用于求数列{a n ·b n }地前n 项和,其中{a n }、{b n }分别是等差数列和等比数列.例2求和:………………………①132)12(7531--+⋅⋅⋅++++=n n x n x x x S 解:由题可知,{}地通项是等差数列{2n -1}地通项与等比数列{}地通项之积1)12(--n xn 1-n x设……………………….②(设制错位)nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=①-②得(错位相减)n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--再利用等比数列地求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴21)1()1()12()12(x x x n x n S n n n -+++--=+练习:求数列前n 项地和.⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n解:由题可知,{}地通项是等差数列{2n}地通项与等比数列{}地通项之积n n 22n 21设…………………………………①n n nS 2226242232+⋅⋅⋅+++=………………………………②(设制错位)14322226242221++⋅⋅⋅+++=n n nS ①-②得(错位相减)1432222222222222211(+-+⋅⋅⋅++++=-n n n nS 1122212+---=n n n ∴1224-+-=n n n S 三、反序相加法求和这是推导等差数列地前n 项和公式时所用地方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个.)(1n a a +例3求地值89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++解:设………….①89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S 将①式右边反序得…………..②(反序)1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S 又因为1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加)=89)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S ∴S=44.52、求和:222222222222222101109293832921101++++++++++ 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见地数列,然后分别求和,再将其合并即可.例4、求和:⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+n n y x y x y x 11122 ()1,1,0≠≠≠y x x 解:原式=()nx x x x ++++ 32⎪⎪⎭⎫ ⎝⎛++++n y y y 1112=()yy y xx x n n 1111111-⎪⎪⎭⎫⎝⎛-+--=nn n n y y y x x x --+--++1111练习:求数列地前n 项和:, (231),,71,41,1112-+⋅⋅⋅+++-n aa a n 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n 将其每一项拆开再重新组合得(分组))23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 当a =1时,=(分组求和)2)13(n n n S n -+=2)13(nn +当时,=1≠a 2)13(1111n n a a S nn -+--=2)13(11n n a a a n -+---练习:求数列地前n 项和.∙∙∙+∙∙∙),21(,,813,412,211nn 解:n n n n n n n n S 211)1(21)21212121()321()21(81341221132-++=+∙∙∙+++++∙∙∙+++=++∙∙∙+++=五、裂项法求和这是分解与组合思想在数列求和中地具体应用.裂项法地实质是将数列中地每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和地目地.通项分解(裂项)如:例5求数列地前n 项和.⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 解:设(裂项)n n n n a n -+=++=111则(裂项求和)11321211+++⋅⋅⋅++++=n n S n =)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 练习:求13,115,135,163之和.解:94911(21)9171()7151()5131()311(21)9171(217151(21)5131(21)311(2197175153131163135115131=-=⎥⎦⎤⎢⎣⎡-+-+-+-=-+-+-+-=⨯+⨯+⨯+⨯=+++六、合并法求和针对一些特殊地数列,将某些项合并在一起就具有某种特殊地性质,因此,在求数列地和时,可将这些项放在一起先求和,然后再求S n .例6、数列{a n }:,求S 2002.n n n a a a a a a -====++12321,2,3,1解:设S 2002=2002321a a a a +⋅⋅⋅+++由可得n n n a a a a a a -====++12321,2,3,1,2,3,1654-=-=-=a a a ,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵(找特殊性质项)0665646362616=+++++++++++k k k k k k a a a a a a ∴S 2002=(合并求和)2002321a a a a +⋅⋅⋅+++=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a 2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++=46362616+++++++k k k k a a a a =5练习:在各项均为正数地等比数列中,若地值.103231365log log log ,9a a a a a +⋅⋅⋅++=求解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列地性质(找特殊性质项)q p n m a a a a q p n m =⇒+=+和对数地运算性质得N M N M a a a ⋅=+log log log (合并求和))log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++==)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++=10七、利用数列地通项求和先根据数列地结构及特征进行分析,找出数列地通项及其特征,然后再利用数列地通项揭示地规律来求数列地前n 项和,是一个重要地方法.例7、求5,55,555,…,地前n 项和.解:∵a n =59(10n -1)∴S n =59(10-1)+59(102-1)+59(103-1)+…+59(10n -1)=59[(10+102+103+……+10n )-n]=(10n +1-9n-10)练习:求数列:1,,,地前n 项和.解:=e an dAl l h i ng si nt h er be ng ae od =版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX74J0X用户可将本文地内容或服务用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律地规定,不得侵犯本网站及相关权利人地合法权利.除此以外,将本文任何内容或服务用于其他用途时,须征得本人及相关权利人地书面许可,并支付报酬.LDAYtRyKfEUsers may use the contents or services of this article forpersonal study, research or appreciation, and other non-commercialor non-profit purposes, but at the same time, they shall abide bythe provisions of copyright law and other relevant laws, and shallnot infringe upon the legitimate rights of this website and itsrelevant obligees. In addition, when any content or service ofthis article is used for other purposes, written permission andremuneration shall be obtained from the person concerned and the relevant obligee.Zzz6ZB2Ltk转载或引用本文内容必须是以新闻性或资料性公共免费信息为使用目地地合理、善意引用,不得对本文内容原意进行曲解、修改,并自负版权等法律责任.Reproduction or quotation of the content of this article must be reasonable and good-faith citation for the use of news or informative public free information. It shall not misinterpret or modify the original intention of the content of this article, and shall bear legal liability such as copyright.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南雄市第一中学2014届高三理科数学课堂测试(十九)
数列求和
班级: 姓名: 分数:
一、选择题(每小题6分,共36分)
1.在等比数列{an} (n∈N*)中,若a1=1,a4=18,则该数列的前10项和为( )
A.2-128 B.2-129 C.2-1210 D.2-1211
2.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为( )
A.2n+n2-1 B.2n+1+n2-1 C.2n+1+n2-2 D.2n+n-2
3.已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lg an,b3=18,b6=12,
则数列{bn}的前n项和的最大值等于( )
A.126 B.130 C.132 D.134
4.数列{an}的通项公式为an=(-1)n-1·(4n-3),则它的前100项之和S100等于( )
A.200 B.-200 C.400 D.-400
5. 等比数列{na中 13a,424a,则345aaa( )
A. 33 B. 72 C. 84 D. 189
6.数列1·n,2(n-1),3(n-2),…,n·1的和为( )
A.16n(n+1)(n+2) B.16n(n+1)(2n+1)
C.13n(n+2)(n+3) D.13n(n+1)(n+2)
二、填空题(每小题6分,共24分)
7.等比数列{an}的前n项和Sn=2n-1,则a21+a22+…+a2n=________.
8.已知数列{an}的通项an与前n项和Sn之间满足关系式Sn=2-3an,则an=__________.
9.已知等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列1bnbn+1的前n
项和Sn=________.
10.设关于x的不等式x2-x<2nx (n∈N*)的解集中整数的个数为an,数列{an}的前n项和为
Sn,则S100的值为________.
▲请把选择、填空题答案填入下表,写在题目上的答案无效。
题号
1 2 3 4 5 6 7 8 9 10
答案
三、解答题(每小题20分,共40分)
11. 设函数)(cossin322cos)(Rxxxxxf的最大值为M,最小正周期为T。
(1)求M、T;
(2)若有10个互不相等的正实数ix满足Mxfi)(,且)10,,2,1(10ixi,试求
1021
xxx
的值。
12. (20分)已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*满足关系式
2Sn=3an-3.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式是bn=1log3an·log3an+1,前n项和为Tn,求证:对于任意的正数n,
总有Tn<1.
(附加题,不计入总分)
13.已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等
比数列的第二项、第三项、第四项.
(1)求数列{an}的通项公式;
(2)设bn=1n(an+3) (n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数t,使得对任意
的n均有Sn>t36总成立?若存在,求出t;若不存在,请说明理由.
(测试19)答 案
1.B 2.C 3.C 4.B 5.C 6.A
7. 13(4n-1) 8. 1234n-1 9. nn+1 10.10 100
11.解:)2sin(22cos2sin3)(6xxxxf ………………(3分)
(1)22,2TM ; ………………(5分)
(2)∵2)(ixf , ∴Zkkxi,2226
∴Zkkxi,6 ………………(8分)
又100ix,∴k=0,1,…,9,
∴31406102110)9210(xxx 。……(12分)
点评:本题涉及到了三角公式的变形和三角函数的图象的运用,以及与数列等知识的结合
考查,虽然小,但很巧。
12. (1)解 由已知得 2Sn=3an-3,2Sn-1=3an-1-3 (n≥2).
故2(Sn-Sn-1)=2an=3an-3an-1,即an=3an-1 (n≥2).
故数列{an}为等比数列,且公比q=3.
又当n=1时,2a1=3a1-3,∴a1=3.∴an=3n.
(2)证明 ∵bn=1n(n+1)=1n-1n+1.
∴Tn=b1+b2+…+bn
=1-12+12-13+…+1n-1n+1=1-1n+1<1.
13.解 (1)由题意得(a1+d)(a1+13d)=(a1+4d)2,
整理得2a1d=d2.
∵a1=1,解得d=2,d=0(舍).
∴an=2n-1 (n∈N*).
(2)bn=1n(an+3)=12n(n+1)=121n-1n+1,
∴Sn=b1+b2+…+bn
=121-12+12-13+1n-1n+1=121-1n+1=n2(n+1).
假设存在整数t满足Sn>t36总成立,又Sn+1-Sn=n+12(n+2)-n2(n+1)=12(n+2)(n+1)>0,
∴数列{Sn}是单调递增的.∴S1=14为Sn的最小值,故t36<14,即t<9.
又∵t∈Z,∴适合条件的t的最大值为8.