催化剂制备方法

合集下载

化学反应中催化剂的制备方法

化学反应中催化剂的制备方法

化学反应中催化剂的制备方法化学反应中催化剂是一个极其重要的组成部分,它能够促进反应速度,降低所需要的温度及压力,降低反应活化能等。

在化学工业中,催化剂是不可或缺的组成部分,对于一些复杂的反应而言,催化剂也是非常关键的。

那么,如何制备催化剂呢?催化剂的制备方法有很多种,不同的反应需要不同的催化剂,因此催化剂的制备方法也各不相同。

下面,我们将从三个方面来讨论催化剂的制备方法。

一、物理化学法制备催化剂物理化学法是制备催化剂的常用方法之一。

它通过改变催化剂的表面结构,改变催化剂的形貌、形态,来达到提高催化剂效率的目的。

比如,采用热处理、电化学方法、物理吸附等方法可以制备出具有均匀孔径、大比表面积等特点的催化剂。

这种方法制备出来的催化剂具有高效、稳定、易于再生等优点,被广泛应用于各种化学反应中。

二、化学合成法制备催化剂化学合成法是一种较为常用的制备催化剂的方法。

它利用化学反应的原理,采用一定的方法及工艺条件来合成催化剂。

这种方法可以得到具有特定功能的催化剂,可以对催化剂进行定制,使其具有其他传统制备方法所不具备的性质。

例如,在金属催化剂的制备中,常常采用化学还原、溶胶-凝胶等方法。

这些方法不仅可以得到纳米尺寸的催化剂,还可以通过添加不同的催化剂过渡金属、调控反应条件等方法得到具有特定性质的催化剂。

三、生物制备法制备催化剂除了物理化学法和化学合成法以外,生物制备法也是一种较为新颖的催化剂制备方法。

生物体内合成各种酶类可以作为参考,设计合成人工酶,以替代催化剂,来实现反应过程的加速,降低催化剂对环境的污染等目的。

生物制备法中,核壳结构的金属纳米粒子成功应用于大量的催化反应中,例如,银纳米颗粒,由于具有特殊的光学性质,已经成功应用于光催化反应中。

生物制备法制备的催化剂,不仅性能稳定,而且具有良好的环保性和可再生性,因此受到越来越多的关注和研究。

总之,催化剂是化学反应中不可或缺的重要组成部分,催化剂的制备方法也是很多的。

化学催化剂的制备方法

化学催化剂的制备方法

化学催化剂的制备方法化学催化剂在各个领域中都扮演着重要的角色,例如在工业化生产、环境保护和能源转化等方面。

制备高效的催化剂对于提高反应效率和产品选择性至关重要。

本文将介绍几种常见的化学催化剂制备方法。

一、沉积法沉积法是制备催化剂常用的方法之一。

通过在载体上制备沉积层,可以增加催化剂的活性和选择性。

常用的沉积法包括浸渍法和气相沉积法。

浸渍法是将载体浸泡在催化剂溶液中,使催化剂沉积于载体表面。

这种方法具有操作简单、适用范围广的优点。

气相沉积法则是利用气体反应生成沉积物,常见的气相沉积方法有化学气相沉积和物理气相沉积。

二、共沉淀法共沉淀法是通过共沉淀过程制备催化剂。

通常将两个或多个金属盐溶液混合,在适当的条件下发生沉淀反应,生成催化剂。

这种方法可以调控催化剂的成分以及晶体结构,从而影响催化剂的性能。

三、溶胶-凝胶法溶胶-凝胶法是利用溶胶和凝胶的特性,在溶胶阶段形成固体凝胶,并通过热处理生成催化剂。

这种制备方法具有成本低、适用范围广的特点。

四、微乳液法微乳液法是一种在溶胶和凝胶形成前,通过适当的界面活性剂和助剂形成的稳定微乳液中制备催化剂。

这种方法能够控制催化剂的形貌和粒径,从而影响催化剂的活性和选择性。

五、溶胶自组装法溶胶自组装法是一种制备催化剂的较新方法。

通过选择具有亲疏水性的功能分子,在溶液中自组装形成乳液,进而生成催化剂。

这种制备方法能够调控催化剂的孔径和分散度,提高催化剂的性能。

六、共沉淀-还原法共沉淀-还原法是一种通过先共沉淀生成前驱体,再进行还原处理制备催化剂的方法。

这种方法能够调控催化剂的成分和晶体结构,从而影响催化剂的活性和选择性。

在使用以上制备方法时,还可以通过调控反应条件、添加助剂等手段进一步改善催化剂的性能。

此外,还可以采用纳米材料制备方法来制备纳米尺度的催化剂,提高效率和选择性。

总之,化学催化剂的制备方法多种多样,每种方法都有其适用范围和特点。

通过合理选择制备方法和优化制备条件,可以制备出高效、高选择性的催化剂,促进各领域的化学反应。

制备工业催化剂的方法

制备工业催化剂的方法

制备工业催化剂的方法工业催化剂是指用于促进或加速化学反应的物质,广泛应用于许多生产过程中,如炼油、化工、能源等。

制备工业催化剂的方法有很多种,下面将介绍几种常见的制备方法。

一、沉淀法沉淀法是制备工业催化剂的常用方法之一、该方法通过在溶液中加入还原剂使金属离子还原成金属颗粒,然后沉淀得到催化剂。

该方法简单易行,适用于大规模生产。

二、浸渍法浸渍法是指将载体浸入金属溶液中,使金属离子被载体吸附,并通过热处理将金属还原成金属颗粒。

浸渍法可使金属颗粒分散均匀,催化剂活性较高。

三、沉积法沉积法是将金属源溶于溶剂中,然后将溶液喷洒在载体表面,通过烘干和热处理将金属还原成金属颗粒,从而制备催化剂。

该方法适用于制备高活性催化剂。

四、共沉淀法共沉淀法是将金属源和载体溶解在同一溶剂中,通过调节条件使金属沉淀到载体表面,再进行热处理得到催化剂。

共沉淀法制备的催化剂具有高分散性和高活性。

五、焙烧法焙烧法是将金属前驱体或金属盐溶于溶剂中,通过热处理使金属变得稳定且易于使用,然后得到催化剂。

焙烧法制备的催化剂适用于高温条件下的反应。

六、溶胶-凝胶法溶胶-凝胶法是将金属前驱体溶于溶剂中,通过加热使其形成溶胶,然后通过凝胶化得到凝胶,在热处理过程中形成催化剂。

该方法制备的催化剂具有高度分散性和活性。

七、离子交换法离子交换法是将金属离子与载体接触,通过离子交换反应将金属离子固定在载体上,形成催化剂。

离子交换法制备的催化剂具有高度分散性和稳定性。

综上所述,制备工业催化剂的方法有很多种,选择适当的制备方法取决于催化剂的要求和实际应用。

通过不断研究和创新,制备高效、高分散性和高稳定性的工业催化剂对促进化工和工业生产的发展具有重要作用。

催化剂制备方法

催化剂制备方法

关于浸渍时间的几种情况:
1)活性组分在孔壁的吸附速率快于扩散速率,导致活 性组分吸附在孔口(时间或活性组分浓度不够);
2)浸渍后过滤,静臵,吸附的活性成分重新解吸,通
过再分配实现均匀分布(不立刻干燥); 3)浸渍后不过滤,载体外活性成分不断扩散至孔道内, 实现均匀分布(增加浸渍时间)。
3)浸渍前载体的状态 载体状态不同使组分在载体内部 的分布不均匀,且当浸渍液浓度愈 大,不均匀性愈显著。在同样浓度 的浸渍液条件下,干燥载体内浸渍 组分的分布比湿载体时均匀。
匀 pH稳定 多组分同时 沉淀 沉淀均 匀
(5)pH值 沉淀法中常用碱性物质作沉淀剂,沉 淀物的生成在相当大的程度上受溶液的 pH值得影响
沉淀方法的分离 1)单组分沉淀法 单组份沉淀法是通过沉淀剂与一种特 殊组分溶液作用以制备单一组分沉淀物 的方法。 例:氧化铝的制备 碱法:Al3+ + OH- Al2O3· nH2O 酸法:AlO2- + H3O+ Al2O3· nH2O
浸渍法的影响因素: 1)盐浓度盐、铵盐、有 机酸盐(乙酸盐、乳酸盐)
浸渍液浓度:
催化剂中活性组分含量(以氧化物计)
a
VpC 1 VpC
100%
浸渍液浓度(以氧化物计),g/ml
载体比孔容,ml/g
2)浸渍时间: t=2η/δx x2/r 渗透时间与粘度系数、表面张力、孔径 和粒度有关 在氧化铝上浸渍含Ni化合物
2.分子筛的制备 制备分子筛主要通过混合液成胶、晶化、洗 涤、成型及活化等步骤。以下介绍影响分子筛 制备的几个因素。 (1)硅铝比。不同型号的分子筛有其固定的硅铝 比,如A型为2.0左右。 (2)基数。基数是指反应物料中氧化铝的摩尔浓 度。A型为0.2-0.3mol/L. (3)碱度。指晶化过程中,反应液中所含碱的浓 度,一般以Na2O的摩尔度表示。 (4)晶化温度和晶化时间。一般规律是,高温晶 化需时短,低温晶化需时长。 (5)成胶温度。一般情况下,温度越高越易成胶。

单原子催化剂的制备方法

单原子催化剂的制备方法

单原子催化剂的制备方法
制备单原子催化剂的方法可以分为两类:直接法和间接法。

一、直接法:
1.有机骨架法:通过在有机骨架上固定金属原子,并在高温条件下去
除有机骨架来制备单原子催化剂。

这种方法通常是通过与精确数目的金属
原子配位的有机骨架来实现的。

2.增强扩散法:将金属盐溶于溶剂中,然后将其吸附到活性炭或其他
支撑体上,并在高温条件下进行热处理,使金属原子在支撑体上扩散和扩散,形成单原子催化剂。

3.吸附解离法:在合适的条件下,将金属原子通过物理吸附或化学吸
附固定在载体上,并使用适当的方法进行解离,使金属原子成为单原子催
化剂。

二、间接法:
1.高温还原法:将金属盐溶解在溶剂中,然后将其吸附到载体上,并
在高温条件下进行还原。

在还原过程中,金属原子会扩散和聚集在载体上,并形成单原子催化剂。

2.调控晶核成核法:通过控制金属盐与还原剂的反应速率,使金属原
子在载体表面形成稳定的晶核。

然后再通过控制晶核的生长速率和形状来
合成单原子催化剂。

3.鸟巢效应法:通过选择具有合适孔径的载体,使金属原子在载体的
孔道中固定,形成单原子催化剂。

以上是一些常用的制备单原子催化剂的方法。

然而,由于单原子催化剂制备的高度复杂性和精确性,这些方法可能在不同体系中具有不同的效果。

因此,制备单原子催化剂仍然是一个具有挑战性的领域,需要更多的研究和进一步的探索。

催化剂制备方法及应用

催化剂制备方法及应用

催化剂制备方法及应用
催化剂的制备方法及应用包括但不限于以下几个方面:
1. 物理法:通过物理方法调整催化剂的形貌和结构,例如溶胶凝胶法合成具有特定孔径和表面积的催化剂颗粒。

2. 化学法:利用化学反应合成催化剂,常用的方法包括共沉淀法、沉积法、水热合成法等。

例如,通过改变沉淀反应的温度、pH 值、反应物浓度等条件,可以得到具有不同晶相和组成的催化剂。

3. 熔融法:在高温条件下,将催化剂原料破碎后经过筛分、混合、还原后得到某种催化剂,得到的催化剂活性高、稳定性高。

4. 离子交换法:各反应物离子分散后,自由交换到负载上,最后经过洗涤、干燥、焙烧等操作成型,通过离子交换法得到的催化剂具有较高的分散度、催化性能,适用于制备低含量、高利用率的贵金属催化剂的制备。

在应用方面,绿色化工生产方面主要包括加氢还原反应、氧化反应、催化重整等,加快了绿色化工生产速度,提高了化工生产效率。

此外,通过催化作用,加快了汽车尾气净化,而且促进了有机废气无污染且快速充分的燃烧,产生的燃烧尾气还能催化还原,很大程度上减少了环境污染。

催化剂的制备方法


化学与化工学院
第一节 沉淀法
三、沉淀操作的原理与技术 (二)沉淀形成的影响因素 2、温 度 溶液的过饱和度于晶核的生成和长大有直接的关系,而 溶液的过饱和度又与温度有关,一般说来,晶核的生长速度随温 度的升高而出现极大值。 晶核生长速度最快时的温度,比晶核长大时达到最大速度所需 要的温度低得多。即在低温时有利于晶核的形成,而不利于晶核 的长大,所以低温一般得到细小的颗粒。 对于晶形沉淀,沉淀应在较热的溶液中进行,这样可使沉淀的 溶解度略有增加,过饱和度相对降低,有利于晶体成长增大。同 时,温度越高,吸附的杂志越少。对与非晶形沉淀,在较热的溶 液中沉淀也可以使离子的水合程度较小,获得比较紧密凝聚的沉 淀,防止胶体溶液的形成。
化学与化工学院
第一节 沉淀法
三、沉淀操作的原理与技术 (二)沉淀形成的影响因素 3、pH值 由于沉淀用碱作为沉淀剂,因此沉淀物的生成在相当程度上 必然要收溶液pH值的影响,若别是制备活性高的混合物催化剂更是 如此,如下表所示。由于各组分的容度积不同,如果形成氢氧化物 沉淀所需要的pH值不相近,则很难得到均匀的产物。
化学与化工学院
第一节 沉淀法
三、沉淀操作的原理与技术
(三)沉淀的陈化和洗涤 对大多数非晶形沉淀:在沉淀形成后不采取陈化操作,宜待沉淀 析出后,加入较大量热水稀释之,以减少杂质在溶液中的浓度, 同时使一部分吸附的杂质转入溶液中。加入热水后,一般不宜 放臵,而应立即过滤,以防沉淀进一步凝聚,并避免表面吸附 的杂质包裹在沉淀内部不易洗涤除去。 若要制备若数结构的沉淀:可加入热水放臵熟化。 洗 涤:主要目的使除去沉淀中的杂质;在沉淀操作时,沉淀终点 的控制非常重要,可防止杂质的混入;一方面要检验沉淀是否 完全,另一方面要防止沉淀剂的过量,以免在沉淀中带入外来 离子和其它杂质。

催化剂常用制备方法

过量浸渍法 等量浸渍法 喷涂浸渍法 流动浸渍法
1.1、过量浸渍法
即将载体泡入过量的浸渍液中,待吸附 平衡后,过滤、干燥及焙烧后即成。 通常借调节浸渍液浓度和体积来控制负 载量。
1.2、等量浸渍法
将载体与它可吸收体积相应的浸渍液相混合, 达到恰如其分的湿润状态。只要混合均匀和干 燥后,活性组分即可均匀地分布在载体表面上, 可省却过滤和母液回收之累。但浸渍液的体积 多少,必须事先经过试验确定。 对于负载量较大的催化剂,由于溶解度所限, 一次不能满足要求;或者多组分催化剂,为了 防止竞争吸附所引起的不均匀,都可以来用分 步多次浸渍来达到目的。
+
Sperical M icelles
+
+
+
+
+
Rod-like M icelles
Hexagonal Phase
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Lam ellar Phase
(七) 制备催化剂的其它技术
模板法等新技术 溶胶-凝胶法 均相催化剂固相化等新方向
模板法
Self-Assem bling of Surfactant

工业催化剂的制造方法

工业催化剂的制造方法一、物理法制备催化剂:物理法制备催化剂主要是通过物理方法将催化剂的活性组分载在载体上,常见的物理法制备催化剂的方法有:1.吸附法:将活性组分通过吸附作用附着在载体表面上,常用的载体有活性炭、硅胶等。

这种方法简单易行,但活性组分容易脱落,催化剂的活性和稳定性较差。

2.离子交换法:将带正或负电荷的活性组分通过离子交换作用固定在载体上,常用的载体有氧化铝、硅胶等。

这种方法制备的催化剂活性高、稳定性好,但生产成本较高。

3.沉淀法:将活性组分通过溶液浸渍或浸渍法在载体上形成固体颗粒,然后经过干燥、煅烧等步骤得到催化剂。

这种方法制备的催化剂具有较好的活性和选择性,但颗粒尺寸大小不均匀。

二、化学法制备催化剂:化学法制备催化剂是指通过化学反应合成催化剂的方法,常见的化学法制备催化剂的方法有:1.沉淀法:通过溶液中的沉淀反应得到催化剂的前驱体,然后通过进一步处理得到催化剂。

这种方法制备的催化剂纯度高,结构稳定,但制备过程复杂,需要控制多个参数。

2.水热合成法:利用高温高压的水热条件下,将催化剂的前驱体和其它添加剂反应生成催化剂。

这种方法可以得到具有特殊结构和性能的催化剂,适用于制备金属氧化物等催化剂。

3.溶胶-凝胶法:将催化剂的前驱物通过溶解、水解和凝胶化等步骤制备成溶胶-凝胶体系,然后经过干燥和煅烧等步骤得到催化剂。

这种方法制备的催化剂纯度高,结构可控,但制备过程较长。

综上所述,工业催化剂的制备方法包括物理法和化学法。

物理法主要是通过物理方法将活性组分载在载体上;化学法主要是通过化学反应合成催化剂。

不同的制备方法适用于不同类型的催化剂,制备过程中需要控制多个参数以获得高活性和选择性的催化剂。

化学催化剂的制备与应用

化学催化剂的制备与应用化学催化剂是一类能够加速化学反应速率的物质,广泛应用于能源转化、化学合成、环境保护等领域。

本文将介绍化学催化剂的制备方法和其在不同领域中的应用。

一、化学催化剂的制备方法1. 物理法制备:物理法制备催化剂是通过物理方法改变原材料的结构和形态,从而提高其催化性能。

常见的物理法制备方法有沉淀法、溶胶-凝胶法和气相沉积法。

(1)沉淀法:通过溶液中的化学反应,在溶液中形成沉淀物,然后经过干燥和煅烧等处理,得到催化剂。

沉淀法制备的催化剂具有较高的比表面积和良好的分散性。

(2)溶胶-凝胶法:通过溶胶的迅速凝胶化反应,制备催化剂。

溶胶-凝胶法制备的催化剂具有高度均匀的微观结构和孔洞结构。

(3)气相沉积法:利用气相反应在催化剂的载体上生成活性组分,然后经过煅烧等处理,得到催化剂。

气相沉积法制备的催化剂具有较高的催化活性和选择性。

2. 化学法制备:化学法制备催化剂是通过化学反应将原材料转化为催化剂。

常见的化学法制备方法有均相合成法和异相合成法。

(1)均相合成法:将原材料在溶液或气相中进行反应,形成催化剂。

均相合成法制备的催化剂具有较高的纯度和活性。

(2)异相合成法:将原材料分散在固体载体或多孔材料中,并通过反应生成催化剂。

异相合成法制备的催化剂具有较高的比表面积和稳定性。

二、化学催化剂的应用1. 能源转化领域:化学催化剂在石油加工、煤转化和生物质能源等领域有重要应用。

例如,石油加工中的催化裂化、催化重整和催化加氢等过程,都离不开催化剂的作用。

2. 化学合成领域:化学催化剂在有机合成和无机合成中起到重要的作用,能够加速反应速率、提高产率和选择性。

例如,氢化催化剂常用于有机化合物的加氢反应中;氧化催化剂则常用于有机物氧化反应中。

3. 环境保护领域:化学催化剂在大气污染治理和废水处理中有广泛应用。

例如,三元催化转化器能够减少汽车尾气中有害气体的排放;催化氧化法则能够降解废水中的有机污染物。

4. 生命科学领域:化学催化剂在生命科学研究和医药领域有着重要应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可用已成型的载体(如氧化铝,氧化硅, 活性炭,浮石,活性白土等) 负载组份利用率高,用量少(如贵金属) 牛牛文档分享过量浸渍法
将载体浸入过量的浸渍溶液中(浸渍液 体超过可吸收体积),待吸附平衡后, 沥去过剩溶液,干燥享
浸渍沉淀法

将浸渍溶液渗透到载体的空隙,然后加 入沉淀剂使活性组分沉淀于载体的内孔 和表面
H2PtCl6盐酸溶液 先 浸 还原 粒子细
吸附 载体 载体
浸渍法实例

铂/氧化铝-----重整催化剂—将汽油中直链烃芳构化

金属盐溶液与沉淀剂充分混合后,逐渐 改变条件得到颗粒均匀、纯净的沉淀物
尿素调节碱性
(NH2)2CO + 3H2O
2NH4+ + 2OH- + CO2
加热到90-100 0C尿素, 同时释放出 牛牛文档分享导晶沉淀法
借助晶化导向剂引导非晶型沉淀转化为 晶型沉淀晶型沉淀陈化有助于获得颗粒均匀的晶 体(吸附杂质较少) 非晶型沉淀一般应立即过滤(防止进一步 凝聚包裹杂质) 一般洗涤到无OH-,NO3 牛牛文档分享沉淀的干燥焙烧活化
干燥(除去湿沉淀中的洗涤液) 焙烧(热分解除去挥发性物质,或发生 固态反应,微晶适度烧结) 活化(在一定气氛下处理使金属价态发 生变化)
等体积浸渍法
将载体与正好可吸附量的浸渍溶液相混 合,浸渍溶液刚好浸渍载体颗粒而无过 剩。 预先测定浸渍溶液的体积 多活性物质次的浸渍、干燥、焙烧可制得活性 物质含量较高的催化剂 可避免多组分浸渍化合物各组分竞争吸附
分子筛合 成原料
加晶种 晶化
无定型物 X,Y晶体 高结晶度 转 化 牛牛文档分享沉淀时金属盐类的选择
一般选用硝酸盐(大都溶于水) 贵金属为氯化物的浓盐酸溶液 铼选用高铼酸(H2Re2O7) 牛牛文档分享沉淀时沉淀剂的选择
易分解挥发除去(氨气,氨水,铵盐, 碳酸盐等) 形成的沉淀物便于过滤和洗涤(最好是 晶型沉淀,杂质少,易过滤洗涤) 沉淀剂的溶解度要大(这样被沉淀物吸 附的量就少) 沉淀物的溶解度应很小 沉淀剂无污染
沉淀法

沉淀剂加入金属盐类溶液,得到沉淀后 再进行处理
NaOH(Na2CO3)
金属盐溶液
沉淀
洗涤 干燥 焙烧 研磨 成型 催化剂活 化 牛牛文档分享单组分沉淀法
制备非贵金属的单组分催化剂或载体
Al3+ + OH-
Al2O3.nH2O 焙 Al2O3, η-Al2O3
成型1/6*1/6英寸
预处理:比表面250m2/g, 0.56ml/g
载体(99.9%Al2O3)
540oC活化、冷却、浸渍铂氯酸0.2-0.6%
120oC 干燥
590oC享
实例一 分子筛的合成
水玻璃 硫酸铝 偏铝酸钠 氢氧化钠
NaY原粉 成胶 晶化 过 滤 洗 涤 干燥 Na载体放进含有活性物质的液体中浸渍
洗涤干燥 载体的成型 用活性组份浸渍 干燥 焙烧分解

多种化学组成的匹配
– 各组分一起协调作用的多功能催化剂

一定物理结构的控制
– 粒度、比表面、孔体积 牛牛文档分享催化剂的一般制备方法

不同制备方法,成分、用量相同,但催 化剂的性能可能不同
– 沉淀法 – 浸渍法 淀
负载型组份在载体表面上的吸附 毛细管压力使液体渗透到载体空隙内部 提高浸渍量(可抽真空或提高浸渍液温度) 活性组份在多个组分同时沉淀(各组分比例较恒定, 分布也均匀)
Na2CO3
Cu(NO3) 2 Zn (NO3) 2 Al (NO3) 3 溶液 PH中性
合成甲醇 CuO-ZnO-Al2金属络合物生产聚乙烯
酶催化剂(生物化工) 牛牛文档分享固体催化剂的构成载体(Al2O3 ) 主催化剂(合成NH3中的Fe) 助催化剂(合成NH3中的K2O) 共催化剂(石油裂解Si催化剂的特性
加快化学反应的速度,但不进入化学反 应计量 催化剂对反应有选择性 只能加速热力学上可能的反应 不
多相反应固体催化剂(石化工业应用最多)
– Al2O3/SiO2催化裂化生产汽油
均相反应配合物催化剂(
浓度
– 溶液浓度过饱和时,晶体析出,但太大晶核增多, 晶粒会变小)

温度
– 低温有利于晶核形成,不利于长大,高温时有利于 增大,吸附杂质也少

pH值
– 在不同pH值下,沉淀会先后生成
加料顺序和搅拌强度
– 加料方式不同,沉淀性质有差异
相关文档
最新文档