高数公式大全(全)
(完整版)高数1全套公式

o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α
高数公式(精简版)

高数公式集萃一、极限重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)1n = (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7) (8)lim arc cot 0x x →∞=lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10) (11)lim x x e →+∞=∞0lim 1xx x +→= 二、常用等价无穷小关系(0x →)(1)sin x x (2)tan x x (3)arcsin x x (4)arctan x x (5)211cos 2x x − (6)()ln 1x x + (7) (8) (9)1x e − x a 1ln x a x − ()11x x ∂+−∂三、导数的四则运算法则(1) (2)()u v u v ′′±=±′()uv u v uv ′′′=+ (3)2u u v u v v ′′′−⎛⎞=⎜⎟⎝⎠v 四、基本导数公式⑴() ⑵0c ′=1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− x ⑼()xxe ′⑺()sec sec tan x x ′=⋅x ⑻()csc csc cot x x ′=−⋅e=⑽() ⑾()ln xxaa′=a 1ln x x ′= ⑿()1log ln x a x a′=⒀()arcsin x ′=⒁()arccos x ′= ⒂()21arctan 1x x ′=+ ⒃()21arc cot 1x x′=−+(17)′=五、微分运算法则⑴ ⑵ ⑶()d u v du dv ±=±()d cu cdu =()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠六、微分公式与微分运算法则⑴ ⑵ ⑶()0d c =()1d xxdx μμμ−=()sin cos d x xd =x x x⑷ ⑸ ⑹()cos sin d x xd =−()2tan sec d x xd =()2cot csc d x xd =−x x x ⑺ ⑻ ⑼()sec sec tan d x x xd =⋅()csc csc cot d x x xd =−⋅()xxd e e dx =⑽ ⑾()ln x x d a a adx =()1ln d x dx x =⑿()1log ln x a d dx x a=⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+ 七、下列常用凑微分公式八、中值定理与导数应用:拉格朗日中值定理。
大学高数公式大全

向量在轴上的投影:Pr ju AB = AB cos,是AB与u轴的夹角。
Pr a
bju=(aa1
+
a2
)
=
Pr
ja1
+
b cos = axbx
Pr ja2 + ayby
+
azbz
,是一个数量,
两向量之间的夹角:cos =
axbx + ayby + azbz
ax 2 + ay 2 + az 2 bx 2 + by 2 + bz 2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
cos + cos = 2 cos + cos −
2
2
cos − cos = 2sin + sin −
i c = ab = ax
j ay
k az
,
c
=
a
b
sin .例:线速度:v
=
w r.
bx by bz
向量的混合积:[abc]
=
(a
b)
c
=
ax bx
ay by
az bz
=
a
b
c
cos
,为锐角时,
cx cy cz
代表平行六面体的体积。
4 / 12
高等数学公式
平面的方程: 1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 )
高等数学公式定理(全)

高等数学公式·平方关系:s i n^2(α)+c o s^2(α)=1 t a n^2(α)+1=s e c^2(α)c o t^2(α)+1=c s c^2(α)·积的关系:s i nα=t a nα*c o sαc o sα=c o tα*s i nαt a nα=s i nα*s e cαc o tα=c o sα*c s cαs e cα=t a nα*c s cαc s cα=s e cα*c o tα·倒数关系:t a nα·c o tα=1s i nα·c s cα=1c o sα·s e cα=1直角三角形A B C中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:c o s(α+β)=c o sα·c o sβ-s i nα·s i nβc o s(α-β)=c o sα·c o sβ+s i nα·s i nβs i n(α±β)=s i nα·c o sβ±c o sα·s i nβt a n(α+β)=(t a nα+t a n β)/(1-t a nα·t a nβ)t a n(α-β)=(t a nα-t a n β)/(1+t a nα·t a nβ)·三角和的三角函数:s i n(α+β+γ)=s i nα·c o s β·c o sγ+c o sα·s i nβ·c o s γ+c o sα·c o sβ·s i nγ-s i n α·s i nβ·s i nγc o s(α+β+γ)=c o sα·c o sβ·c o sγ-c o sα·s i nβ·s i nγ-s i nα·c o sβ·s i nγ-s i nα·s i nβ·c o sγt a n(α+β+γ)=(t a nα+t a nβ+t a nγ-t a nα·t a nβ·t a nγ)/(1-t a nα·t a nβ-t a nβ·t a nγ-t a nγ·t a nα)·辅助角公式:A s i nα+B c o sα=(A^2+B^2)^(1/2)s i n(α+t),其中s i n t=B/(A^2+B^2)^(1/2) c o s t=A/(A^2+B^2)^(1/2) t a n t=B/AA s i nα+B c o sα=(A^2+B^2)^(1/2)c o s(α-t),t a n t=A/B·倍角公式:s i n(2α)=2s i nα·c o sα=2/(t a nα+c o tα)c o s(2α)=c o s^2(α)-s i n^2(α)= 2c o s^2(α)-1=1-2s i n^2(α)t a n(2α)=2t a nα/[1-t a n^2(α)]·三倍角公式:s i n(3α)=3s i nα-4s i n^3(α)c o s(3α)=4c o s^3(α)-3c o sα·半角公式:s i n(α/2)=±√((1-c o sα)/2)c o s(α/2)=±√((1+c o sα)/2)t a n(α/2)=±√((1-c o sα)/(1+c o sα))=s i nα/(1+c o sα)=(1-c o sα)/s i nα·降幂公式s i n^2(α)=(1-c o s(2α))/2=v e r s i n(2α)/2c o s^2(α)=(1+c o s(2α))/2=c o v e r s(2α)/2t a n^2(α)=(1-c o s(2α))/(1+c o s(2α))·万能公式:s i nα=2t a n(α/2)/[1+t a n^2(α/2)]c o sα=[1-t a n^2(α/2)]/[1+t a n^2(α/2)] t a nα=2t a n(α/2)/[1-t a n^2(α/2)]·积化和差公式:s i nα·c o sβ=(1/2)[s i n(α+β)+s i n(α-β)]c o sα·s i nβ=(1/2)[s i n(α+β)-s i n(α-β)]c o sα·c o sβ=(1/2)[c o s(α+β)+c o s(α-β)]s i nα·s i nβ=-(1/2)[c o s(α+β)-c o s(α-β)]·和差化积公式:s i nα+s i nβ=2s i n[(α+β)/2]c o s[(α-β)/2]s i nα-s i nβ=2c o s[(α+β)/2]s i n[(α-β)/2]c o sα+c o sβ=2c o s[(α+β)/2]c o s[(α-β)/2]c o sα-c o sβ=-2s i n[(α+β)/2]s i n[(α-β)/2]·推导公式t a nα+c o tα=2/s i n2αt a nα-c o tα=-2c o t2α1+c o s2α=2c o s^2α1-c o s2α=2s i n^2α1+s i nα=(s i nα/2+c o sα/2)^2·其他:s i nα+s i n(α+2π/n)+s i n(α+2π*2/n)+s i n(α+2π*3/n)+……+s i n[α+2π*(n-1)/n]=0c o sα+c o s(α+2π/n)+c o s(α+2π*2/n)+c o s(α+2π*3/n)+……+c o s[α+2π*(n-1)/n]=0以及s i n^2(α)+s i n^2(α-2π/3)+s i n^2(α+2π/3)=3/2 t a n A t a n B t a n(A+B)+t a n A +t a n B-t a n(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=s i nαc o s(2kπ+α)=c o sαt a n(2kπ+α)=t a nαc o t(2kπ+α)=c o tα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-s i nαc o s(π+α)=-c o sαt a n(π+α)=t a nαc o t(π+α)=c o tα公式三:任意角α与 -α的三角函数值之间的关系:s i n(-α)=-s i nαc o s(-α)=c o sαt a n(-α)=-t a nαc o t(-α)=-c o tα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:s i n(π-α)=s i nαc o s(π-α)=-c o sαt a n(π-α)=-t a nαc o t(π-α)=-c o tα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:s i n(2π-α)=-s i nαc o s(2π-α)=c o sαt a n(2π-α)=-t a nαc o t(2π-α)=-c o tα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:s i n(π/2+α)=c o sαc o s(π/2+α)=-s i nαt a n(π/2+α)=-c o tαc o t(π/2+α)=-t a nαs i n(π/2-α)=c o sαc o s(π/2-α)=s i nαt a n(π/2-α)=c o tαc o t(π/2-α)=t a nαs i n(3π/2+α)=-c o sαc o s(3π/2+α)=s i nαt a n(3π/2+α)=-c o tαc o t(3π/2+α)=-t a nαs i n(3π/2-α)=-c o sαc o s(3π/2-α)=-s i nαt a n(3π/2-α)=c o tαc o t(3π/2-α)=t a nα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):s i n x=[e^(i x)-e^(-i x)]/(2i)c o s x=[e^(i x)+e^(-i x)]/2t a n x=[e^(i x)-e^(-i x)]/[i e^(i x)+i e^(-i x)]泰勒展开有无穷级数,e^z=e x p(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高数公式集合

等差数列求和公式等差数列{an}:通项公式an=a1+(n-1)d 首项a1,公差d, 项数为nan第n项数【an=a1+(n-1)d】an=ak+(n-k)d ak为第k项数若a,A,b构成等差数列则A=(a+b)/22.等差数列前n项和:设等差数列{an}的前n项和为Sn即Sn=a1+a2+...+an;那么Sn=na1+n(n-1)d/2=dn^2(即n的2次方) /2+(a1-d/2)n 【sn=na1+n(n-1)d/2】还有以下的求和方法: 1,不完全归纳法2 累加法 3 倒序相加法等比数列求和公式(1)等比数列:a(n+1)/an=q, n为自然数。
(2)通项公式:an=a1*q^(n-1);推广式:an=am·q^(n-m);(3)求和公式:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等于1)(4)性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;②在等比数列中,依次每k项之和仍成等比数列.(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.(6)在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方。
等差数列求和公式Sn=n(a1+an)/2=na1+n(n-1) d /2等比数列求和公式q≠1时Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)q=1时Sn=na1(a1为首项,an为第n项,d为公差,q 为公比)sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的)a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中tan(c)=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中tan(c)=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2sec在三角函数中表示正割直角三角形斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。
大一高数公式总结大全

高数是大学数学中最重要的学科,其中的公式为学习者提供了极大的帮助。
下面就是大一高数公式总结大全。
一、有理函数公式:
1、有理函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、有理函数的一阶导数公式:
f′(x)=lim[h->0] (f(x+h) -f(x))/h
3、有理函数的二阶导数公式:
f′′(x)=lim[h->0] (f′(x+h)-f′(x))/h
二、指数函数公式:
1、指数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、指数函数的一阶导数公式:
f′(x)=f(x)·ln(a)
3、指数函数的二阶导数公式:
f′′(x)=f(x)·ln2(a)
三、三角函数公式:
1、三角函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、三角函数的一阶导数公式:
f′(x)=cosx
3、三角函数的二阶导数公式:
f′′(x)=-sinx
四、对数函数公式:
1、对数函数的定义:
定义域D:D={x|f(x)存在};值域R:R={y|y=f(x),x∈D}
2、对数函数的一阶导数公式:
f′(x)=1/x
3、对数函数的二阶导数公式:
f′′(x)=-1/x2
以上就是大一高数公式总结大全,这些公式可以帮助大学生掌握高数学习中的基本概念,为他们的学习提供便利。
大学高数常用公式大全.pdf
·正弦定理: a = b = c = 2R sin A sin B sin C
·余弦定理: c2 = a2 + b2 − 2abcosC
·反三角函数性质: arcsin x = − arccos x arctgx = − arcctgx
2
2
高阶导数公式——莱布尼兹(Leibniz)公式:
n
(uv)(n) = Cnk u (n−k)v(k) k =0
= u(n)v + nu(n−1)v + n(n −1) u(n−2)v ++ n(n −1)(n − k +1) u v (n−k) (k) ++ uv(n)
2!
k!
中值定理与导数应用:
拉格朗日中值定理: f (b) − f (a) = f ( )(b − a) 柯西中值定理:f (b) − f (a) = f ( )
导数公式:
(tgx) = sec2 x
(ctgx) = − csc2 x
(sec x) = sec x tgx
(csc x) = − csc x ctgx
(a x ) = a x ln a
(log
a
x)
=
1 x ln
a
高等数学公式
(arcsin x) = 1 1− x2
(arccos x) = − 1 1− x2
1 tg tg ctg( ) = ctg ctg 1
ctg ctg
·和差化积公式:
sin + sin = 2sin + cos −
2
2
sin − sin = 2 cos + sin −
2
2
大学高数公式大全
高等数学公式(tgx)sec 2x(arcsin x)11 x 2(ctgx) (secx) csc 2 secx x tgx(arccos x) 1 1 x 2(csc x) (a x)csc x a xln actgx ( arctgx ) 11 x(log a x)1 x ln a( arcctgx )1 1 x2 导数公式: 基本积分表:22n2xtgxdx ln cos x Cdx cos 2 x sec 2xdx tgx Cctgxdx ln sin x C dx csc 2xdxctgx Csecxdxcsc xdx ln secx tgx Cln csc x ctgx C sin xsecx tgxdx secx C dx a 2x21 x arctg C a a cscxa xdxctgxdxaxCcscx C dxx 2a 2dx 1lnx aC 2a x a 1 a xshxdx ln achx C a2 x 2ln C 2a a xchxdx shx Cdxa2x2arcsin x Ca dx x2a2ln( x x2a 2) C2I sin nxdx2cos nxdxn 1 In n 2x 2a 2dx x x 2a 22 x aln( x 2 a 2 x 2a 2) C x2 a 2dx x2 a2 2 x ln x2 a2 x 2a2Cxa2x 2 dxa2x22arcsin C 2 a三角函数的有理式积分:2u1 u 2x 2dusinx 1 u2 ,cosx 1 u 2 , u tg , 2 dx 1 u 2一些初等函数:两个重要极限:双曲正弦 : shxe e lim sin x 1 2x 0x 双曲余弦: chxe x ex 2xxlim (1 x 1 ) x xe 2.718281828459045... 双曲正切 : thx shx chx e ee x e xarshx ln( x x21)2x三角函数公式:·诱导公式:函数sin cos tg ctg角 A- α-sin αcos α-tg α-ctg α90 °-αcos αsinαctg αtgα90 °+αcos α-sin α-ctg α-tg α180 °-αsinα-cos α-tg α-ctg α180 °+α-sin α-cos αtgαctg α270 °-α-cos α-sin αctg αtgα270 °+α-cos αsinα-ctg α-tg α360 °-α-sin αcos α-tg α-ctg α360 °+αsinαcos αtgαctg αsin( cos( tg () sin) costg)coscostgcossinsinsinsinsinsinsin2 s in22 cos2cos2sin21 tg tgctg ( ) ctgctgctg 1ctgcoscoscoscos2 c os22 sin2cos2sin2·和差角公式:·和差化积公式:n·倍角公式:sin 2 cos2 ctg22 sin 2cos2ctg 2 2ctg cos 1 1 1 2 sin2cos2sin2sin3 cos33sin4 cos 33tg4 sin33costg 3tg 22tg 1 tg2tg31 3tg 2·半角公式:sin2tg 1 cos 2 1 cos1 cossincos2ctg1 cos2 1 cos1 cossin 21 cosa sinb 1 cosc 2 1 cos222sin 1 cos·正弦定理:sin Asin B2 Rsin C·余弦定理: c ab2 a bcos C·反三角函数性质: arcsin xarccosx2arctgxarcctgx2高阶导数公式——莱布尼兹(Leibniz )公式:(uv)( n )n C k u( n k 0k ) v(k )u( n)v nu ( n 1) vn(n 2!1) u(n2)vn(n 1) n k!k 1)u( nk)v(k )uv(n)中值定理与导数应用:拉格朗日中值定理: f (b)f (a) f ( )( b a)柯西中值定理: f (b) f (a)f ( ) F (b) F (a)F ( )当F( x) x 时,柯西中值定理就是 拉格朗日中值定理。
高数公式大全
高数公式大全高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) cos(3α)=4cos^3(α)-3cosα tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-c os(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin (π/2-α)=cosα cos (π/2-α)=sinα tan (π/2-α)=co tα cot (π/2-α)=tanα sin (3π/2+α)=-cosα cos (3π/2+α)=sinα tan (3π/2+α)=-cotα cot (3π/2+α)=-tanα sin (3π/2-α)=-cosα cos (3π/2-α)=-sinα tan (3π/2-α)=cotα cot (3π/2-α)=tanα·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n !+… 此时三角函数定义域已推广至整个复数集。
高数公式大全
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:角Acos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/Bcosα=[1-·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1-[编辑本段公式一:设αsin(2kπcos(2kπtan(2kπcot(2kπ公式二:设αsin(π+αcos(π+tan(π+cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2πtan(2πcot(2π-公式六:π/2±α及sin(π/2cos(π/2tan(π/2cot(π/2sin(π/2cos(π/2tan(π/2cot(π/2sin(3π/2cos(tan(3π/2cot(3π/2sin(3π/2cos(tan(3π/2cot(3π/2(以上k∈[编辑本段·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。
在是单位向量。
方向上的,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。