数列—等差、等比的证明

合集下载

等差等比数列的证明例举

等差等比数列的证明例举

等差等比数列的证明在数列的解答题中,有时第一问会要求证明某个数列是等差等比数列,既考察了学生证明数列的能力,同时也为后面的问题做好铺垫。

一、基础知识:1、如何判断一个数列是等差(或等比)数列 (1)定义法(递推公式):1n n a a d +-=(等差),1n na q a +=(等比) (2)通项公式:n a kn m =+(等差),()0n n a k q q =⋅≠(等比)(3)前n 项和:2n S An Bn =+(等差),n n S kq k =-(等比)(4)等差(等比)中项:数列从第二项开始,每一项均为前后两项的等差(等比)中项 2、如何证明一个数列是等差等比数列: (1)通常利用定义法,寻找到公差(公比)(2)也可利用等差等比中项来进行证明,即n N *∀∈,均有:122n n n a a a ++=+ (等差) 212n n n a a a ++=⋅ (等比)二、典型例题:例1:已知数列{}n a 的首项1133,,521nn n a a a n N a *+==∈+. 求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列 思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在1na 这样的倒数,所以考虑递推公式两边同取倒数:113121213n n n n n na a a a a a +++=⇒=+即112133n n a a +=+,在考虑构造“1-”:112111111333n n n a a a +⎛⎫-=+-=- ⎪⎝⎭即数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列思路二:代入法:将所证数列视为一个整体,用n b 表示:11n nb a =-,则只需证明{}n b 是等比数列即可,那么需要关于n b 的条件(首项,递推公式),所以用n b 将n a 表示出来,并代换到n a 的递推公式中,进而可从n b 的递推公式出发,进行证明 解:令11n n b a =-,则11n n a b =+ ∴ 递推公式变为:11311311113211n n n n n b b b b b +++=⇒=+++⋅++1113333n n n n b b b b ++⇒+=+⇒={}n b ∴是公比为13的等比数列。

等差数列和等比数列的证明方法

等差数列和等比数列的证明方法

等差数列和等比数列的证明方法证明等差数列的和的方法:设等差数列的首项为a,公差为d,有n项。

1.直接求和法:等差数列的和可以通过将所有的项相加来求得。

数列的第1项是a,第2项是a+d,第3项是a+2d,以此类推,第n 项是a+(n-1)d。

将所有的项相加得S=a+(a+d)+(a+2d)+...+(a+(n-1)d)可以发现,每一对括号中的两项加起来都是2a+(n-1)d。

由于一共有n对括号,所以有S=n(2a+(n-1)d)S=n/2(2a+(n-1)d)这个公式是等差数列和的公式。

2.差值法:将等差数列的所有项按顺序排列,并将数列翻转再相加,得到的和是a+(a+d)+(a+2d)+...+(a+(n-1)d)。

将两个和相加得到2S=(2a+(n-1)d)+(a+(n-2)d)+...+((a+(n-1)d)+a)化简得2S=n(a+a+(n-1)d)S=n/2(a+a+(n-1)d)这个公式也是等差数列和的公式。

3.数学归纳法:首先证明当n=1时,等差数列的和为a。

然后假设等差数列的前n项和为Sn=n/2(2a+(n-1)d)。

考虑等差数列的前n+1项和Sn+1Sn+1 = Sn + (a+nd)代入假设的公式得Sn+1 = n/2(2a+(n-1)d) + (a+nd)化简得Sn+1 = (n+1)/2(2a+nd)由此可以得到等差数列和的通项公式。

证明等比数列的和的方法:设等比数列的首项为a,公比为r,有n项。

1.直接求和法:等比数列的和可以通过将所有的项相加来求得。

数列的第1项是a,第2项是ar,第3项是ar^2,以此类推,第n 项是ar^(n-1)。

将所有的项相加得S = a + ar + ar^2 + ... + ar^(n-1)可以发现,这是一个等比数列,乘以r再减去自身,有rS = ar + ar^2 + ar^3 + ... + ar^nS - rS = a - ar^n化简得S(1-r)=a(1-r^n)当r不等于1时,可以除以(1-r)得到S=a(1-r^n)/(1-r)当r等于1时,n项的和为n。

第一讲等差等比数列

第一讲等差等比数列

第一讲 等差数列、等比数列一、等差数列1.定义:a n +1-a n =d (常数)(n ∈N *).2.通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d .3.前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 4.a 、b 的等差中项A =a +b2证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列;(4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.二、等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)若m 、n 、p 、q 、k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列.等差数列的性质推广:(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1) ②S 2n -1=(2n -1)a n .③n 为偶数时,S 偶-S 奇=n2d ;n 为奇数时,S 奇-S 偶=a 中.等差数列的单调性单调递增d >0 当01<a 时,n S 有最小值 单调递减 d<0 当01>a 时,n S 有最大值常数数列d=0三、等比数列证明{a n }是等比数列的两种常用方法(1)定义法:若a na n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列.(2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. 四、等比数列的性质1.对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . 2.通项公式的推广:a n =a m q n -m (m ,n ∈N *)3.公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n仍成等比数列,其公比为q n ;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.4.若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍是等比数列. 等比数列的单调性单调递增 a 1>0,q >1或者a 1<0,0<q <1 单调递减 a 1>0,0<q <1或者a 1<0,q >1常数数列 a 1≠0,q =1摆动数列 q <0基础自测1.(2013·课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是 a n =________.2.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.3.[2014·江苏卷] 在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.考点一 等差、等比数列的基本运算例1、[2014·重庆卷] 在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( ) A .5 B .8 C .10 D .1 2、(2013新课标全国Ⅱ)等比数列{a n }的前n 项和为S n .已知S 3 = a 2 +10a 1 ,a 5=9,则a 1=( )A.13 B .-13 C.19 D .-19跟踪练习1.(2013安徽)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .22.[2014·福建卷] 在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n .考点二等差、等比数列的性质例 1.(2012·辽宁高考)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()A.58B.88C.143D.1762.[2014·广东卷] 等比数列{a n}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.变式练习1、设等差数列{a n}的前n项和为S n,已知前6项和为36,最后6项的和为180,S n=324(n>6),求数列{a n}的项数及a9+a10.2、[2014·全国卷] 设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64考点三等差、等比数列的判断与证明要证明一个数列是等差(比)数列必须用定义法或等差(比)中项法.例1、[2014·全国卷] 数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.2、数列{a n }的前n 项和为S n ,若a n +S n =n ,c n =a n -1,求证:数列{c n }是等比数列,并求{a n }的通项公式.跟踪练习1、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.①求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;②求数列{a n }的通项公式.。

等差等比数列的证明ppt课件

等差等比数列的证明ppt课件
等差、等比数列的证明
1、定义法 an+1 - an=d 或 an-an-1=d
2、中项法 2an=an-1+an+1 (n>1)
3、通项公式法 an=pn+q(关于n的一次函数)
4、前n项和法 Sn=An2+Bn
1
等差、等比数列的证明 一、等差数列的证明
例1 已知数列an的前n项和为Sn=3n2 -2n, 证明数列an 成等差数列,并求其首项、
11
12
13
14
(2)
证明
an 2n
为等差数列,并求an
5
第七课时B组
8.已知数列an 的前n项和为Sn,Sn
=
1 3
(an
1)
(1)求a1、a2 .
(2)求证:数列an 是等比数列
6
等差、等比的计算问题的常用方法
方法1、利用等差、等比的性质 方法2、利用基本量(解方程组)
项(an)的性质: an=am+(n-m)d 任两项的关系式
am+an=ap+aq(m+n=p+q)角标和性质
和(Sn)的性质: Sm ,S2m -Sm ,S3m -S2m ,L 成等差
Sn与项an的关系:
7
重点回顾
数列
等差数列
等比
定义 通项公式
an+1-an=d 或 an-an-1=d
an= a1+(n-1)d
前n项和
性质 和Sn与项an 的关系
aanm=+ama+n(=n-amp)+d aq(m+n=p+q)
公差、通项公式
2
第四课时拓展延伸(2015新课标全国卷)

证明或判断等差(等比)数列的四种方法

证明或判断等差(等比)数列的四种方法

证明或判断等差(等比)数列的四种方法
判断等差数列的四种方法:
公差相等法:如果一个数列中任意两项之间的差值相等,则该数列为等差数列。

通项公式法:如果一个数列的通项公式是an=a1+(n-1)d,则该数列为等差数列。

前后项差值法:如果一个数列中任意两项之间的差值相等,则该数列为等差数列。

证明法:对于一个数列,如果它满足an+1 - an = d,则可以通过归纳法证明该数列是等差数列。

判断等比数列的四种方法:
公比相等法:如果一个数列中任意两项之间的比值相等,则该数列为等比数列。

通项公式法:如果一个数列的通项公式是an=a1*r^(n-1),则该数列为等比数列。

前后项比值法:如果一个数列中任意两项之间的比值相等,则该数列为等比数列。

证明法:对于一个数列,如果它满足an+1 / an = r,则可以通过归纳法证明该数列是等比数列。

以上是判断等差数列和等比数列的四种常见方法,它们都比较简单易行,可以帮助我们快速判断一个数列是否为等差数列或等比数列。

同时,在具体应用中,我们还可以根据题目要求选择合适的方法,从而更好地解决问题。

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法等差数列和等比数列是数学中常见的数列形式,它们在数学和实际问题中都有重要的应用。

下面我们来介绍等差数列和等比数列的证明方法。

等差数列是指数列中每两个相邻的数之间的差值都相等的数列。

等差数列的通项公式为An=a1+(n-1)d,其中a1是首项,d是公差,n是项数。

1. 通过公式法证明等差数列:假设有数列{an},首项为a1,公差为d,我们可以使用数列的通项公式An = a1 + (n-1)d。

通过将通项公式代入证明,我们可以得到每一项与前一项之间的差值都为d,从而证明这是一个等差数列。

2. 通过递推法证明等差数列:假设有数列{an},如果我们知道数列的首项a1和公差d,我们可以通过递推关系式an = an-1 + d来证明这是一个等差数列。

我们可以通过验证递推关系式对于所有项都成立,从而证明这是一个等差数列。

3.通过数列的性质证明等差数列:等差数列有很多重要的性质,例如,等差数列的中项等于首项与末项的平均数,等差数列的前n项和等于n倍首项与末项和的平均数。

如果我们通过对这些性质进行验证,可以得出结论这是一个等差数列。

等比数列是指数列中每两个相邻的数之间的比值都相等的数列。

等比数列的通项公式为An=a1*r^(n-1),其中a1是首项,r是公比,n是项数。

1. 通过公式法证明等比数列:假设有数列{an},首项为a1,公比为r,我们可以使用数列的通项公式An = a1 * r^(n-1)。

通过将通项公式代入证明,我们可以得到每一项与前一项之间的比值都为r,从而证明这是一个等比数列。

2. 通过递推法证明等比数列:假设有数列{an},如果我们知道数列的首项a1和公比r,我们可以通过递推关系式an = an-1 * r来证明这是一个等比数列。

我们可以通过验证递推关系式对于所有项都成立,从而证明这是一个等比数列。

3.通过数列的性质证明等比数列:等比数列有很多重要的性质,例如,等比数列的任意两项的比值都相等,等比数列的前n项和等于首项与末项和的乘积与公比的差的商。

等差数列与等比数列的证明

等差数列与等比数列的证明

3.2.3 证明数列是等差、等比数列证明一个数列是等差数列或者等比数列是高考的常考题型,是近几年出现的高频考点。

证明一个数列是等差数列的方法有(1)定义法:1()n n a a d n N ++-=∈,其中d 为常数;则数列}{n a 是等差数列(2)等差中项法:112(2)n n n a a a n -+=+≥,则数列}{n a 是等差数列;(3)通项公式法:若一个数列的通项公式为n a qn p =+,其中,p q 则数列}{n a 是等差数列。

证明一个数列是等比数列的方法:(1)定义法:1(0)n na q q a +=≠其中q 为常数,则数列}{n a 为等比数列(2)定比中项法:211n n n a a a +-=(2)n ≥,则数列}{n a 为等比数列。

例1、数列{}n a 满足12211,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.解:2122n n n a a a ++=-+Q ,2112n n n n a a a a +++∴-=-+,即112,2n n n n b b b b ++=+∴-=1211b a a =-=,1(1)221n b n n ∴=+-⨯=-(2)1213221,1,3n n n a a b n a a a a +-==-∴-=-=Q 1...23n n a a n --=- 21(1)n a a n ∴-=-,222n a n n ∴=-+例2、已知数列}{n a 的前n 项和为n S ,111,0,1,n n n n a a a a S λ+=≠=-其中λ为常数(1)证明:2n n a a λ+-=;(2)是否存在λ,使得}{n a 为等差并说明理由解:1121(1)1,(2)1n n n n n n a a S a a S λλ++++=-=-Q ,(2)(1)∴-得:121()n n n n a a a a λ+++-=0n a ≠Q 2n n a a λ+∴-=(2)112121,1,1a a a S a λλ==-∴=-Q 31a λ=+Q ,令2132a a a =+,4λ∴= 由(1)可知:2n n a a λ+∴-=,}{21n a -∴是首项为1,公差为4的等差数列,2143n a n -=-}{2n a 是首项为3,公差为4的等差数列,241n a n =-,121,2n n n a n a a +∴=--=∴存在4λ=,使得数列}{n a 为等差数列例3设数列}{n a 的前n 项和为n S ,已知121,2,a a ==且2133n n n a S S ++=-+,n N +∈(1)证明:23n n a a +=;解:2133,(1)n n n a S S ++=-+Q 当2n ≥时,2133,(2)n n n a S S +-=-+(1)(2)-得:2113n n n n a a a a +++-=-,2(2)n n a a n +∴=≥ 123121121,2,333()3a a a S S a a a ===-+=-++Q ,23n n a a +∴=(n N +∈) 设等差数列}{n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上,(1)证明:数列}{n b 为等比数列解:(,)n n a b Q 在函数()2x f x =的图象上,2n a n b ∴=,112n a n b ++=,1122n n a a d n nb b +-+== ∴数列}{n b 为等比数列。

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。

一、 定义法01.证明数列是等差数列的充要条件的方法:{}1()n n n a a d a +-=⇔常数是等差数列{}2222()n n n a a d a +-=⇔常数是等差数列 {}3333()n n n a a d a +-=⇔常数是等差数列02.证明数列是等差数列的充分条件的方法:{}1(2)n n n a a a d n --=≥⇒是等差数列 {}11(2)n n n n n a n a a a a +--=-≥⇒是等差数列03.证明数列是等比数列的充要条件的方法:{}1(00)n n na q q a a +=≠≠⇔1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:1nn a q a -=(n>2,q 为常数且≠0){}n a ⇒为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有1nn a qa -==(常数0≠);②n *∈N 时,有1n na q a +==(常数0≠).例1. 设数列12,,,,n a a a 中的每一项都不为0。

证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=。

证明:先证必要性设{}n a 为等差数列,公差为d ,则当d=0时,显然命题成立当d≠0时,∵111111n n n na a d a a++⎛⎫=-⎪⎝⎭∴再证充分性:∵122334111a a a a a a++⋅⋅⋅1111n n nna a a a++++=⋅⋅………①∴122334111a a a a a a++⋅⋅⋅11212111n n n n nna a a a a a++++++++=⋅⋅⋅………②②﹣①得:12121111n n n nn na a a a a a+++++=-⋅⋅⋅两边同以11n na a a+得:112(1)n na n a na++=+-………③同理:11(1)n na na n a+=--………④③—④得:122()n n nna n a a++=+即:211n n n na a a a+++-=-{}n a为等差数列例2.设数列}{na的前n项和为n S,试证}{na为等差数列的充要条件是)(,2)(*1NnaanS nn∈+=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列—等差、等比的证明
第一篇:数列—等差、等比的证明
等差、等比数列的证明
1.数列{a327
*n}的前n项和为Sn=2n+2
n(n∈N).
(Ⅰ)证明:数列{an}是等差数列;(Ⅱ)若数列{bn}满足:an=log2bn,证明:数列{bn}是等比数列.
2.已知数列{a*
n}的前n项和为Sn=4an-3(n∈N),证明:数列{an}是等比数列.3.已知数列{an}的前n项和为Sn,且满足:a1=1,Sn+1=4an+2(n∈N*).
(Ⅰ)证明:数列⎧⎨an⎫
⎩2n⎬⎭
为等差数列;(Ⅱ)证明:数列{an+1-2an}为等比数列.
4.已知数列{an}的前n项和为Sn,且满足:
Sn=2a2n+n-4n(n∈N*),证明:数列{an-2n+1}为等比数列.5.(2008北京文20)数列{an}满足:a1=1,a-λ)a*
n+1=(n2+nn,(n∈N)λ是常数.(Ⅰ)当a2=-1时,求λ及a3的值;
(Ⅱ)数列{an}是否可能为等差数列? 若可能,求出它的通项公式;若不可能,说明理由;
6.设函数f(x)=x2+m,m∈R,定义数列{an}如下:
a1=0,an+1=f(an)(n∈N*).(Ⅰ)当m=1时,求a2,a3,a4的值;
(Ⅱ)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列? 若存在,求出m的值;若不存在,说明理由.
6.(2008湖北21)已知数列{an}和{bn}满足:a1=λ,a2
n+1=
an+n-4,bnn=(-1)(an-3n+21),其中λ为实数,n∈N*.
(Ⅰ)证明:数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,证明你的结论.
7.(2010安徽20)设数列{an}中的每一项都不为0.证明:数列{an}为等差数列的充分必要条件是:对任何n∈N*,都有111n
a+a+⋅⋅⋅+=
a. 1a22a3anan+11an+1
8.(2011北京文、理20)
若数列An:a1,a2,⋅⋅⋅,an(n≥2)满足
ak+1-ak=1(k=1,2,⋅⋅⋅,n-1),则称An为E数列.
(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:
E数列An是递增数列的充要条件是an=2011.
第二篇:数列等差证明2010江西理数
数列等差证明2010江西理数
2010江西理数)22.(本小题满分14分)
证明以下命题:
(1)对任一正整a,都存在整数b,c(b
(2)存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an,bn,cn
成等差数列。

【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。

(1)考虑到结构要证a+c=2b,;类似勾股数进行拼凑。

证明:考虑到结构特征,取特值1,5,7满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。

结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。

证明:当an,bn,cn成等差数列,则bn-an=cn-bn,分解得:
(bn+an)(bn-an)=(cn+bn)(cn-bn)
选取关于n的一个多项式,4n(n-1)做两种途径的分解 ***22222 4n(n2-1)=(2n-2)(2n2+2n)=(2n2-2n)(2n+2)4n(n2-1)
⎧an=n2-2n-1⎪对比目标式,构造⎨bn=n2+1(n≥4),由第一问结论得,等差数列成立,⎪c=n2+2n-1⎩n
考察三角形边长关系,可构成三角形的三边。

下证互不相似。

任取正整数m,n,若△m,△n相似:则三边对应成比例m2-2m-1m2+1m2+2m-1==,n2-2n-1n2+1n2+2n-1
由比例的性质得:
m-1m+1=⇒m=n,与约定不同的值矛盾,故互不相似。

n-1n+1 第三篇:数列等比性质分析2013福建
数列等比性质分析2013福建
9.D5[2013·福建卷] 已知等比数列{an}的公比为q,记bn=am(n-1)+1+am(n-1)+2+…+am(n
*
-1)+m,cn=am(n-1)+1·am(n-1)+2·…·am(n-1)+m(m,n∈N),则以下结论一定正确的是()
mA.数列{bn}为等差数列,公差为q
2mB.数列{bn}为等比数列,公比为q
2C.数列{cn}为等比数列,公比为qm
mD.数列{cn}为等比数列,公比为qm
9.C [解析] 取an=1,q=1,则bn=m,cn=1,排除A,取a1=1,q=-1,m取正偶
cn+1amn+1·amn+2·…·amn+mmmm数,则bn=0,排除B,==q·q·…·q,sdo4(共cnam(n-1)+1·am(n-1)+2·…·am(n -1)+m
m个))=qm,故选C.2
第四篇:证明等比等差数列
1.已知数列满足a1=1,an+1=2an+1(n∈N*)(1)求证数列{an
+1}是等比数列;(2)求{an}的通项公式.
2.已知数列{an}中,a13=5,an=2-1an-1(n≥2,n∈N)+,数列{bn}满足
bn=1(n∈N+)an-1;
(1)求证:数列(2)求数列
{bn}是等差数列;
{an}的通项公式
na=1,a=2a+2{}3.在数列an中,1 n+1n(1)设bn=an,n-1证明2{bn}是等差数列;(2)求数列{an}的通项公式。

4.设数列
{lgan}是等差数列;{an}的前n项和为Sn,a1=10,an+1=9Sn+10。

求证:
5.已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=1/2.(1)求证:{1/Sn}是等差数列;(2)求an表达式;
第五篇:数列等比证明二项式定理错项求和2011四川
数列二项式定理错项求和2011四川
011年高考四川卷理科20)(本小题共12分)
设d为非零实数,an = 1122n-1 n-1nn* [Cn d+2Cnd+…+(n—
1)Cnd+nCnd](n∈N).n
(I)写出a1,a2,a3并判断{an}是否为等比数列.若是,给出证明;若不是,说明理由;(II)设bn=ndan(n∈N),求数列{bn}的前n项和Sn.解析:(1)*
a1=d
a2=d(d+1)
a3=d(d+1)2
01223n-1nan=Cnd+Cnd+Cnd+Λ+Cnd=d(1+d)n-1
an+1=d(1+d)n
an+1=d+1an
因为d为常数,所以{an}是以d为首项,d+1为公比的等比数列。

bn=nd2(1+d)n-1
(2)Sn=d2(1+d)0+2d2(1+d)1+3d2(1+d)2+ΛΛ+nd2(1+d)n-1 =d2[(1+d)0+2(1+d)1+3(1+d)2+ΛΛ+n(1+d)n-1](1)(1+d)Sn=d2[( 1+d)1+2(1+d)2+3(1+d)3+ΛΛ+n(1+d)n](2)
1⋅(1-(1+d)n)+d2n(1+d)n=d+(d2n-d)(1+d)n(2)-(1)=dSn=-d[1-(1+d)2
∴Sn=1+(dn-1)(1+d)n。

相关文档
最新文档