TMR技术在电流传感器中的应用

TMR技术在电流传感器中的应用
TMR技术在电流传感器中的应用

隧道磁电阻(TMR)技术在电流传感器中的应用

电流传感器是在电气绝缘的状态下,利用电流所

产生的磁场来检测电流值的一种介于高、低电压之间

图1:开环式电流传感器

磁平衡式或磁补偿式电流传感器。

图2:闭环式电流传感器

其中的关键器件,对传感器性能优劣起着至关重要的作

用。目前市场上的电流传感器主要是采用传统的霍尔器

件,由于半导体材质自身原因,霍尔器件的温度漂移量

较大,一致性差,尤其在低温区变化剧烈,难以进行统

一校准。动态失调消除技术的采用可部分改善霍尔器件

的温度漂移,但在电路中叠加了高频噪声干扰,造成电

流传感器的输出信号失真,影响整机性能。

隧道磁电阻(TMR)器件是继霍尔器件、各向异性磁

度和温度特性。

图3:霍尔传感器和TMR传感器比较

图4:各种磁传感器灵敏度比较

第1 页

第 2 页

图5:TMR 线性传感器采用SSIP-4封装

6

:TMR 闭环电流传感器实物图

基于TMR 的优异性能,闭环电流传感器可显著改善其温度漂移量。替代后,无需任何温度补偿,电流传感器在-40~85C 的温度范围内的温度漂移总量即可由原来的1~2%降至0.1~0.2%。在使用温度宽泛的场所如变频器、伺服器、电动车辆等应用时,TMR 闭环电流传感器可确保在任何地区、任何季节的电流测量的精准度;特别是在风能、太阳能等新能源行业中,电流传感器的温度漂移可直接导致逆变器输出电能中的直流成分的增加,不仅造成能源浪费,直流成分还会消耗在变压器绕组中,造成变压器过热。电流传感器温度漂移的改善,将会给能源行业带来直接的经济效益和必要的安全性。

江苏多维科技有限公司生产的TMR2501、TMR2503、TMR2505线性传感器采用SSIP-4封装,在垂直方向测量磁场,与通行的霍尔器件完全兼容。对闭环电流传感器

来说,电流传感器厂家只需改变一下磁传感器的偏置电阻值,无需更改PCB 设计和产品结构既可直接替代霍尔器件。

图7:多维科技的TMR 闭环电流传感器

江苏多维科技有限公司生产的TMR2101、TMR2102、

TMR2103、TMR2701、TMR2703、TMR2705、TMR2905和TMR2922为平面方向测量磁场,配合使用纵向气隙磁芯。摆脱了断面气隙

漏磁所带来的困扰,大大提升了磁芯的聚磁能力,使电流传感器的分辨率低至毫安量级,并有效遏制外来干扰。较之磁通门闭环电流传感器,TMR 闭环电流传感器结构简单,抗干扰能力强,分辨率高。产品响应时间快,测量频带宽。

图8:闭环电流传感器的典型电路

上图为闭环电流传感器的典型电路,其中原有的霍尔器件H1可以直接用TMR 替代。通过调整偏置电阻R1和R2,使H1的1、3引脚间电压为1伏左右。例如:当电源电压为+/-15V ,TMR 输入电阻为6k 欧姆时,若1、3引脚间电压为1V ,则H1输入电流Id=1V /6k =0.17mA ,偏置电阻R1及R2=(15-0.5)/0.17=85.3K Ω。

R A 和R B 为上下对称结构,用于调整传感器的失调值,建议采用相同系列电阻,以降低调整电阻与磁传感器之间的温度系数差异所带来的额外误差。

多维科技承诺本说明书所提供的信息是准确和可靠的,所公开的技术未触犯其他公司的专利且具有自主知识产权。多维科技具有保留为提高产品质量,可靠性和功能以更改产品规格的权力。多维科技对任何超出产品应用范围而造成的后果不承担法律责任。 “多维科技”和“多维科技 感知未来”是江苏多维科技有限公司的合法注册商标。

霍尔电流传感器的应用场合

霍尔电流传感器的应用场合 1、继电保护与测量:在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用:在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用:在逆变器中,用霍尔电流传感器可进行接地故障检测、直接侧和交流侧的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用:在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用霍尔电流传感器1发出信号并进行反馈,以控制晶闸管的触发角,霍尔电流传感器2发出的信号控制逆变器,霍尔电流传感器3控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用:在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制:电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用:用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理:霍尔电流传感器,可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发现过载,便及时使受控的线路断开,保证用电设备的安全。用这种装置,也可进行负载分配及电网的遥控、遥测和巡检等。

新型光纤电流传感器及其应用

新型光纤电流传感器及其应用 电流测量在很多领域均有着广泛的应用,如工业中的电力传输、军事上的船舰全电推进以及科研应用中的超短脉冲电流监测等,都会涉及到电流测量。随着科技的发展,对各类电流信号的测量需求也在不断提升,传统的电磁式电流互感器暴露出瞬态响应差、易饱和、绝缘困难以及随着电压等级提高而产生的运行成本过高等缺陷,而基于法拉第磁光效应的光学电流传感器可以很好的克服这些缺陷,表现出的很大的应用潜力,其中尤以光纤电流传感器(Fiber Optical Current Sensor,简称FOCS)优势最为明显,它采用闭合光路设计,其相比于传统的电流互感器不仅具有不受外界电磁干扰的特性,而且兼具测量动态范围大、电气绝缘性好、体积小、重量轻等优势,可覆盖不同领域的电流测量需求,已受到越来越受到广泛地关注。结合国内外研究发展现状,分析了各类电流传感器的优缺点,并提出一种基于偏振调制型原理的新型全光纤电流传感器,它采用与干涉型光纤电流传感器相同的闭合光路设计,但无需额外的光信号调制,其测量精度可满足一般工程应用要求,因此有很大的成本优势。文中对其光路和算法设计进行了阐述并搭建了试验样机。 立足实际工程应用,并以工频电流测量和雷电防护两个应用方向为研究对象展开工作,首先对通过调整反射镜的位置和对系统进行零偏补偿使其闭环误差和系统零偏误差满足应用需求,随后以解决全光纤电流传感器实际工程应用的典型技术难点——易受温度影响为目的,对其复杂的非线性温度特性做了详细分析,并通过BP神经网络强大的非线性映射性能对变温实验中传感光纤线圈的变比系数与对应温度数据进行非线性拟合,利用获得的温度补偿曲线对其进行在线温度补偿,使这种新型的全光纤电流传感器在-5℃~+50℃温度范围内达到国标中规定的0.5级要求。最后,从实际工程应用出发,结合该传感器的快速响应优势,将其应用于雷电防护测量。试验中以Pearson电流传感器测量结果作为参考基准,使用新型全光纤电流传感器对8/20μs雷电流进行准确、快速的全波实时波形测量,通过软件及硬件优化,使其在2kA~1500kA雷电流范围内满足工业应用需求。

霍尔电流传感器电源消耗电流计算方案

霍尔电流传感器电源消耗电流计算方案 霍尔电流传感器由于具有精度高、线性好、频带宽、响应快、过载能力强和无插入损耗等诸多优点,因而被广泛应用于变频器、逆变器、电源、电焊机、变电站、电解电镀、数控机床、微机监测系统、电网监控系统和需要隔离检测的大电流、电压等各个领域中。霍尔传感器需用到直流电源供电才可正常工作,在做产品设计时需要考虑其功率消耗,本文基于传统的霍尔电流传感器,精确计算其电流消耗,并利用LTspice软件进行仿真,所推导的理论计算公式可为产品设计提供参考。 霍尔电流传感器工作原理 从工作原理上,霍尔电流传感器可以分为霍尔开环电流传感器和霍尔闭环电流传感器。 ●霍尔开环电流传感器 图1 霍尔开环电压传感器的工作原理 霍尔传感器的磁芯使用软磁材料,原边电流产生磁场通过磁芯聚磁,在磁芯切开一个均匀的切口,磁芯气隙处磁感应强度与原边电流成正比,霍尔元件两端感应到的霍尔电压的大小与原边电流及流过霍尔元件电流的乘积成正比,霍尔电压经过放大后作为传感器的输出。其输出关系式满足: VOUT=K*IP*IHall 其中K为固定的常数,其大小通常与磁芯的尺寸,材料性质,气隙开口的宽度,以及处理电路的放大倍数有关。 ●霍尔闭环电流传感器的工作原理: 闭环电流传感器在开环的基础上增加了反馈线圈,霍尔元件两端感应到的霍尔电流经过放大后控制后端的三极管电路产生补偿电流,补偿电路流过缠绕在磁芯上的线圈,产生的磁场与原边电流产生的磁场方向相反,当磁芯气隙处的磁场强度补偿为0时,传感器的输出满足IS=IP/KN,其中KN为补偿线圈的匝数。

图2 霍尔闭环电压传感器的工作原理 传感器的功耗计算 ●开环电流传感器的功耗计算 对于开环电流传感器,因为其输出信号为电压,所以其功耗相对较为稳定。通常霍尔电流传感器的电流设计为采用正负电源供电,其额定输出电压一般为几伏,一般不超过10伏。输出端对负载的要求一般为大于10KΩ,所以流过负载的电流一般小于1个mA。通常开环传感器的电流消耗小于15mA。电流消耗主要是霍尔元件消耗的电流,流入霍尔元件两端的电流通常要求小于20mA,LEM 的产品霍尔电流通常在10mA左右。另外在调压支路还有几mA的电流消耗。这样开环传感器的电流消耗可以维持在十几mA的水平内,通常说明书上标的都是不超过15mA。 ●闭环电流传感器的功耗计算 闭环传感器输出信号为电流,其功耗相对于开环传感器多很多,下面以LF 205-S为例来分析闭环电流传感器的电流消耗。 图3为LF 205-S的原理示意 图4为LF205-S原理图

霍尔电流传感器说明书

'4 &, ????????????FS500EK1 Hall-effect Current Sensor Series ??????????????????????????????????ф????????????ǎ Open loop current sensor based on the principle of Hall-effect. It can be used for measuring AC,DC,pulsed and mi. ?????1,+15V 2,-15V 3,V out 4,0V(???) OFS,????GIN,???? Elucidation: 1:+15V 2:–15V 3: VOUT 4:0V(GND) OFS:Zero adjustment GIN:Gain adjustment ????/Remarks 1???????????????ǎ????????????????????????????????????ǎ2???????????????????????ǎ 3??????????????К???????????ǎ·Incorrect connection may lead to the damage of the sensor. ·VOUT is positive when the IP flows in the direction of the arrow. ???/Electrical characteristics ??Type ?????К?? Primary nominal input current ???????? Measuring range of primary current ????????Nominal output voltage ???? Supply voltage ???? Current consumption ???? Insulation voltage ???Linearity ??????Offset voltage ?????Residual voltage ??????Thermal drift of V0???? Response time ????(-3dB) Frequency bandwidth(-3dB) ?????? Ambient operating temperature ?????? Ambient storage temperature ???? Load resistance ?юStandard FS050EK1FS100EK1 FS200EK1 FS300EK1FS400EK1 FS500EK1 50 100 200 300 400 5000~±100 0~±200 0~±400 0~±600 0~±800 0~±1000 4±1%±12~±15(±5%) V C =±15V <25 ??????????2 .5KV ???/50Hz/1?? <1 T A =25℃ I PN ? I P =0 T A =-25?+85?  <±1 DC ?20-25?+85 .GI/FS-0105 -40?+100A A V V mA %FS mV mV mV/℃?V kHz ℃℃??????mm ?/Dimensions of drawing (mm) I PN I P V OUT V C I C V d ?L V 0V OM V OT Tr f T A T S R L 5 electronics

高精度电流传感器研制_贺兴容

高精度电流传感器研制 贺兴容 (四川省电力公司建设集团公司,四川成都 610041) 摘 要:提出了一种用于绝缘在线监测技术的新型高精度电流传感器的研究方法。该方法旨在普通电流传感器基础上采用电流补偿方法,使传感器工作在磁平衡状态,从而消除电流传感器误差,提高传感器测试精度。实验证明这种方法不仅可行,而且具有补偿效果明显、测试精度高等特点,为进一步提高绝缘在线监测测试精度和稳定性提供了一条新的途径。 关键词:电流传感器;绝缘;在线监测;磁平衡 Abstract:A new method of highly accurate current sensor used in on-line insulation moni tori ng system is presented.In this way, current sensor can work accurately and without any error based on a magnetic force balance by compensating the current.The test re-sults of this method show that i t is not only feasible,but also has a remarkable compensation effect and a higher accuracy.It gives a new way to enhance the accuracy and stabili ty of on-line insulation monitoring system. Key words:curren t sensor;insulation;on-line monitoring;magnetic force balance 中图分类号:TM835 文献标识码:B 文章编号:1003-6954(2006)05-0055-02 提出一种基于电流补偿技术的新方法,采用电子 电路能自适应补偿的电流传感器,它具有补偿效果明显、带负载能力强及具有较强的抗干扰能力等特点,为研制高精度的电流互感器提供了一种新的途径,提高了绝缘在线监测测量精度。 1 高精度电流传感器基本原理 绝缘在线监测电流传感器工作原理类似于传统的电流互感器,它采用穿芯式环形结构,通过在普通型电流传感器的副边接入补偿电路,检测激磁电流产生的磁势,根据电磁感应定律将磁通转变成电压,经运放放大后在补偿绕组中产生电流,最终以磁势形式补偿,使传感器工作在磁平衡状态,形成磁闭环,从而提高传感器负载能力和转换精度。 2 高精度电流传感器的传输特性分析 当传感器原边通以电流时,在副边取电压信号,故其传递函数为: H= U2/ U1 当外接负荷R L时,如图1示(图中以P算子代替j )。由电路理论知: U2= R m j L m(1 j C 2 R L) R m j L m+r 2+j L 2 + 1 j C 2 R (1) H i(j ) jR L R m L m m L m L m2 L2 2L m m m L2 m2m2 (2) 其幅频特性为: H L=|H i(j )|=H= U2/ U1= R L R m L m [R m R L- 2L m(R L R m C 2 +R L C 2 r 2)]2+ 2[R L L m+R m L m+R L C 2 (R m r 2- 2L m L 2 )]2 (3) 相频特性为: Q1= arctg R m R L- 2L m(R L R m C 2 +R L C 2 r 2) [R L L m+R m L m+R L C 2 (R m r 2- 2L m L 2 )] (4) 图1 传感器传输特性分析 对于工程设计,可将进一步简化。一般C2 为pF 数量级,L2 为 H数量级,故在低频时, 2L2 C25 <

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

霍尔电流传感器及其应用

霍尔电流传感器及其应用 在现代社会中,信息化的需求越来越庞大,传感器在信息采集中发挥了重要作用。他们可以把各种物理信息,按照一定的规则,为可测量的电信号。我们所测量的电信号,以及相关物理信息的关系的变化的基础上,我们可以得到所测量的物理的变化或大小。 根据该传感器的工作原理,我们可以划分成多种类型的传感器,如光电传感器,电荷传感器,电位型传感器,半导体传感器,电传感器,磁传感器,谐振式传感器,电动化学式传感器等等。 霍尔传感器是利用霍尔元件的霍尔效应原理,(可以音乐会的物理信息),如电流,磁场,位移,压力等,为电动势输出。它属于电位型传感器。当前,这种传感器主要是霍尔集成电路,核心单元是基于霍尔效应。这是由通过集成电路技术。因此,它不仅仅是一种集成电路,而是一种磁传感器。 本文根据实际应用,主要是霍尔电流传感器。 1 霍尔效应 在金属或半导体晶片放置在磁场中,并且如果有一个通过它的电流,会产生电动势,(在垂直方向上的电场和磁场,调用此种物理现象霍尔效应。) 在磁场中产生的洛伦兹力的作用下,通电的半导体芯片的载体,分别偏移积累到芯片的两侧,从而形成一个电场,称霍尔电场。霍尔电场产生的电场力,是相反的洛伦兹力,阻碍了继续堆积,直到(大厅)电场力和洛伦兹力。此时,芯片的两侧,将设置一个稳定的电压,这是霍尔电压。 2 霍尔电流传感器 随着城市人口和城市建设规模的扩大,以及各种电气设备的增加,功耗也越来越大。城市的供电设备经常超载,而电源环境越来越差,“测试”的权利越来越严重。因此电源问题越来越多的显现出来。现在,小功率电源设备已经越来越多的与新技术相结合。例如,开关电源,硬切换,软切换,参数稳压器,线性反馈稳压器,磁放大器技术,数控压力调节,PWM,,SPWM,电磁兼容等实际需求直接推动电源技术的发展和进步。为了检验并显示当前自动,自动保护功能和更先进的智能控制,过电流,过电压的危害。如发生时,电源技术与传感检测,传感采样,传感保护已成为一种趋势。传感器检测电流或电压,所谓的霍尔电流传感器应运而生,(并迅速成为最喜爱的设计师在我国的电源). 2.1 霍尔电流传感器的性能特性 霍尔电流传感器具有优越的性能,并且它是一种先进的电检测元件,它可以隔离主回路和电子控制电路。它有变压器和分流器的所有优点,并且在同一时间,克服了他们的缺点(变压器可以只施加的电源频率的测量,50赫兹,分流器是无法做隔离测量),使用同一个霍尔电流传感器模块检测元素,不仅可以测量AC,也可以检测直流,甚至可以检测瞬时峰值。它具有以下性能特点。 (1)测量任意波形的电流,如DC,AC乃至瞬态峰值参数测量的; (2)精度高。在工作区中的一般霍尔电流传感器模块的精度高于1%,并且是适用于任何波形测量精度; (3)线性度优于0.5%; (4)良好的动态性能。一般的电流传感器模块的动态响应时间小于7us,跟踪速度di|dt 是上述50A|us; (5)工作频段宽。它可以工作在频率范围从0到20KHZ非常好; (6)过载能力强。测量范围宽(0-10000A); (7)高可靠性。平均无故障工作是超过5*10000小时; (8)体积小,重量轻,易于安装系统,不会带来任何损失。

霍尔电流传感器的电路设计

一种霍尔电流传感器的电路设计 设计了一种零磁通型霍尔电流传感器,可广泛应用于交流变频驱动、焊接电源、开关电源、不间断电源等领域。该零磁通型霍尔电流传感器通过砷化镓霍尔元件检测由通电电流产生的磁场,继而有效地检测被测电流。 由于霍尔元件产生的霍尔电势很微弱,而且还存在较大的失调电压,因此对霍尔电压的放大和对不等位电势的补偿是该设计的两个主要需要解决的问题,而且霍尔元件中载流子浓度等随温度变化而变化,因此还需用温度补偿电路对其温度补偿。 1 系统设计框架 系统分为4个部分:1)霍尔元件的供电电路,由电压基准(电流基准)芯片为霍尔片提供工作电流; 2)霍尔元件及磁芯,将感应片感应的磁场(该磁场由通电电流产生)转化为霍尔电压;3)放大电路,将微弱的霍尔电压进行放大;4)反馈部分,利用了磁平衡原理:一次侧电流所产生的磁场,通过二次线圈电流进行补偿,使磁芯始终处于零磁通工作状态。其系统总流程图如图1所示。 2 系统硬件电路设计 系统由±5 V的稳压源供电。用一片电压基准芯片REF3012为砷化镓系列的霍尔元件HW300B提供基准电压。HW300B是一款可采用电压模式供电和电流模式供电的霍尔元件,HW300B放在开有气隙的集磁环的气隙里,并用胶水加以固定(霍尔元件和集磁环相对位置如果发生变化,会影响产生的霍尔电势的大小)。霍尔元件的输出接至仪器放大器AD620,作为放大器的差模出入端和共模输入端。放大器的增益可通过调节1、8引脚之间的10 kΩ的电位器改变。放大器的输出接反馈线圈,该反馈线圈绕在集磁环上,其绕线方向能使通过它的电流产生的磁场与集磁环收集到的磁场方向相反。反馈线圈末端放1个75 kΩ的精阻接地,可以通过测量精阻两端的电压,计算反馈线圈中的电流,进而推算穿过集磁环中心的被测电流的大小。其具体电路图如图2所示。 2.1 REF3012 以SOT23-3封装的REF3012是一个高精度、低功耗、低电压差电压参考系列芯片。REF3012小尺寸和低功耗(最大50μA)非常适用于便携式和电池供电。它不需要负载电容,但对任何容性负载很稳定。因磁敏型霍尔元件很容易受温度的影响,可以采用恒流源供电以减小其温度系数。在该系统设计中,REF3012的输入引脚1接+5 V电源,并接10μF的旁路电容至地,该旁路电容对电源进行滤波,提高电源稳定性。而其输出引脚2接到HW300B的引脚1,并且也接1O μF的旁路电容至地,GND(地)引脚3接地。由于系统设计要求REF3012为HW300B提供2.5 V的基准电压,根据REF3012的数据资料可知,当输入电压为5 V 时,输出电压为2.5 V,所以REF3012引脚1接+5 V电压。 2.2 霍尔元件 本设计采用砷化镓系列的HW300B型霍尔元件,输出霍尔电压范围122~204mV,输入、输出阻抗为240~550 Ω,补偿电压为-7~7 mV,温度系数为-1.8%/℃。其输入可采用电压模式供电,也可采用电流模式供电。这里采用电压模式供电,即就是HW300B的引脚1、3为控制输入端,而引脚2、4为霍尔电压输出端。 霍尔元件是将磁场转换为电信号的线性磁敏元件,霍尔输出电压 式中,S为乘积灵敏度,mV/(mT·mA);Ic为工作电流,mA;B为磁感应强度,mT。 本设计中,将霍尔元件放进开有气隙的集磁环的气隙里,并将霍尔元件和集磁环固定,这样可以感应出更大、更稳定的霍尔电势。式(1)中,当S与Ic一定,则Vh与B有直接线性关系。通电导体周围必然产生磁场,根据安培定律,电流与磁场的关系式∮BdI=μ0I0得:

电流传感器

电流传感器 电流传感器- 技术 电流传感器 伴随着城市人口和建设规模的扩大,各种用电设备的增多,用电量越来越大,城市的供电设备经常超负荷运转, 用电环境变得越来越恶劣,对电源的“考验”越来越严重。据统计,每天,用电设备都要遭受120次左右各种的电 源问题的侵扰,电子设备故障的60%来自电源。因此,电源问题的重要性日益凸显出来。原先作为配角,资金 投入较少的电源越来越受到厂商和研究人员的重视,电源技术遂发展成为一门崭新的技术。小小的电源设备已经融合了越来越多的新技术。例如开关电源、硬开关、软开关、参数稳压、线性反馈稳压、磁放大器技术、数控调压、PWM、SPWM、电磁兼容等等。实际需求直接推动电源技术不断发展和进步,为了自动检测和显示电流,并在过流、过压等危害情况发生时具有自动保护功能和更高级的智能控制,具有传感检测、传感采样、传感保护的电源技术渐成趋势,检测电流或电压的传感器便应运而生并在中国开始受到广大电源设计 者的青睐。 电流传感器- 工作原理

电流传感器 从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应,当原边导线经过电流传感器时,原边电流IP会产生磁力线①,原边磁力线集中在磁芯②周围,内置在磁芯气隙中的霍尔电极③可产生和原边磁力线①成正比的大小仅几毫伏的电压,电子电路④可把这个微小的信号转变成副边 电流IS⑤,并存在以下关系式: (1)其中,IS—副边电流; IP—原边电流; NP—原边线圈匝数; NS—副边线圈匝数; NP/NS—匝数比,一般取NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS一般很小,只有100~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的输出电压信号。 电流传感器- 分类

(仅供参考)LEM电流传感器

LEM电流传感器在电梯门机专用变频器 电流检测及过流保护中的应用 张永红冯子龙金辛海曹叶楠 (上海新时达电气有限公司研发中心,上海201802) 摘要:介绍LEM电流传感器的工作原理、特性以及在电梯门机专用变频器电流检测及过流保护中的应用,给出了由LEM电流传感器组成的检测与保护电路结构。 关键词:电流传感器;检测;保护;电梯门机专用变频器 Abstract: The function principle and characteristics of LEM current sensors and the application in the detection and protection of inverter for doors of elevator are introduced in this paper. Several practical detection and protection circuits are given also. Key words: current sensor; detection; protection; inverter for doors of elevator. 1引言 iAStar系列电梯门机专用变频器是根据电梯门机特点而精心设计,它具有效率高、重量轻、体积小等优点,主要应用于电梯自动门及各种自动门的控制场合。随着变频调速的发展, PWM变频器应用日益广泛,对其可靠性要求也越来越高。因此,在PWM变频调速中,驱动电路和过流保护电路的合理设计和周密的考虑是相当重要的。 2LEM电流传感器工作原理及特性 当今,环境保护是世界范围内最重要的问题之一。低成本、高性能、体积小、5V供电是环境保护对电力行业的基本要求。LEM是电流测量控制、监控、保护领域的领导者,其在驱动、不间断电源、开关电源、功率变化电源等领域有着丰富的应用经验。 2.1 LEM电流传感器的工作原理 LEM 电流传感器是一种模块化的有源电子传感器。它的突出优点在于把普通传感器与霍尔器件、电子电路有机地结合起来,既沿袭了普通传感器测量范围大的长处,又发挥了电子电路反应速度快的优势。 图1是LEM电流传感器的原理图。

霍尔电流传感器提高精度的方法

霍尔电流传感器基于磁平衡式霍尔原理,根据霍尔效应原理,从霍尔元件的控制电流端通人电流Ic,并在霍尔元件平面的法线方向上施加磁场强度为B 的磁场,那么在垂直于电流和磁场方向(即霍尔输出端之间),将产生一个电势VH,称其为霍尔电势,其大小正比于控制电流I。下面就让艾驰商城小编对霍尔电流传感器提高精度的方法来一一为大家做介绍吧。 霍尔电流传感器提高量精度、首先在安装接线、即时标定校准和使用工作环境考虑外,还需要通过以下方法来进行提高: 1、原边导线应放置于传感器内孔中心,尽可能不要放偏; 2、原边导线尽可能完全放满传感器内孔,不要留有空隙; 3、需要测量的电流应接近于传感器的标准额定值ipn,不要相差太大。如条件所限,手头仅有一个额定值很高的传感器,而欲测量的电流值又低于额定值很多,为了提高测量精度,可以把原边导线多绕几圈,使之接近额定值。例如当用额定值100a的传感器去测量10a的电流时,为提高精度可将原边导线在传感器的内孔中心绕十圈(一般情况,np=1;在内孔中绕一圈,np=2;……;绕九圈,np=10,则np×10a=100a与传感器的额定值相等,从而可提高精度); 4、当欲测量的电流值为ipn/10的时,在25℃仍然可以有较高的精度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/bf3342035.html,/

霍尔电流传感器的应用

霍尔电流传感器的应用 霍尔电流传感器广泛应用在变频调速装置、逆变装置、UPS电源、通信电源、电焊机、电力机车、变电站、数控机床、电解电镀、微机监测、电网监测等需要隔离检测电流的设施中以及新兴的太阳能、风能和地铁轨道信号、汽车电子等领域。 1、继电保护与测量: 在工业应用中,来自高压三相输电线路电流互感器的二次电流,如分别经三只霍尔电流传感器,按比例转换成毫伏电压输出,然后再经运算放大器放大及有源滤波,得到符合要求的电压信号,可送微机进行测量或处理。在这里使用霍尔电流传感器可以很方便地实现了无畸变、无延时的信号转换。 2、在直流自动控制调速系统中的应用: 在直流自动控制调速系统中,用霍尔电流电压传感器可以直接代替电流互感器,不仅动态响应好,还可实现对转子电流的最佳控制以及对晶闸管进行过载保护。 3、在逆变器中的应用: 在逆变器中,用霍尔电流传感器可进行接地故障检测、直接测和交流测的模拟量传感,以保证逆变器能安全工作。 4、在不间断电源中的应用: 在该应用中,用霍尔电流传感器进行控制,保证逆变电源正常工作。使用①霍尔电流传感器发出信号并进行反馈,以控制晶闸管的触发角,②霍尔电流传感器发出的信号控制逆变器,③

霍尔电流传感器控制浮充电源。由于其响应速度快,霍尔电流传感器特别适用于计算机中的不间断电源。 5、在电子点焊机中的应用: 在电子点焊机电源中,霍尔电流传感器起测量和控制作用。它的快速响应能再现电流、电压波形,将它们反馈到可控整流器A、B,可控制其输出。用斩波器给直流迭加上一个交流,可更精确地控制电流。用霍尔电流传感器进行电流检测,既可测量电流的真正瞬时值,又不致引入损耗。 6、用于电车斩波器的控制: 电车中的调速是由调整电压实现的。而将霍尔电流传感器和其它元件配合使用,并将传感器的所有信号输入控制系统,可确保电车正常工作。 7、在交流变频调速电机中的应用: 用变频器来对交流电机实施调速,在世界各发达国家已普遍使用,且有取代直流调速的趋势。用变频器控制电机实现调速,可节省10%以上的电能。在变频器中,霍尔电流传感器的主要作用是保护昂贵的大功率晶体管。由于霍尔电流传感器的响应时间往往小于5μs,因此,出现过载短路时,在晶全管未达到极限温度之前即可切断电源,使晶体管得到可靠的保护。 8、用于电能管理: 霍尔电流传感器可安装到配电线路上进行负载管理。霍尔电流传感器的输出和计算机连接起来,对用电情况进行监控,若发

穿孔式电流传感器BA05等系列说明书

BA系列交流电流传感器 安科瑞邱红 江苏安科瑞电器制造有限公司江苏江阴 1产品概述 BA系列交流电流传感器采用电磁感应原理,对电网中的交流电流进行实时测量,采用精密恒流技术和线性温度补偿技术,将其隔离变换为标准的直流信号输出。为PLC或DCS系交流电流传感器统一提供电流信号。采用24伏或12伏安全电压供电,具有过载能力强、高精度、高隔离、高安全性、低功耗等特点,可广泛用于工业自动化领域。 2型号说明 3技术指标

?BA05电流传感器 ?BA10电流传感器

?BA20电流传感器 ?BA50电流传感器 5、接线示例 如图所示穿心输入Iac,电流输出型传感器的输出为共地电流源,电压输出型传感器的输出为共地电压源。图中RL是用户负载,输出为电流时,负载≤400Ω(12V供电)或≤800Ω(24V供电);输出为电压时负载≥1kΩ。

6实际应用 下面以无锡某空调设备生产公司为例,介绍BA系列交流电流传感器在工业制冷设备中的应用。 无锡某空调设备生产公司是一家致力于生产、销售、维护工业制冷设备为一体的企业,产品主要包括风冷式冷水机组、水冷螺杆式冷水机组、水冷箱式冷水机组、风冷式油冷机组,冷冻除湿机等。产品广泛适用于医药、化工、食品、注塑、电子、造纸印刷等多个行业。 该单位生产的水冷式冷水机组(图1)采用名牌压缩机及电控元件加工制造,配套壳管式冷凝器及不锈钢水箱式、板式、壳管式蒸发器,外形美观、冷量充足、效能高、易于维护。 图1:水冷式冷水机组 其产品内部的电器控制部分,机组启动与控制的所有元件均安装在电控箱(图2)内,由工厂接线并完成功能测试,电器控制部分包括:文本控制器、主接触器、塑壳断路器等。

电流传感器

电流传感器 深圳信瑞达电流传感器介绍 电流传感器,是一种检测装置,能感受到被测电流的信息,并能将检测感受到的信息,按一定规律变换成为符合一定标准需要的电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 电流传感器也称磁传感器,可以在家用电器、智能电网、电动车、风力发电等等,在我们生活中都用到很多磁传感器,比如说电脑硬盘、指南针,家用电器等等。 电流传感器的应用 电流传感器应用于风力发电:风能作为一种清洁的可再生能源,越来越受到世界各国的重视。其蕴量巨大,全球的风能约为2.74×109GW,其中可利用的风能为2×107GW,比地球上可开发利用的水能总量还要大10倍。风很早就被人们利用--主要是通过风车来抽水、磨面等,而新世纪,人们感兴趣的是如何利用风来发电,以及如何才能发电量最大化。电流传感器作为主要的检测元件,在其中起到至关重要的作用。 电流传感器未来的发展趋势有以下几种特点: 1、高灵敏度。被检测信号的强度越来越弱,这就需要磁性传感器灵敏度得到极大提高。应用方面包括电流传感器、角度传感器、齿轮传感器、太空环境测量。 2、温度稳定性。更多的应用领域要求传感器的工作环境越来越严酷,这就要求磁传感器必须具有很好的温度稳定性,行业应用包括汽车电子行业。 3、抗干扰性。很多领域里传感器的使用环境没有任何评比,就要求传感器本身具有很好的抗干扰性。包括汽车电子、水表等等。 4、小型化、集成化、智能。要想做到以上需求,这就需要芯片级的集成,模块级集成,产品级集成。好的演讲就到这里,谢谢大家,希望以后能和大家合作。 5、高频特性。随着应用领域的推广,要求传感器的工作频率越来越高,应用领域包括水表、汽车电子行业、信息记录行业。 6、低功耗。很多领域要求传感器本身的功耗极低,得以延长传感器的使用寿命。应用在植入身体内磁性生物芯片,指南针等等。 电流传感器与电压传感器的区别 据我的了解没有电流传感器和电压传感器的说明,只能说传感器的输出形式是电流还是电压,传感器把模拟信号(如压力)转换成对应的数字信号(电压或电流),我们通过读取这些数字电信号,根据对应关系确定当前的压力。如0-35MPa的压力对应4-20MA的电流或0-35MPa的压力对应1-5V的电压。 在单片机控制的许多应用场合,都要使用变送器来将单片机不能直接测量的信号转换成单片机可以处理的电模拟信号,如电流变送器,压力变送器、温度变送器、流量变送器等。 早期的变送器大多为电压输出型,即将测量信号转换为0-5V电压输出,这是运放直接输出,信号功率<0.05W,通过模拟/数字转换电路转换数字信号供单片机读取、控制。但在信号需要远距离传输或使用环境中电网干扰较大的场合,电压输出型传感器的使用受到了极大限制,暴露了抗干扰能力较差,线路损耗破坏了精度等等等缺点,而两线制电流输出型变送器以其具有极高的抗干扰能力得到了广泛应用。 电压输出型变送器抗干扰能力极差,线路损耗的破坏,谈不上精度有多高,有时输出的直流电压上还叠加有交流成分,使单片机产生误判断,控制出现错误,严重时还会损坏设备,输出0-5V绝对不能远传,远传后线路压降大,精确度大打折扣。现在很多的ADC,PLC,DCS的输入信号端口都作成两线制电流输出型变送器4-20mA的,证明了电压输出型变送器被淘汰的必然趋势。 电流传感器和电流互感器比较 电源:前者需要加一个极小电源;后者不需要。 波形:对于电流上那些谐波、非正弦波、畸变等变化,前者能够很好的测量,后者扑捉能力极差。

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

第5章高频局部放电检测技术(DOC)

《电网设备状态检修技术(带电检测分册)》 第五章高频局部放电检测技术 目录 第1节高频局部放电检测技术概述 (2) 1.1 发展历程 (2) 1.2 技术特点 (3) 1.2.1 技术优势及局限性 (3) 1.2.1 局限性 (3) 1.2.3 适用范围 (4) 1.3 应用情况 (4) 第2节高频局部放电检测技术基本原理 (4) 2.1 罗氏线圈基本知识 (4) 2.2 高频局部放电检测基本原理 (6) 2.3 高频局部放电检测装置组成及原理 (7) 第3节高频局部放电检测及诊断方法 (9) 3.1 检测方法 (9) 3.1.1 电力电缆 (9) 3.1.2 其他电力设备 (10) 3.2 诊断方法 (11) 第四节典型高频局部放电案例分析 (14) 4.1 110kV 电缆GIS终端内部气隙局部放电缺陷案例 (14) 参考文献 (16)

第1节高频局部放电检测技术概述 1.1 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT)具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20世纪90年代被英国的公立电力公司(CEGB)用在名为“El-Cid”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显著的成果。如法国ALSTHOM公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80年代英国Rocoil公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20世纪60年代兴起,在80年代取得突破性进展,并有多种样机挂网试运行,90年代开始进入实用化阶段。尤其进入21世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的G.C. Montanari

相关文档
最新文档