电力电子器件及其驱动电路实验报告.(DOC)

电力电子器件及其驱动电路实验报告.(DOC)
电力电子器件及其驱动电路实验报告.(DOC)

电力电子技术实验报告姓名

教师

班级

学院

实验一

二、电力晶体管(GTR)特性研究

一.实验目的

1.熟悉(GTR)的开关特性与二极管的反向恢复特性及其测试方法2.掌握GTR缓冲电路的工作原理与参数设计要求

二.实验内容

1.不同负载时的GTR开关特性测试。

2.不同基极电流时的开关特性测试。

3.有与没有基极反压时的开关过程比较。

4.并联冲电路性能测试。

5.串联冲电路性能测试。

6.二极管的反向恢复特性测试。

三.实验线路

四.实验设备和仪器

1.MCL-07电力电子实验箱中的GTR与PWM波形发生器部分2.双踪示波器

3.万用表

4.教学实验台主控制屏

五.实验方法

1.不同负载时GTR开关特性测试

(1)电阻负载时的开关特性测试

GTR单元的开关S1合向“”,将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”,“15”、“16”与“19”,“29”与“21”,以及GTR单元的“8”、“11”、“18”与主回路的“4”,GTR单元的“22”与主回路的“1”,即按照以下表格的说明连线。

GTR :1 PWM:1 GTR:6

PWM:2

GTR:3

GTR:5

GTR:9

GTR:7

GTR:8

GTR:11

GTR:18

主回路:4

GTR:15

GTR:16

GTR:19

GTR:29

GTR:21

GTR:22

主回路:1

用示波器观察,基极驱动信号ib(“19”与“18”之间)及集电极电流ic(“21”与“18”之间)波形,记录开通时间ton,存贮时间ts、下降时间tf。

t on = 1.8 us,t

s

= 1.8 us,t

f

= 1.2 us

(2)电阻、电感性负载时的开关特性测试

除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将“1”与“22”断开而将“2”与“22”相连),其余接线与测试方法同上。

t on = 2.1 us,t

s

=10.0 us,t

f

= 2.5 us

2.不同基极电流时的开关特性测试

(1)基极电流较小时的开关过程

断开GTR单元“16”与“19”的连接,将基极回路的“15”与“19”相连,主回路的“1”与GTR单元的“22”相连,其余接线同上,测量并记录基极驱动信号ib(“19”与“18”之间)及集电极电流ic(“21”与“18”之间)波形,记录开通时间ton,存贮时间ts、下降时间tf。

t on = 1.9 us,t

s

= 10.3 us,t

f

=2.0 us

(2)基极电流较大时的开关过程

将GTR单元的“15”与“19”的连线断开,再将“14”与“19”相连,其余接线与测试方法同上。

t on = 1.7 us,t

s

= 10.9 us,t

f

= 2.2 us

六、实验总结

1.绘出电阻负载与电阻、电感负载时的GTR开关波形,并在图上标出ton、tS与tf,并分析

不同负载时开关波形的差异。

电阻负载

阻感负载

分析:相较于电阻负载来说,阻感负载多了电感的储能与续流作用,所以开通和关断时间均长于电阻负载。

2.绘出不同基极电流时的开关波形并在图上标出ton、ts与tf,并分析理想基极电流的形状,

探讨获得理想基极电流形的方法。

基极电流较小

基极电流较大

理想电流形状:开通时间较小,斜率接近90°

形成手段:需要较为理想的驱动电路,使其开通和关断时间减少,并且使其幅值在一个较稳定并合适的值。

七、实验心得体会

629曾祎玲:对原本较为抽象的GTR开关特性,二极管的反向恢复特性等有了更直观的了解。

622王凝碧:不同的负载与基极电流都会影响GTR的开关特性,本次实验使我对这些规律有了更深刻的体会,并对GTR有了进一步的认识。

619孙亚妮:作为这门课的第一个实验,在实验仪器的使用上有麻烦,示波器的波形调了很久。通过实验基本对实验仪器有所接触和了解通过实验我了解了不同负载时的GTR开关特性及不同基极电流时的开关特性。

三功率场效应晶体管(MOSFET)特性与驱动电路研究

一、实验目的

1.熟悉MOSFET主要参数的测量方法

2.掌握MOSEET对驱动电路的要求

3.掌握一个实用驱动电路的工作原理与调试方法

二、实验内容

1.MOSFET主要参数:开启阀值电压VGS(th),跨导gFS,导通电阻Rds输出特性ID=f(Vsd)等的测试

2.驱动电路的输入,输出延时时间测试。

3.电阻与电阻、电感性质载时,MOSFET开关特性测试。

4.有与没有反偏压时的开关过程比较

5.栅-源漏电流测试。

三、实验设备和仪器

1.NMCL-07电力电子实验箱中的MOSFET与PWM波形发生器部分

2.双踪示波器

3.毫安表

4.电流表

5.电压表

四、实验线路

五、实验方法

1.MOSFETMOSFETMOSFETMOSFET主要参数测试

(1)开启阀值电压VGS(th)测试

开启阀值电压简称开启电压,是指器件流过一定量的漏极电流时(通常取漏极电流ID=1mA)的最小栅源电压。

在主回路的“1”端与MOS管的“25”端之间串入毫安表,测量漏极电流ID,将主回路的“3”与“4”端分别与MOS管的“24”与“23”相连,再在“24”与“23”端间接入电压表,测量MOS 管的栅源电压Vgs,并将主回路电位器RP左旋到底,使Vgs=0。

将电位器RP逐渐向右旋转,边旋转边监视毫安表的读数,当漏极电流ID=1mA时的栅源电压值即为开启阀值电压VGS(th)。

读取6—7组ID、Vgs,其中ID=1mA必测,填入表2—6。

I

(mA) 0 0.36 0.85 1 1.53 2.08 3.66

D

(V) 0 2.887 2.982 3.002 3.051 3.086 3.153

V

gs

表2-6

(2)跨导FS g 测试

FS g =0.14286 S

(3)转移特性)(GS D V f I = 栅源电压Vgs 与漏极电流ID 的关系曲线称为转移特性。 根据表2-6的测量数值,绘出转移特性。

图4.转移特性)(GS D V f I =

(4)导通电阻RDS 测试

导通电阻定义为RDS=VDS/ID 将电压表接至MOS 管的“25”与“23”两端,测量UDS ,其余接线同上。改变VGS 从小到大读取ID 与对应的漏源电压VDS ,测量5-6 组数值,填入表2—7。

ID(mA) 0.153 0.272 0.505 1 1.233 2.40 5.38 VDS(V) 15.095 15.086 15.056 14.993 14.966 15.036 14.925

表2—7

(5)ID =f (VSD )测试

ID =f (VSD )系指VGS =0时的VDS 特性,它是指通过额定电流时,并联寄生二极管的正向压降。 a .在主回路的“3”端与MOS 管的“23”端之间串入安培表,主回路的“4端与MOS 管的“25”端相连,在MOS 管的“23”与“25”之间接入电压表,将RP 右旋转到底,读取一组ID 与VSD 的值。

D I =30.2 mA

GS V =0.617 V

b .将主回路的“3”端与MOS 管的“23”端断开,在主回路“1”端与MOS 管的“23”端之间串入安培表,其余接线与测试方法同上,读取另一组ID 与VSD 的值。

D I = 0.549 A

GS V =0.863 V

c .将“1”端与“23”端断开,在在主回路“2”端与“23”端之间串入安培表,其余接线与测试方法同上,读取第三组ID 与VSD 的值。

D I = 0.625 A

GS V =0.900 V

2.快速光耦合6N137输入与输出延时时间的测试

将MOSFET 单元的输入“1”与“4”分别与PWM 波形发生器的输出“1与“2”相连,再将MOSFET 单元的“2”与“3”、“9”与“4”相连,用双踪示波器观察输入波形(“1”与“4”)及输出波形(“5”与“9”之间),记录开门时间ton 、关门时间toff 。 ton= 0.54 us ,toff= 0.15 us

3.驱动电路的输入、输出延时时间测试

在上接线基础上,再将“5”与“8”、“6”与“7”、“10”、“11”与“12”相连,“13”、“14”与“16”相连,用示波器观察输入“1”与“4”及驱动电路输出“18”与“9”之间波形,记录延时时间toff 。

t off = 0.05 ms

4、电阻负载时MOSFET开关特性测试

(1)无关联缓冲时的开关特性测试

在上述接线基础上,将MOSFET单元的“9”与“4”连线断开,再将“20”与“24”、“22”与“23”、“21”与“9”以及主回路的“1”与“4”分别和MOSFET单元的“25”与“21”相连。用示波器观察“22”与“21”以及“24”与“21”之间波形(也可观察“22”与“21”及“25”与“21”之间的波形),记录开通时间ton与储存时间ts。

ton= 3.4 us ts=1.6 us

(2)有并联缓冲时的开关特性测试

在上述接线基础上,再将“25”与“27”、“21”与“26”相连,测试方法同上。

ton=3 us ts=1.5 us

5、电阻、电感负载时的开关特性测试

(1)有并联缓冲时的开关特性测试

将主回路“1”与MOSFET单元的“25”断开,将主回路的“2”与MOSFET单元的“25”相连,测试方法同上。

ton=1.6 us ts=2.0 us

6、有栅极反压时的开关过程。

ton=2.8 us ts=2.6 us

六、实验总结

1、快速光耦6N137

2、驱动电路

3、电阻负载无并联缓冲

4、电阻负载有并联缓冲

5、阻感负载

6、有反压

七、思考题

1. 增大栅极电阻可消除高频振荡,是否栅极电阻越大越好,为什么?请你分析一下,增大栅极电阻能消除高频振荡的原因。

答:栅极电阻并非越大越好。栅极电阻过大,会与极间电容形成RC电路,严重影响MOSFET 充放电时间,造成其消耗功率过高,发热严重。

2. 从实验所测的数据与波形,请你说明MOSFET对驱动电路的基本要求有哪一些?

答:要求驱动电路具有较小的输入电阻,驱动功率小且电路简单。

3. 从理论上说,MOSFET的开、关时间是很短的,一般为纳秒级,但是试验中所测得的开、关时间却要大得多,你能否分析一下其中的原因吗?

答:可能的原因有:元器件老化、测量仪器误差、人为读数误差等。

八、心得体会

629:掌握了实用驱动电路的工作原理与调试方法,并且对示波器的使用更加熟练。622:经过本次试验我熟悉了MOSFET主要参数的测量方法以及其对驱动电路的要求。

619:经过对MOSFET参数的测量和电路的调试,使我加深了对MOSFET的了解,了解了电路的原理

电力电子器件

电力电子器件 电力电子器件(Power Electronic Device)是指可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件。主电路:在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。 电力电子器件的特征 ◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。 ◆为了减小本身的损耗,提高效率,一般都工作在开关状态。 ◆由信息电子电路来控制,而且需要驱动电路。 ◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器。 电力电子器件的功率损耗 断态损耗 通态损耗:是电力电子器件功率损耗的主要成因。 开关损耗:当器件的开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。分为开通损耗和关断损耗。 电力电子器件在实际应用中,一般是由控制电路、驱动电路和以电力电子器件为核心的主电路组成一个系统。 电力电子器件的分类 按照能够被控制电路信号所控制的程度 ◆半控型器件:指晶闸管(Thyristor)、快速晶闸管、逆导晶闸管、光控晶闸管、双向晶闸管。 ◆全控型器件:IGBT、GTO、GTR、MOSFET。 ◆不可控器件:电力二极管(Power Diode)、整流二极管。 按照驱动信号的性质 ◆电流驱动型:通过从控制端注入或者抽出电流来实现导通或者关断的控制。Thyrister,GTR,GTO。 ◆电压驱动型:仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。电力MOSFET,IGBT,SIT。 按照驱动信号的波形(电力二极管除外) ◆脉冲触发型:通过在控制端施加一个电压或电流的脉冲信号来实现器件的开通或者关断的控制。晶闸管,SCR,GTO。 ◆电平控制型:必须通过持续在控制端和公共端之间施加一定电平的电压或电流信号来使器件开通并维持在通断状态。GTR,MOSFET,IGBT。 按照载流子参与导电的情况 ◆单极型器件:由一种载流子参与导电。MOSFET、SBD(肖特基势垒二极管)、SIT。 ◆双极型器件:由电子和空穴两种载流子参与导电。电力二极管,PN结整流管,SCR,GTR,GTO。 ◆复合型器件:由单极型器件和双极型器件集成混合而成,也称混合型器件。IGBT,MCT。 GTO:门极可关断晶闸管。SITH(SIT):静电感应晶体管。 GTR:电力晶体管。MCT:MOS控制晶体管。 ITBT:绝缘栅双极晶体管。MOSFET:电力场效应晶体管。 电力二极管 二极管的基本原理——PN结的单向导电性 ◆当PN结外加正向电压(正向偏置)时,在外电路上则形成自P区流入而从N区流出的电流,称为正向电流IF,这就是PN结的正向导通状态。 ◆当PN结外加反向电压时(反向偏置)时,反向偏置的PN结表现为高阻态,几乎没有电流流过,被称为反向截止状态。 ◆PN结具有一定的反向耐压能力,但当施加的反向电压过大,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就叫反向击穿。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验 一、实验目的 (1)掌握各种电力电子器件的工作特性。 (2)掌握各器件对触发信号的要求。 二、实验所需挂件及附件 序 型号备注 号 1DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。2DJK06 给定及实验器件该挂件包含“二极管”等几个模块。 3DJK07 新器件特性实验 DJK09 单相调压与可调负 4 载 5万用表自备 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R 串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。 实验线路的具体接线如下图所示: 四、实验内容 (1)晶闸管(SCR)特性实验。

(3)功率场效应管(MOSFET)特性实验。

(5)绝缘双极性晶体管(IGBT)特性实验。 五、实验方法 (1)按图3-26接线,首先将晶闸管(SCR)接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定”侧,S2拨到“给定”侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;打开DJK06的电源开关,按下控制屏上的“启动”按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读数,当电压表指示接近零(表示管子完全导通),停止调节,记录给定电压U

电力电子器件驱动电路

驱动电路的比较 电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口,是电力电子装置的重要环节,对整个装置的性能有很大的影响。电力电子器件对驱动电路的一般性要求 ①驱动电路应保证器件的充分导通和可靠关断以减低器件的导通和开关损耗。 ②实现与主电路的电隔离。 ③具有较强的抗干扰能力,目的是防止器件在各种外扰下的误开关。 ④具有可靠的保护能力当主电路或驱动电路自身出现故障时(如过电流和驱动电路欠电压等),驱动电路应迅速封锁输出正向驱动信号并正确关断器件以保障器件的安全。 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质,可以将电力电子器件分为电流驱动型和电压驱动型两类。晶闸管是半控型器件,一般其驱动电路成为触发电路,下面分别分析晶闸管的触发电路,GTO、GTR、电力MOSFET和IGBT的驱动电路。 1晶闸管的触发电路 晶闸管的触发电路的工作原理如下: 1 由V1、V2构成的脉冲放大环节和脉冲变压器TM和附属电路构成的脉冲输出环节两部分组成。 2 当V1、V2导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出触发脉冲。 3 VD1和R3是为了V1、V2由导通变为截止时脉冲变压器TM释放其储存的能量而设的。

4 为了获得触发脉冲波形中的强脉冲部分,还需适当附加其它电路环节。 晶闸管的触发电路特点:触发脉冲宽度要保证晶闸管可靠导通,有足够的幅值也不能超过晶闸管门级的电压、电流和功率定额等参数。 2 GTO驱动电路 GTO的开通控制与普通晶闸管相似,下图为典型的直接耦合式GTO驱动电路,其工作原理可分析如下: 1 电路的电源由高频电源经二极管整流后提供,VD1和C1提供+5V电压,VD2、VD3、C2、C3构成倍压整流电路提供+15V电压,VD4和C4提供-15V电压。 2 V1开通时,输出正强脉冲;V2开通时,输出正脉冲平顶部分; 3 V2关断而V3开通时输出负脉冲;V3关断后R3和R4提供门极负偏压。GTO驱动电路的特点:触发脉冲前沿的幅值和陡度要足够,在整个导通期间都施加正门极电流。避免电路内部的相互干扰和寄生振荡,可得到较陡的脉冲前沿;缺点是功耗大,效率较低。 3GTR的驱动电路 下图为GTR的一种驱动电路,其包括电气隔离和晶体管放大电路两大部分,本电路的特点是:当负载较轻时,如果V5的发射极电流全部注入V,会使V过饱和,关断时退饱和时间延长。但是VD2和VD3构成贝克钳位电路可避免上述情况的发生。 V

电力电子器件大全及使用方法详解(DOC 42页)

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子器件特性和驱动实验一

实验三常用电力电子器件的特性和驱动实验 一、实验目的 (1) 掌握常用电力电子器件的工作特性。 (2) 掌握常用器件对触发MOSFET、信号的要求。 (3) 理解各种自关断器件对驱动电路的要求。 (4) 掌握各种自关断器件驱动电路的结构及特点。 (5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。 二、预习内容 (1) 了解SCR、GTO、GTR、MOSFET、IGBT的结构和工作原理。 (2) 了解SCR、GTO、GTR、MOSFET、IGBT有哪些主要参数。 (3) 了解SCR、GTO、GTR、MOSFET、IGBT的静态和动态特性。 (4)阅读实验指导书关于GTO、GTR、MOSFET、IGBT的驱动原理。 三、实验所需设备及挂件

四、实验电路原理图 1、SCR 、GTO 、MOSFET 、GTR 、IGBT 五种特性实验原理电路如下图X-1所示: 图 X-1特性实验原理电路图 三相电网电压

X-2虚框中五种器件的1、2、3标号连接示意图 2、GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图如下图X-3所示: 图X-3 GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图 3、GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图如图X-4 图X-4 GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图 五、实验内容 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 2、GTO、MOSFET、GTR、IGBT驱动电路的研究。 六、注意事项 (1)注意示波器使用的共地问题。 (2)每种器件的实验开始前,必须先加上器件的控制电压,然后再加主回路的电源;实验结束时,必须先切断主回路电源,然后再切断控制电源。 (3)驱动实验中,连接驱动电路时必须注意各器件不同的接地方式。 (4)不同的器件驱动电路需接不同的控制电压,接线时应注意正确选择。 七、实验方法与步骤 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 1)关闭总电源,按图X-5的框图接主电路

电力电子器件特性和驱动实验一

实验三 常用电力电子器件的特性和驱动实验 一、实验目的 (1) 掌握常用电力电子器件的工作特性。 (2) 掌握常用器件对触发MOSFET 、信号的要求。 (3) 理解各种自关断器件对驱动电路的要求。 (4) 掌握各种自关断器件驱动电路的结构及特点。 (5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。 二、预习内容 (1) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的结构和工作原理。 (2) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 有哪些主要参数。 (3) 了解SCR 、GTO 、GTR 、MOSFET 、IGBT 的静态和动态特性。 (4)阅读实验指导书关于GTO 、GTR 、MOSFET 、IGBT 的驱动原理。 三、实验所需设备及挂件 四、实验电路原理图 1、SCR 、GTO 、MOSFET 、GTR 、IGBT 五种特性实验原理电路如下图X-1所示: 图 X-1特性实验原理电路图 X-2虚框中五种器件的1、2、3标号连接示意图 三相电网电压

2、GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图如下图X-3所示: 图X-3 GTO、MOSFET、GTR、IGBT四种驱动实验原理电路框图 3、GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图如图X-4 图X-4 GTO、MOSFET、GTR、IGBT四种驱动实验的流程框图 五、实验内容 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 2、GTO、MOSFET、GTR、IGBT驱动电路的研究。 六、注意事项 (1)注意示波器使用的共地问题。 (2)每种器件的实验开始前,必须先加上器件的控制电压,然后再加主回路的电源;实验结束时,必须先切断主回路电源,然后再切断控制电源。 (3)驱动实验中,连接驱动电路时必须注意各器件不同的接地方式。 (4)不同的器件驱动电路需接不同的控制电压,接线时应注意正确选择。 七、实验方法与步骤 1、SCR、GTO、MOSFET、GTR、IGBT 五种器件特性的测试 1)关闭总电源,按图X-5的框图接主电路 图X-5实验接线框图

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

电力电子实验报告

电力电子实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验一SCR(单向和双向)特性与触发实验 一、实验目的 1、了解晶闸管的基本特性。 2、熟悉晶闸管的触发与吸收电路。 二、实验内容 1、晶闸管的导通与关断条件的验证。 2、晶闸管的触发与吸收电路。 三、实验设备与仪器 1、典型器件及驱动挂箱(DSE01)—DE01单元 2、触发电路挂箱Ⅰ(DST01)—DT02单元 3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代) 4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元 5、逆变变压器配件挂箱(DSM08)—电阻负载单元 6、慢扫描双踪示波器、数字万用表等测试仪器 四、实验电路的组成及实验操作 图1-1 晶闸管及其驱动电路

1、晶闸管的导通与关断条件的验证: 晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。打开系统总电源,将系统工作模式设置为“高级应用”。将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。闭合控制电路及挂箱上的电源开关,调节“DT03”单元的电位器“RP2”使“K”点输出电压为“0V”;闭合主电路,用示波器观测T1两端电压;调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况,记录使T1由截止变为开通的门极电压值,它正比于通入T1门极的电流I G;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测T1的端电压情况。断开主电路、挂箱电源、控制电路。将加在晶闸管和电阻上的主电源换成交流电源,即“AC15V”直接接“R1”一端,T1的阴极直接接“O”;依次闭合控制电路、挂箱电源、主电路。调节“DT03”单元的电位器“RP2”使“K”点电压升高,监测T1的端电压情况;T1导通后,反向改变“RP2”使“K”点电压缓慢变回“0V”,同时监测并记录T1的端电压情况。通过实验结果,参考教材相关章节的内容,分析晶闸管的导通与关断条件。实验完毕,依次断开主电路、挂箱电源、控制电路。 2、晶闸管的触发与吸收电路: 将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;用导线连接“DT02”单元输出端子“OUT11”和“OUT12”与“DE01”单元的脉冲变压器输入端“IN1”和“IN2”;取主电源的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”;“DP01”单元的同步信号输出端“A”和“B”连接到锯齿波移相触发电路的同步信号输入端“A”和“B”;将“DE01”的脉冲变压器输出“g1”和“k1”分别接至单向

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

《电力电子技术》实验报告-1

河南安阳职业技术学院机电工程系电子实验实训室(2011.9编制) 目录 实验报告一晶闸管的控制特性及作为开关的应用 (1) 实验报告二单结晶体管触发电路 (3) 实验报告三晶闸管单相半控桥式整流电路的调试与分析(电阻负载) (6) 实验报告四晶闸管单相半控桥式整流电路的研究(感性、反电势负载) (8) 实验报告五直流-直流集成电压变换电路的应用与调试 (10)

实验报告一晶闸管的控制特性及作为开关的应用 一、实训目的 1.掌握晶闸管半控型的控制特点。 2.学会晶闸管作为固体开关在路灯自动控制中的应用。 二、晶闸管工作原理和实训电路 1.晶闸管工作原理 晶闸管的控制特性是:在晶闸管的阳极和阴极之间加上一个正向电压(阳极为高电位);在门极与阴极之间再加上一定的电压(称为触发电压),通以一定的电流(称为门极触发电流,这通常由触发电路发给一个触发脉冲来实现),则阳极与阴极间在电压的作用下便会导通。当晶闸管导通后,即使触发脉冲消失,晶闸管仍将继续导通而不会自行关断,只能靠加在阳极和阴极间的电压接近于零,通过的电流小到一定的数值(称为维持电流)以下,晶闸管才会关断,因此晶闸管是一种半控型电力电子元件。 2.晶闸管控制特性测试的实训电路 图1.1晶闸管控制特性测试电路 3.晶闸管作为固体开关在路灯自动控制电路中的应用电路 图1.2路灯自动控制电路 三、实训设备(略,看实验指导书)

四、实训内容与实训步骤(略,看实验指导书) 五、实训报告要求 1.根据对图1.1所示电路测试的结果,写出晶闸管的控制特点。记录BT151晶闸管导通所需的触发电压U G、触发电流I G及导通时的管压降U AK。 2.简述路灯自动控制电路的工作原理。

电力电子器件及其驱动电路实验报告

电力电子技术实验报告姓名 教师 班级 学院

实验一 、电力晶体管(GTR)特性研究 1 ?熟悉(GTR)的开关特性与二极管的反向恢复特性及其测试方法 2. 掌握GTR缓冲电路的工作原理与参数设计要求 二.实验内容 1. 不同负载时的GTF开关特性测试。 2. 不同基极电流时的开关特性测试。 3. 有与没有基极反压时的开关过程比较 4. 并联冲电路性能测试。 5. 串联冲电路性能测试。 6. 二极管的反向恢复特性测试。 三.实验线路 四.实验设备和仪器 1. MCL-07电力电子实验箱中的GTR与PWM波形发生器部分 2. 双踪示波器 3. 万用表 4. 教学实验台主控制屏

五.实验方法 1 ?不同负载时GTR开关特性测试 (1)电阻负载时的开关特性测试 GTF单元的开关S1合向“ ”,将GTF单元的输入“ 1”与“6”分别与PWM波形发生器的输出“ 1”与“ 2”相连,再分别连接GTF单元的“3”与“ 5”,“9”与“ 7”,“ 15”、“ 16” 与“ 19”,“29”与“21”,以及GTF单元的“ 8”、“ 11”、“ 18” 与主回路的“ 4”, GTF单元的“22”与主回路的“1”,即按照以下表格的说明连线。 用示波器观察,基极驱动信号ib (“19”与“18”之间)及集电极电流ic (“21”与“18” 之间)波形,记录开通时间ton,存贮时间ts、下降时间tf。 t on= 1.8 us ,t s= 1.8 us ,t f= 1.2 us (2)电阻、电感性负载时的开关特性测试 除了将主回器部分由电阻负载改为电阻、电感性负载以外(即将“ 1”与“22”断开而将“ 2” 与“22”相连),其余接线与测试方法同上。 t on= 2.1 us,t s=10.0 us,t f= 2.5 us 2.不同基极电流时的开关特性测试 (1)基极电流较小时的开关过程 断开GTR单元“16”与“19”的连接,将基极回路的“ 15”与“19”相连,主回路的“ 1” 与GTR单元的“22”相连,其余接线同上,测量并记录基极驱动信号ib (“19”与“18”之间)及集电极电流ic (“21”与“18”之间)波形,记录开通时间ton,存贮时间ts、下降时间tf o t on= 1.9 us,t s= 10.3 us,t f=2.0 us (2)基极电流较大时的开关过程 将GTR单元的“ 15”与“19”的连线断开,再将“14”与“19”相连,其余接线与测试方法同上。 t on= 1.7 us,t s= 10.9 us,t f= 2.2 us 1. 绘出电阻负载与电阻、电感负载时的G TR ff关波形,并在图上标出ton、tS与tf,并分析 不同负载时开关波形的差异。 电阻负载

电力电子器件驱动电路和电力电子器件器件的保护

湖南省技工学校 理论教学教案 教师姓名: 注:教案首页,教案用纸由学校另行准备湖南省劳动厅编制

益阳高级技工学校

(2) GTR 开通驱动电流应使GTR处于准饱和导通状态,使之不进入放大区和深饱 关断GTR时,施加一定的负基极电流有利于减小关断时间和关断损耗。 关断后同样应在基射极之间施加一定幅值(6V左右)的负偏压。 电压驱动型器件的驱动电路 电力MOSFET和IGBT是电压驱动型器件。 为快速建立驱动电压,要求驱动电路输出电阻小。使MOSFET 动电压一般10~15V,使IGBT开通的驱动电压一般15 ~ 20V。关断时施加一 定幅值的负驱动电压(一般取-5 ~ -15V)有利于减小关断时间和关断损耗。 在栅极串入一只低值电阻可以减小寄生振荡。 (2) IGBT的驱动 多采用专用的混合集成驱动器。 益阳高级技工学校

三、电力电子器件器件的保护 1 过电压的产生及过电压保护 电力电子装置可能的过电压——外因过电压和内因过电压 外因过电压:主要来自雷击和系统操作过程等外因。操作过电压:由分 闸、合闸等开关操作引起;雷击过电压:由雷击引起 内因过电压:主要来自电力电子装置内部器件的开关过程 )换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后,反 向电流急剧减小,会由线路电感在器件两端感应出过电压。 )关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器 件两端感应出的过电压。 过电压保护措施 2 过电流保护 过电流——过载和短路两种情况 保护措施 同时采用几种过电流保护措施,提高可靠性和合理性。 电子电路作为第一保护措施,快熔仅作为短路时的部分区段的保护, 益阳高级技工学校

电力电子实验报告

实验题目:MPD-15实验设备《电力电子技术》班级:自动化1405 姓名:KZY 学号:0901140450X 指导老师:XXX

实验一、三相脉冲移相触发电路 1.实验目的:熟悉了解集成触发电路的工作原理、双脉冲形成过程及掌握集成触发电路的 应用。 2.实验内容:集成触发电路的调试及各点波形的观察与分析。 3.实验设备:YB4320A型双线示波器一台;万用表一块;MPD-15实验设备中“模拟量可逆 调速系统”控制大板中的“脉冲触发单元”。 4.实验接线:见图1 图1 该实验接好三根线:即SZ与SZ1,GZ与GND,U GD与U CT连接好就行了。 5.实验步骤: (1)将实验台左下方的三相电源总开关QF1合上;(其它开关和按钮不要动) (2)将模拟挂箱上左边的电源开关拨至“通”位置,此时控制箱便接入了工作电源和三相交流同步电源U sa U sb U sc (注:U sa U sb U sc 与主回路电压:U A16 U B16 U C16相位一致)。 (3)将模拟挂箱上正组脉冲开关拨至“通”位置,此时正组脉冲便接至了正组晶闸管。 (4)用示波器观察U sa U sb U sc孔的相序是否正确,相位是否依次相差120°(注:用示波器的公共端接GND孔,其它两信号探头分别依次检查三个同步信号)。 (5)触发器锯齿波斜率的整定 (6)触发器相位特性整定:

实验二三相桥式整流电路的研究 一、实验目的 1、熟悉三相桥式整流电路的组成、研究及其工作原理。 2、研究该电路在不同负载(R、R+L、R+L+VDR)下的工作情况,波形及其特性。 3、掌握晶体管整流电路的试验方法。 二、实验设备 1、YB4320A型双线示波器一台 2、万用表一块 3、模拟量挂箱一个 4、MPD-08试验台主回路 三、实验接线 1、先断开三相电源总开关QF1; 2、触发器单元接线维持实验一线路不变; 3、主回路接线按图5进行。 A N0 图5 三相桥式整流电路(虚线部分用导线接好) 四、实验步骤(注意:根据表1中 所对应的Uct数据来调节Uct大小)

电力电子器件特性和驱动实验一

实验三常用电力电子器件的特性和驱动实验、实验目的 (1) 掌握常用电力电子器件的工作特性。 (2) 掌握常用器件对触发MOSFET、信号的要求。 (3) 理解各种自关断器件对驱动电路的要求。 (4) 掌握各种自关断器件驱动电路的结构及特点。 (5) 掌握由自关断器件构成的PWM 直流斩波电路原理与方法。 、预习内容 (1)了解SCR、GTO、GTR、MOSFET、IGBT 的结构和工作原理。 (2)了解SCR、GTO、GTR、MOSFET、IGBT 有哪些主要参数。 (3)了解SCR、GTO、GTR、MOSFET、IGBT 的静态和动态特性。 (4)阅读实验指导书关于GTO、GTR、MOSFET、IGBT的驱动原理。 三、实验所需设备及挂件 序号型号备注 1DJK01电源控制屏主电源控制屏(已介绍) 2DJK06给定及实验器件包含二极管、开关,正、负15伏直流给定等3DJK07新器件特性试验含SCR、GTO、GTR、MOSFET、IGBT五种 器件 4DJK09单相调压与可调负载 5DJK12功率器件驱动电路实验箱 6万用表 1 )设备及列表 7 件2)挂图片

*牢辛牛甲耳电用宜盟陌

X-2虚框中五种器件的1、2、3标号连接示意图 3、GTO 、 MOSFET 、GTR 、 图X-4 GTO 、MOSFET 、GTR 、IGBT 四种驱动实验的流程框图 五、实验内容 四、实验电路原理图 图X-1特性实验原理电路图 1 、 SCR 、 GTO 、MOSFET 、 GTR 、IGBT 五种器件特性的测试 MOSFET 、GTR 、IGBT 四种驱动实验原理电路框图 图 X-3 GTO 、 2、GTO 、MOSFET 、GTR 、IGBT 四种驱动实验原理电路框图如下图 X-3所示: IGBT 四种驱动实验的流程框图如图 X-4

实验报告-电力电子仿真实验

电力电子仿真实验 实验报告 院系:电气与电子工程学院 班级:电气1309班 学号: 1131540517 学生姓名:王睿哲 指导教师:姚蜀军 成绩: 日期:2017年 1月2日

目录 实验一晶闸管仿真实验 (3) 实验二三相桥式全控整流电路仿真实验 (6) 实验三电压型三相SPWM逆变器电路仿真实验 (18) 实验四单相交-直-交变频电路仿真实验 (25) 实验五VSC轻型直流输电系统仿真实验 (33)

实验一晶闸管仿真实验 实验目的 掌握晶闸管仿真模型模块各参数的含义。 理解晶闸管的特性。 实验设备:MATLAB/Simulink/PSB 实验原理 晶闸管测试电路如图1-1所示。u2为电源电压,ud为负载电压,id为负载电流,uVT 为晶闸管阳极与阴极间电压。 图1-1 晶闸管测试电路 实验内容 启动Matlab,建立如图1-2所示的晶闸管测试电路结构模型图。

图1-2 带电阻性负载的晶闸管仿真测试模型 双击各模块,在出现的对话框内设置相应的模型参数,如图1-3、1-4、1-5所示。 图1-3 交流电压源模块参数

图1-4 晶闸管模块参数 图1-5 脉冲发生器模块参数 固定时间间隔脉冲发生器的振幅设置为5V,周期与电源电压一致,为0.02s(即频率为50Hz),脉冲宽度为2(即7.2o),初始相位(即控制角)设置为0.0025s(即45o)。 串联RLC分支模块Series RLC Branch与并联RLC分支模块Parallel RLC Branch的参数设置方法如表1-1所示。 元件串联RLC分支并联RLC分支 类别电阻数值电感数值电容数值电阻数值电感数值电容数值单个电阻R0inf R inf0 单个电感0L inf inf L0 单个电容00C inf inf C

电力电子实验报告

电力电子实验报告 学院名称电气信息学院 专业班级电气自动化03班 学号 学生姓名 指导教师

实验一电力晶体管(GTR)驱动电路研究 一.实验目的 1.掌握GTR对基极驱动电路的要求 2.掌握一个实用驱动电路的工作原理与调试方法 二.实验内容 1.连接实验线路组成一个实用驱动电路 2.PWM波形发生器频率与占空比测试 3.光耦合器输入、输出延时时间与电流传输比测试 4.贝克箝位电路性能测试 5.过流保护电路性能测试 三.实验线路 四.实验设备和仪器 1.MCL-07电力电子实验箱 2.双踪示波器 3.万用表 4.教学实验台主控制屏 五.实验方法 1.检查面板上所有开关是否均置于断开位置 2.PWM波形发生器频率与占空比测试 (1)开关S1、S2打向“通”,将脉冲占空比调节电位器RP顺时针旋到底,用示波器观察1和2点间的PWM波形,即可测量脉冲宽度、幅度与脉冲周期,并计算出频率f与占空比D 当S2通,RP右旋时:

当S2断,RP右旋时: 当S2通,RP左旋时: 当S2断,RP左旋时: (2)将电位器RP左旋到底,测出f与D。 (3)将开关S2打向“断”,测出这时的f与D。 (4)电位器RP顺时针旋到底,测出这时的f与D。 (5)将S2打在“断”位置,然后调节RP,使占空比D=0.2左右。 3.光耦合器特性测试 (1)输入电阻为R1=1.6K 时的开门,关门延时时间测试 a.将GTR单元的输入“1”与“6”分别与PWM波形发生器的输出“1”与“2”相连,再分别连接GTR单元的“3”与“5”,“9”与“7”及“6”与“11”,即按照以下表格的说明连线。

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 ......................... 错误!未定义书签。(一)实验目的:.................................... 错误!未定义书签。掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;错误!未定义书签。 掌握各器件的参数设置方法,以及对触发信号的要求。 ....... 错误!未定义书签。(二)实验原理......................................... 错误!未定义书签。(三)实验内容......................................... 错误!未定义书签。(四)实验过程与结果分析 ............................... 错误!未定义书签。 1.仿真系统 .......................................... 错误!未定义书签。 2.仿真参数 .......................................... 错误!未定义书签。 3.仿真波形与分析 .................................... 错误!未定义书签。 4.结论.............................................. 错误!未定义书签。实验二:可控整流电路 ..................................... 错误!未定义书签。(一)实验目的......................................... 错误!未定义书签。(二)实验原理......................................... 错误!未定义书签。(三)实验内容......................................... 错误!未定义书签。(四)实验过程与结果分析 ............................... 错误!未定义书签。 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例................................................. 错误!未定义书签。

电力电子实验报告

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:一、实验项目名称:锯齿波同步移相触发电路实验

接于“7”端。注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。 观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。 3.调节脉冲移相范围 将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图4-4所示。 调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。 4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。 用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。 七、实验报告 1、观察波形 ⑴、“1”、“2”孔波形

⑵、“3孔波形” ⑶、“4”孔波形

⑸、U G1K1波形

2、调节脉冲移相范围 ⑴U2、U5波形

⑵、U G1K1、U G2K2波形 ⑶、U G1K1、U G3K3波形

相关文档
最新文档