八年级下册数学第十六章分式导学案

合集下载

人教版八年级下册数学教案导学案及答案全册(华师版)

人教版八年级下册数学教案导学案及答案全册(华师版)

第十六章分式16.1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:107,sa,20033,vs.2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为10020v+小时,逆流航行60千米所用时间6020v-小时,所以10020v+=6020v-.3. 以上的式子10020v+,6020v-,sa,vs,有什么共同点它们与分数有什么相同点和不同点五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0(1)1m m - (2)23m m -+ (3) 211m m -+ [分析] 分式的值为0时,必须同时..满足两个条件:○分母不能为零;○分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x . 2. 当x 取何值时,下列分式有意义(1)32x + (2)532x x +- (3)2254x x -- 3. 当x 为何值时,分式的值为0(1)75x x+ (2)7213x x - (3)221x x x --七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义 3. 当x 为何值时,分式21x x x--的值为0 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; x 8023分式:x80, b a s 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.32四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, yx 43---。

八年级下数学十六章

八年级下数学十六章

华师版八年级下数学十六章分式导学案 第十六章 分式16.1分式一、课标要求:16.1.1从分数到分式 二、导学目标1、知识与技能目标: 了解分式、有理式的概念.2、过程与方法目标:理解分式有意义的条件,分式的值为零的条件;3、情感、态度与价值观目标(德育渗透):能熟练地求出分式有意义的条件,分式的值为零的条件.三、导学核心点1、导学重点:理解分式有意义的条件,分式的值为零的条件.2、导学难点:能熟练地求出分式有意义的条件,分式的值为零的条件3、导学关键:理解分式有意义的条件,分式的值为零的条件.4、导学方法(用具):启发式 四、导学过程设计1、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?2、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1 3、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0?(1) (2) (3)4、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 5、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠(3)x ≠±2 1-m m 32+-m m 112+-m m 4522--xx xx 235-+23+x x x 57+xx 3217-x x x --22123xx x --12312-+x x3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x 80, b a s +2.X = 3. x=-1五、导学反思 1、本节亮点:2、待改进处:16.1.2分式的基本性质一、课标要求:分式的基本性质 二、导学目标1、知识与技能目标: 理解分式的基本性质2、过程与方法目标: 会用分式的基本性质将分式变形.3、情感、态度与价值观目标(德育渗透):会用分式的基本性质将分式变形.三、导学核心点1、导学重点:理解分式的基本性质.2、导学难点:灵活应用分式的基本性质将分式变形.3、导学关键:理解分式的基本性质.4、导学方法(用具):启发式 四、导学过程设计1、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,x8032然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.2、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 3、例题讲解 P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, n m --2, nm 67--, yx 43---。

华东师大版八年级数学下册导学案

华东师大版八年级数学下册导学案

第十六章 分式第一课时一、学习目标:1.识记分式、有理式的概念.2.知道分式有意义的条件,分式的值为零的条件;3.能熟练地求出分式有意义的条件,分式的值为零的条件.二、自主预习:自学教材相关内容,并完成以下各题。

1.完成教材“思考1”中的空格。

2.什么叫分式?分式与整式的区别是什么?3.判断下列各式中,哪些是整式?哪些不是整式? ①38n m ++m 2 ; ②1+x +y 2-z 1; ③π213-x ; ④x 1; ⑤1222++x x ; ⑥222ab b a +;三、课堂导学:例1 填空:当x 时,分式x 52有意义;当x 时,分式22-x x有意义;当x 时,分式x 252-有意义;当x 、y 满足关系 时,分式y x yx 2-+有意义;例2 当m 为何值时,分式的值为0(1)1-m m (2)32+-m m (3) 112+-m m四、课堂自测:1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7, 209y +, 54-m , 238y y -, 91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3)4、列式表示下列各量:(1)某村有n 个人,耕地40公顷,人均耕地面积为 公顷;(2)ABC ∆的面积为S ,BC 边长为a ,则高AD 为 ;(3)一辆汽车行驶a 千米用b 小时,它的平均车速为 千米/小时;一列火车行驶a 千米比这辆汽车少用1小时,它的平均车速为 千米/小时。

5、下列式子中,哪些是是分式?哪些是整式?两类式子的区别是什么? ①x 1;②3x ;③5342+b ;④352-a ;⑤22y x x -; ⑥n m n m +-;⑦121222+-++x x x x ;⑧)(3b a c -4522--x x x x 235-+23+x x x 57+x x 3217-x x x --221完成课本课后习题16.1.2 分式的基本性质第2课时一、学习目标:1.能辨别分式的基本性质.2.会用分式的基本性质将分式变形.二、自主预习:自学教材P4—P6思考上面,并完成以下各题:1.描述分式的基本性质:2.用式子表示分式的基本性质:3.理解教材P5例2并完成以下各空:(1)3)(32-=-a a a a ;()y x x xy x -=-32422;(2)()2xy xy y x =+三、课堂导学:例1 根据分式的基本性质,回答下列问题:(1)abb a +当分母变为b a 2时,分子变为怎样的因式? (2)22xxy x +当分子变为x+y 时,分母变为怎样的因式?(3)一个分式的分子为a a +2,分式变形后为ca (a+1≠0),则分式变形前分母是怎样的因式?例2 不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, y x 43---四、课堂自测:1.填空: (1) x x x 3222+= ()3+x (2) 32386bb a =()33a (3)c a b ++1=cn an +)( (4) ()222y x y x +-=)(y x - 2.不改变分式的值,使下列分式的分子和分母都不含“-”号. (1) 233ab y x -- (2) 2317ba ---(3) 2135xa -- (4) mb a 2)(--3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1)13232-+---a a a a (2)32211x x x x ++--(3)1123+---a a a4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)b a ba +---2 (2)y x yx -+--32教材P8习题16.1第4、5题16.1.2 分式的基本性质第3课时一、学习目标:会用分式的基本性质将分式变形,正确进行分式的通分和约分。

完整word版,人教版八年级下册数学教案导学案及答案全册(华师版)

完整word版,人教版八年级下册数学教案导学案及答案全册(华师版)

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件, 分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:107,s a ,20033,v s . 2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为10020v +小时,逆流航行60千米所用时间6020v -小时,所以10020v +=6020v-. 3. 以上的式子10020v +,6020v -,s a ,v s,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0?(1)1m m - (2)23m m -+ (3) 211m m -+ [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, x 7 , 209y +, 54-m , 238y y -,91-x . 2. 当x 取何值时,下列分式有意义?(1)32x + (2)532x x +- (3)2254x x -- 3. 当x 为何值时,分式的值为0?(1)75x x+ (2)7213x x - (3)221x x x --七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义? 3. 当x 为何值时,分式21x x x--的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; 分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.x 802332二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, yx 43---。

《初中数学分层导学案》八年级下(王云松)

《初中数学分层导学案》八年级下(王云松)

第十六章 分式16.1 分式(1)【分层目标】:1. 了解分式的概念;2. 理解并能熟练地求出分式有意义的条件,分式的值为零的条件;3. 体验数学发展是生活实际的需要,激发学生学习数学的兴趣.【重点难点】:重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.【导学指导】:一、 知识链接:1.初一学过的整式的概念: . 小学学过的分数形式为: .2.让学生填写P4[思考],学生自己依次填出: , , , . 二、自主学习1.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们设未知数,并列出方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.2.以上的式子v+20100,v-2060,as ,sv ,有什么共同点?它们与分数有什么相同点和不同点?3.分式的概念: .4.分式有意义的条件: .5.分式的值为零的条件: .【快速反馈】:1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义?(1) (2) (3)4522--x x xx 235-+23+x3. 当x 为何值时,分式的值为0?(1) (2) (3)【要点归纳】:1.分式的概念: .2.分式有意义的条件: .3.分式的值为零的条件: .【阶梯训练】:1.列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式无意义?3. 当x 为何值时,分式 的值为0?【总结反思】:xx 57+xx 3217-xx x --221xx x --212312-+x x第十六章 分式16.1.2分式的基本性质【分层目标】: 1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 【重点难点】:重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.【导学指导】:二、 知识链接:1.请同学们考虑: 与 相等吗? 与 相等吗?为什么? 2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据? 3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 二、自主学习 P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b 56--, yx 3-, n m --2, nm 67--, yx 43---。

最新人教版2020年八年级下册数学教案导学案及答案全册

最新人教版2020年八年级下册数学教案导学案及答案全册

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x80, b a s + 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

新人教版初中数学8年级下册16章(全章) 精品 精品导学案汇总

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

16.1.1 从分数到分式学教目标:1、了解分式的概念以及分式与整式概念的区别与联系。

2、掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。

3、以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。

学教重点: 分式的概念和分式有意义的条件。

学教难点: 分式的特点和分式有意义的条件。

学教过程:一、温故知新:1、 什么是整式? ,整式中如有分母,分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x - ;a 1 ;xy x 2- ;3a ;5 . 3、 阅读“引言”, “引言”中出现的式子是整式吗?4、 自主探究:完成p 2的“思考”,通过探究发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。

5、 归纳:分式的意义: 。

代数式a 1 、x y x 2-、a s 、s V 、v +20100、v-2060都是 。

分数有意义的条件是 。

那么分式有意义的条件是 。

二、学教互动:例1、在下列各式中,哪些是整式?哪些是分式?(1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m +(5)—5 (6)1222-+-x y xy x (7)72 (8)cb +54 例2、p 3的“例1”填空:(1)当x 时,分式x32有意义 (2)当x 时,分式1-x x 有意义 (3)当b 时,分式b 351-有意义 (4)当x 、y 满足关系 时,分式yx y x -+有意义 例3、x 为何值时,下列分式有意义? (1)1-x x (2)15622++-x x x (3)242+-a a三、拓展延伸:例4、x 为何值时,下列分式的值为0?(1)11+-x x (2)392+-x x (3)11--x x四、课堂小结P 6的“练习”和P 11的1、2、3五、反馈检测:1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y ) 整式是 ,分式是 。

2018年人教版八年级数学下册导学案及答案【全册】

二、重点、难点 1.重点: 理解分式的基本性质. 2.难点: 灵活应用分式的基本性质将分式变形.
三、例、习题的意图分析
- 3 - / 163
1.P7 的例 2 是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么 整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式, 填到括号里作为答案,使分式的值不变.
2.P9 的例 3、例 4 地目的是进一步运用分式的基本性质进行约分、通分.值得注 意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正 确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高 次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深 对相应概念及方法的理解.
2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.
三、课堂引入
1.让学生填写 P4[思考],学生自己依次填出:10 , s , 200 , v .
7 a 33 s
2.学生看 P3 的问题:一艘轮船在静水中的最大航速为 20 千米/时,它沿江以最 大航速顺流航行 100 千米所用实践,与以最大航速逆流航行 60 千米所用时间相等,江 水的流速为多少?
2018 年人教版八年级数学下册导学案
第十六章 分式
16.1 分式
16.1.1 从分数到分式
一、 教学目标
1. 了解分式、有理式的概念.
2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条 件,分式的值为零的条件.
二、重点、难点
1.重点:理解分式有意义的条件,分式的值为零的条件.
x
y2
x 9
(3)x≠±2

最新人教版八年级下册数学教案导学案及答案全册名师指点资料

第十六章 分式16.1分式16.1.1从分数到分式一、 教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写P4[思考],学生自己依次填出:710,as ,33200,sv .2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x 千米/时.轮船顺流航行100千米所用的时间为v+20100小时,逆流航行60千米所用时间v-2060小时,所以v+20100=v-2060.3. 以上的式子v+20100,v-2060,a s ,sv ,有什么共同点?它们与分数有什么相同点和不同点? 五、例题讲解P5例1. 当x 为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解 出字母x 的取值范围.[提问]如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m 为何值时,分式的值为0? (1) (2) (3) [分析] 分式的值为0时,必须同时..满足两个条件:○1分母不能为零;○2分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3) 1-m m32+-m m 112+-m m 4522--x x x x 235-+23+x3. 当x 为何值时,分式的值为0? (1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 无意义?3. 当x 为何值时,分式的值为0? 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x7 , 238y y -,91-x2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, b a s +,4y x -; 整式:8x, a+b, 4y x -;分式:x 80, ba s +2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分x x 57+xx 3217-x x x --221x 802332xx x --212312-+x x母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.ab 56--, yx 3-, nm --2, nm 67--, yx 43---。

人教版八年级下册数学教案导学案及答案全册(华师版)

第十六章分式16.1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.三、课堂引入1.让学生填写P4[思考],学生自己依次填出:107,sa,20033,vs.2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为10020v+小时,逆流航行60千米所用时间6020v-小时,所以10020v+=6020v-.3. 以上的式子10020v+,6020v-,sa,vs,有什么共同点它们与分数有什么相同点和不同点五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0(1)1m m - (2)23m m -+ (3) 211m m -+ [分析] 分式的值为0时,必须同时..满足两个条件:○分母不能为零;○分子为零,这样求出的m 的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x . 2. 当x 取何值时,下列分式有意义(1)32x + (2)532x x +- (3)2254x x -- 3. 当x 为何值时,分式的值为0(1)75x x + (2)7213x x- (3)221x x x --七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是哪些是分式(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.(3)x 与y 的差于4的商是 .2.当x 取何值时,分式2132x x +-无意义 3. 当x 为何值时,分式21x x x--的值为0 八、答案:六、1.整式:9x+4, 209y +, 54-m 分式: x 7 , 238y y -,91-x 2.(1)x ≠-2 (2)x ≠ (3)x ≠±2 3.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, ba s +,4y x -; 整式:8x, a+b, 4y x -; x 8023分式:x 80, ba s 2. X = 3. x=-1课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.32四、课堂引入1.请同学们考虑: 与 相等吗 与 相等吗为什么2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.a b56--, y x 3-, n m --2, n m 67--, yx 43---。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第十六章分式导学案 1 / 20 16.1.1 从分数到分式 一、学习目标: 1.识记分式、有理式的概念. 2.知道分式有意义的条件,分式的值为零的条件; 3.能熟练地求出分式有意义的条件,分式的值为零的条件. 二、自主预习: 自学教材P2—P4相关内容,并完成以下各题。 1.完成教材P2“思考1”中的空格。 2.什么叫分式?分式与整式的区别是什么?

3.判断下列各式中,哪些是整式?哪些不是整式? ①38nm+m2 ; ②1+x+y2-z1; ③213x ;

④x1; ⑤1222xx; ⑥222abba;

三、课堂导学: 例1 填空:

当x 时,分式x52有意义;

当x 时,分式22xx有意义; 当x 时,分式x252有意义; 当x、y满足关系 时,分式yxyx2有意义; 例2 当m为何值时,分式的值为0 (1)1mm (2)32mm (3) 112mm

四、课堂自测: 1.判断下列各式哪些是整式,哪些是分式? 9x+4, x7, 209y, 54m, 238yy, 91x

2. 当x取何值时,下列分式有意义? (1) (2) (3)

3. 当x为何值时,分式的值为0? (1) (2) (3)

4、列式表示下列各量: (1)某村有n个人,耕地40公顷,人均耕地面积为 公顷; (2)ABC的面积为S,BC边长为a,则高AD为 ; (3)一辆汽车行驶a千米用b小时,它的平均车速为 千米/小时;一列火车行驶a千米比这辆汽车少用1小时,它的平均车速为 千米/小时。 5、下列式子中,哪些是是分式?哪些是整式?两类式子的区别是什么?

①x1;②3x;③5342b;④352a;⑤22yxx;

⑥nmnm;⑦121222xxxx;⑧)(3bac

P8习题16.1第1、2、3、8、13题;

4522xxxx235

23x

xx57xx3217xxx

221八年级下册数学第十六章分式导学案

2 / 20 16.1.2 分式的基本性质 第一课时 一、学习目标: 1.熟练掌握分式的基本性质. 2.会用分式的基本性质将分式变形. 二、自主预习: 自学教材P4—P6思考上面,并完成以下各题: 1.描述分式的基本性质:

2.用式子表示分式的基本性质: 3.理解教材P5例2并完成以下各空: (1)3)(32aaaa;yxxxyx32422;

(2)2xyxyyx 三、课堂导学: 例1 根据分式的基本性质,回答下列问题:

(1)abba当分母变为ba2时,分子变为怎样的因式?

(2)22xxyx当分子变为x+y时,分母变为怎样的因式?

(3)一个分式的分子为aa2,分式变形后为c

a

(a+1≠0),则分式变形前分母是怎样的因式? 例2 不改变分式的值,使下列分式的分子和分母都不含“-”号.

ab56, yx3, nm2, nm67, yx43

四、课堂自测: 1.填空:

(1) xxx3222= 3x (2) 32386bba=33a

(3)cab1=cnan)( (4) 222yxyx=)(yx 2.不改变分式的值,使下列分式的分子和分母都不含“-”号.

(1) 233abyx (2) 2317ba

(3) 2135xa (4) mba2)( 3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:

(1)13232aaaa (2)32211xxxx

(3)1123aaa 4.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. 八年级下册数学第十六章分式导学案 3 / 20 (1)baba2 (2)yxyx32

教材P8习题16.1第4、5题 八年级下册数学第十六章分式导学案

4 / 20 16.1.2 分式的基本性质 第二课时 一、学习目标: 会用分式的基本性质将分式变形,正确进行分式的通分和约分。 二、自主预习: 自主学习教材P6—P7,并完成以下各题: 1.回答问题:什么是分式的约分?什么是最简分式;什么是分式的通分?什么是最简公分母?

2.学习教材例3约分和例4通分并完成以下两题: (1)322323515cbacba; 44422xxx

(2)abcbaba与22; 3332xxxx与 三、课堂导学: 例1 约分: (1)cabba2263(2)532164xyzyzx(3)

xyyx3)(2

例2 通分: (1)321ab和cba2252 (2)xya2和23xb

(3)223abc和28bca (4)11y和11y 四、课堂自测: 1.判断下列约分是否正确:

(1)cbca=ba (2)22yxyx=yx1

(3)nmnm=0 2.约分: (1)cabba2263; (2)122362xx;

3.通分: (1)231ab和ba272 (2)xxx21和xxx21 八年级下册数学第十六章分式导学案 5 / 20 4.化简求值:222693yxyxxyx,其中34x,32y。

教材P8练习1、2,习题16.1第6、7题 八年级下册数学第十六章分式导学案

6 / 20 16.2.1 分式的乘除 第一课时 一、学习目标: 1.能识记分式乘除法的法则; 2.运用分式乘除法的法则进行分式乘除运算; 二、自主预习: 1.P10[观察] 根据所给算式,请写出分数的乘除法法则.

2. P11[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?

3.用字母表达式表示为: dcba dcb

a

三、课堂导学: 例1 计算:

(1)2328334abba (2)zyxzxy4522222

(3)9444962222aaaaaa (4)xxx6136122 例2 学习教材P12例3.并重新做一遍。

四、课堂自测: 1、计算

(1)abc2cba22 (2)322542nmmn

(3)xxy27 (4)-8xyxy52 (5)4411242222aaaaaa (6))3(2962yyyy

2、计算 (1)yxyx132 (2)abcacb2110352 八年级下册数学第十六章分式导学案

7 / 20 (3)yxaxy28512 (4)baababba234222

(5))4(12xxxx (6)3222)(35)(42xyxxyx 教材P13练习第2、3题,习题16.2第1、2题 八年级下册数学第十六章分式导学案

8 / 20 16.2.1 分式的乘除 第二课时 一、学习目标: 能熟练地进行分式乘除法的混合运算 二、自主预习: 1.自主学习教材P13例4并能计算 2.计算:

(1))(xyyxxy (2) )21()3(43xyxyx

三、课堂导学: 例1 计算:3525933522aaaaa

例2 计算:(1))4(3)98(23232bxbaxyyxab (2)xxxxxxx3)2)(3()3(444622 四、课堂自测:

1、计算:(1))2(216322baabcab (2)103326423020)6(25baccabbac (3)xyyxxyyx9)()()(3432 (4)22222)(xyxxyyxyxxxy 2、计算:(1))6(4382642zyxyxyx (2)9323496222aababaa (3)229612316244yyyyyy 八年级下册数学第十六章分式导学案

9 / 20 (4)xyyxyyxxyxxyx222)( 教材P15练习第1题、习题16.2第3(1)、(2)题 八年级下册数学第十六章分式导学案

10 / 20 16.2.1 分式的乘除 第三课时 一、学习目标: 1.能识记分式乘方的运算法则; 2.会熟练地进行分式乘方的运算. 二、自主预习: 1.自学教材P14,并仔细计算例5各题; 2、根据乘方的意义和分式乘法的法则计算:

(1)2)(ba=baba=( )

(2) 3)(ba=bababa=( ) (3)4)(ba=babababa=( ) 根据计算推导可得:nba)(=( ).(n为正整数) 3、分式乘方的法则__________________________。 三、课堂导学: 例1 计算:

(1)22332zyx (2)32223dcab

例2 计算:(1)443332222acdacdba

(2)4322224xayaxyaxy 四、课堂自测: 1、判断下列各式是否成立,并改正.

(1)23)2(ab=252ab (2)2)23(ab=2249ab

(3)3)32(xy=3398xy (4)2)3(bxx=2229bxx 2、计算 (1)22)35(yx ; (2)332)23(cba ;

(3)32223)2()3(xayxya ; (4)232)23()23()2(ayxyxxy (5)4234223)()()(cabacbac ;

相关文档
最新文档