第三章矩阵的初等变换练习题参考答案
2020年同济大学线性代数第六版第三章《矩阵的初等变换与线性方程组》同步练习与解析

第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. ) ~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. ) ~⎪⎪⎪⎭⎫⎝⎛--0000410003011020201. 2.设A=(12 342 3 455 4 32),求一个可逆矩阵P ,使PA 为行最简形矩阵。
线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。
第三章矩阵的初等变换与线性方程组作业及答案

第三部分 矩阵的初等变换与线性方程组作业(一)选择题1.设111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,212223233132333311121313a a ka a B a a ka a a a ka a +⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭,1010001100P ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 210001001P k ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 等于(A) 1112P BP -- (B) 1121P BP -- (C) 1112P P B -- (D) 1112BP P --2.设有齐次线性方程组Ax=0和Bx=0, 其中A,B 均为n m ⨯矩阵,现有4个命题: (1)若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B); (2)若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; (3)若Ax=0与Bx=0同解,则秩(A)=秩(B); (4)若秩(A)=秩(B), 则Ax=0与Bx=0同解. 以上命题中正确的是( )(A) (1)(2) (B) (1)(3)(C) (2)(4) (D) (3)(4)3.n 元非齐次线性方程组Ax b =与其对应的齐次线性方程组0Ax =满足( ) (A )若0Ax =有唯一解,则Ax b =也有唯一解, (B )若Ax b =有无穷多解,则0Ax =也有无穷多解, (C )若0Ax =有无穷多解,则Ax b =只有零解, (D )若0Ax =有唯一解,则Ax b =无解.4.要使12100 121ξξ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,都是线性方程组0Ax =的解,只要系数矩阵A 为( ) (A )()211- (B )201011-⎛⎫ ⎪⎝⎭ (C )102011-⎛⎫ ⎪-⎝⎭ (D )011422011-⎛⎫⎪- ⎪ ⎪⎝⎭ 5.线性方程组123232321,32, (3)(4)(2).x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ=( )(A)1(B) 2(C)3(D)46.非齐次线性方程组Ax b =中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则( )(A) r m =时,方程组Ax b =有解 (B) r n =时,方程组Ax b =有惟一解 (C) m n =时,方程组Ax b =有惟一解 (D) r n <时,方程组Ax b =有无穷多个解 (二)填空题1. 设线性方程组 1231231232202020x x x x x x x x x λ-+=⎧⎪-+=⎨⎪+-=⎩,的系数矩阵为A ,且存在三阶矩阵0B ≠,使得0AB =,则λ=_________________。
第三章 矩阵的初等变换与线性方程组参考答案

第三章 矩阵的初等变换与线性方程组参考答案习题A1. 3)(,1800002010013201~=⎪⎪⎪⎪⎪⎭⎫⎝⎛--A R A 2.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001000100011a a a A 3. ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−000007579751076717101r B , 故原方程通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007576107971017571214321c c x x x x ),(21R c c ∈注:还有其他解的形式,不一一赘述。
习题B一、1.141-;2.0;3.0;R(A)<n,0≠,n b A R A R ==)()( ;4. R t t x x x ∈⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛,14525002321 5.非零解二、ABCAA三、1. ⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---=000000400014030012111003014030000000121110030116030242201211A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→000000100031001031020100000010003134010*********00001000313401001211R(A)=32. 由⎪⎪⎪⎪⎪⎭⎫⎝⎛---−→−2000000003621011111x y x x A r,及2)(=A r 故2,0==y x 。
3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=32000110010101111111111111112k k k k k k k k k k kA 因为3)(=A r ,所以01,0322≠-=+--k k k ,所以3-=k4. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-4613513411A5. 方程组可写为b AX =,故⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---==-0013212141813413231511b A x 6. ⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛-------=521004101021001301131111462011~A43)~()(<==A r A r ,所以方程组有无穷多解。
线性代数习题[第三章] 矩阵的初等变换与线性方程组
![线性代数习题[第三章] 矩阵的初等变换与线性方程组](https://img.taocdn.com/s3/m/a4c4f0fa59eef8c75ebfb38b.png)
线性代数习题[第三章]矩阵的初等变换与线性方程组(总6页)-本页仅作为预览文档封面,使用时请删除本页-习题 3-1 矩阵的初等变换及初等矩阵1.用初等行变换化矩阵102120313043A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为行最简形.2.用初等变换求方阵321315323A⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的逆矩阵.3.设412221311A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,32231-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦1B=,求X使AX B=.4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B.(1) 证明B可逆 (2)求1AB-.习题 3-2 矩阵的秩1.求矩阵的秩:(1)310211211344 A⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(2)111212122212nnn n n na b a b a ba b a b a bBa b a b a b⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦1,2,,i ia bi n≠⎡⎤⎢⎥=⎣⎦2.设12312323kA kk-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦问k为何值,可使(1)()1R A=; (2)()2R A=; (3)()3R A=.3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 ..()()a R A R B = .()()b R A R B <;.()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥-4. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------815073*********的秩R= . ; b . 2; c . 3; d . 4.5. 设n (n ≥3)阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 11-n .6.设A 为n 阶方阵,且2A A =,试证:()()R A R A E n +-=习题 3-3线性方程组的解1. 选择题(1)设A 是m n ⨯矩阵,0Ax =是非齐次线性方程组Ax b =所对应的齐次线性方程组,则下列结论正确的是( ).A. 若0Ax =仅有零解,则Ax b =有唯一解B. 若0Ax =有非零解,则Ax b =有无穷多个解C. 若Ax b =有无穷多个解,则0Ax =仅有零解D. 若Ax b =有无穷多个解,则0Ax =有非零解,(2)对非齐次线性方程组m n A x b ⨯=,设()R A r =,则( ).A.r m =时,方程组Ax b =有解B.r n =时,方程组Ax b =有唯一解C.m n =时,方程组Ax b =有唯一解D.r n <时,方程组Ax b =有无穷多解(3)设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵为A ,且存在三阶方阵B ≠0,使AB =0,则 .2.-=λa 且0=B ; 2.-=λb 且0≠B ;C. 1=λ且0=B ; d . 1=λ且0≠B .(4)设非齐次线性方程组AX=b 的两个互异的解是21,X X ,则 是该方程组的解. 121212121.;.;.();..22X X a X X b X X c X X d -+-+2.解下列方程组:(1)12341234123420363051050x x x x x x x x x x x x ++-=⎧⎪+--=⎨⎪++-=⎩(2)21 422221x y z wx y z wx y z w+-+=⎧⎪+-+=⎨⎪+--=⎩3.设123123123(2)2212(5)42 24(5)1x x xx x xx x xλλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或有无穷多解并在有无穷多解时求其通解.4. 设线性方程组⎪⎩⎪⎨⎧=++=++=++000222z c y b x a cz by ax z y x (1) a,b,c 满足何种关系时,方程组仅有零解(2) a,b,c 满足何种关系时,方程组有无穷多解求出其解.5.设,,,,,515454343232121a x x a x x a x x a x x a x x =-=-=-=-=-证明这个方程组有解的充分必要条件为051=∑=j j a ,且在有解的情形,求出它的一般解.。
线性代数课后习题答案第三章 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1))⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010********* 故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x xx x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫⎝⎛--0000000021101201,于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数). (4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是⎪⎪⎩⎪⎪⎨⎧==--=++=ww z z w z y w z x 757975767171,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数). 14. 写出一个以⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x为通解的齐次线性方程组. 解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x xx x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x cx c c x c c x ,或 ⎩⎨⎧+-=-=432431432x x x x x x ,或 ⎩⎨⎧=-+=+-04302432431x x x x x x , 这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解? 解⎪⎪⎭⎫⎝⎛=21111111λλλλλB ⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 当λ取何值时有解?并求出它的解. 解⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ.要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2. 当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫ ⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311xx x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫ ⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解. 解B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ.要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )<R (B ), 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)≠0, 所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫ ⎝⎛-000000001221, 方程组的解为⎪⎩⎪⎨⎧==++-=33223211x x x x x x x , 或⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数). 18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T .证明 必要性. 由R (A )=1知A 的标准形为)0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅=Q P A .令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T .充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是R(A)=R(A,E m),而| E m|是矩阵(A,E m)的最高阶非零子式,故R(A)=R(A,E m)=m.因此,方程AX=E m有解的充分必要条件是R(A)=m.(2)方程YA=E n有解的充分必要条件是R(A)=n.证明注意,方程YA=E n有解的充分必要条件是A T Y T=E n有解.由(1)A T Y T=E n有解的充分必要条件是R(A T)=n.因此,方程YA=E n有解的充分必要条件是R(A)=R(A T)=n.20.设A为m⨯n矩阵,证明:若AX=AY,且R(A)=n,则X=Y.证明由AX=AY,得A(X-Y)=O.因为R(A)=n,由定理9,方程A(X-Y)=O只有零解,即X-Y=O,也就是X=Y.。
线性代数第三章课后习题
习题三(A )1. 用矩阵的初等变换把下列矩阵A 化为行阶梯形矩阵、行最简形矩阵及标准形矩阵:(1) 112332141022-⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)1111131320461135-⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭(3)24512122111212136363--⎛⎫⎪-- ⎪=⎪-- ⎪---⎝⎭2.设A 123012425⎛⎫⎪=- ⎪ ⎪⎝⎭,010(1,2)100001⎛⎫⎪= ⎪ ⎪⎝⎭E ,100(3,2(5))010051⎛⎫ ⎪= ⎪ ⎪⎝⎭E .试求(1,2)E A ;(1,2)AE ;(3,2(5))E A .3.用初等变换求下列方阵的逆矩阵:(1) A 101110012⎛⎫ ⎪=- ⎪ ⎪⎝⎭ (2)A 211124347--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭(3)A1111022200330004⎛⎫⎪⎪= ⎪ ⎪⎝⎭4.用初等变换解下列矩阵方程:(1) 设A 101110120⎛⎫ ⎪= ⎪ ⎪⎝⎭,102102-⎛⎫⎪= ⎪ ⎪⎝⎭B ,且AX =B ,求X .(2)设A 220213010⎛⎫⎪= ⎪ ⎪⎝⎭,且+AX =A X ,求X .5.设矩阵A 122324111222-⎛⎫⎪=-- ⎪ ⎪-⎝⎭,计算A 的全部三阶子式,并求()R A .6.在秩为r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?请举例说明.7.从矩阵A 中划掉一行得到矩阵B ,问A ,B 的秩的大小关系怎样? 请举例说明.8.求下列矩阵A 的秩:(1) 310211311344⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(2)1121224230610304-⎛⎫ ⎪- ⎪=⎪- ⎪-⎝⎭(3)12211248022423336064--⎛⎫⎪-⎪= ⎪-- ⎪--⎝⎭(4) 112205123λλλ-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ (5)111111λλλ⎛⎫⎪= ⎪ ⎪⎝⎭9. 设有矩阵A101110112111022264μμ-⎛⎫⎪⎪=⎪⎪⎝⎭,若()3R=A,求μ的值.10.判断下列命题是否正确.(1) 如果线性方程组AX=0只有零解,那么线性方程组AX=B有唯一解;(2) 如果线性方程组AX=B有唯一解,那么线性方程组AX=0只有零解.11. 解下列齐次线性方程组:(1)12312312325502303570x x xx x xx x x+-=⎧⎪+-=⎨⎪+-=⎩(2)1234123412342202220430x x x xx x x xx x x x+++=⎧⎪+--=⎨⎪---=⎩(3)31243124312431242530420476023950xx x xxx x xxx x xxx x x-+-=⎧⎪-+-=⎪⎨-+-+=⎪⎪-+-=⎩(4)3124312412431242350240347045530xx x xxx x xx x xxx x x-+-+=⎧⎪-+-=⎪⎨--=⎪⎪-+-=⎩12. 解下列非齐次线性方程组:(1)123123123343322323x x xx x xx x x-+=⎧⎪+-=-⎨⎪-+-=-⎩(2)12341234123443222333244x x x xx x x xx x x x+-+=⎧⎪++-=-⎨⎪---+=⎩(3)3124312431243124235324434733749xx x xxx x xxx x xxx x x+++=⎧⎪++-=⎪⎨+++=⎪⎪++-=⎩(4)31231231231224523438214496xx xxx xxx xxx x-+=-⎧⎪++=⎪⎨+-=⎪⎪-+=-⎩13. 确定λ的值,使下列齐次线性方程组有非零解,并求其一般解.(1)123123123x x xx x xx x xλλλ++=⎧⎪++=⎨⎪++=⎩(2)123123123240356020x x xx x xx x x-+=⎧⎪-+=⎨⎪-+=⎩λ14.讨论下列非齐次线性方程组,当λ取何值时,方程组无解、有唯一解、有无穷多解?并在有无穷多解时求出一般解:(1)12312321231x x xx x xx x xλλλλλ++=⎧⎪++=⎨⎪++=⎩(2)212312312313422321x x xx x xx x x++=⎧⎪++=⎨⎪+-=⎩λλ15. 设有方程组112223334445551x axx axx axx axx ax-=⎧⎪-=⎪⎪-=⎨⎪-=⎪-=⎪⎩,证明方程组有解的充分必要条件是51iia==∑.(B )1.设A 是n 阶可逆阵,互换A 的第i 行与第j 行(i j ≠)得到矩阵B ,求1-AB .2. (研2007数一、二、三)设矩阵0100001000010000⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为___ ____. 3. (研2010数一)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若AB =E ,则正确的是( )(A) ()R m =A ,()R m =B (B) ()R m =A ,()R n =B(C) ()R n =A ,()R m =B (D) ()R n =A ,()R n =B4. (研2015数一、二、三)设矩阵A 21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭b .若集合={1,2}Ω,则线性方程组Ax =b 有无穷多解的充分必要条件是( )(A) a ∉Ω,d ∉Ω (B) a ∉Ω,d ∈Ω (C) a ∈Ω,d ∉Ω (D) a ∈Ω,d ∈Ω5. (研2016数二、三)设矩阵111111a a a --⎛⎫ ⎪-- ⎪ ⎪--⎝⎭与110011101⎛⎫ ⎪- ⎪ ⎪⎝⎭等价,则a =____ ____.6.证明:()()R R R ⎛⎫=+ ⎪⎝⎭A O AB O B . 7.设A ,B 是n 阶非零矩阵,证明:若=AB O ,则()R n <A 及()R n <B .8.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,且n m <.证明:||0=AB .。
第三章矩阵的初等变换与线性方程组习题含答案
第三章矩阵的初等变换与线性方程组习题含答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第三章矩阵的初等变换与线性方程组3.4.1 基础练习1.已知121011251-⎛⎫⎪= ⎪⎪-⎝⎭A,求()R A.2.已知32101032100000200000-⎛⎫⎪-⎪=⎪-⎪⎪⎝⎭B,求()R B.3.若矩阵,,A B C满足=A BC,则(). (A)()()R R=A B (B) ()()R R=A C(C)()()R R≤A B (D) ()max{(),()}R R R≥A B C4.设矩阵X满足关系2=+AX A X,其中423110123⎛⎫⎪= ⎪⎪-⎝⎭A,求X.5.设矩阵101210325⎛⎫⎪= ⎪⎪--⎝⎭A,求1()--E A.6.A是m n⨯矩阵,齐次线性方程组0=Ax有非零解的充要条件是 . 7.若非齐次线性方程组=Ax b中方程个数少于未知数个数,那么( ). (A) =Ax b必有无穷多解; (B) 0=Ax必有非零解;(C) 0=Ax仅有零解; (D) 0=Ax一定无解.8.求解线性方程组(1)12312312312333332x x xx x xx x x+-=⎧⎪+-=⎨⎪-+=⎩,(2)72315532151011536x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩(3)12341234123420 20 2220 x x x xx x x xx x x x++-=⎧⎪++-=⎨⎪+++=⎩9.若方程组 12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解,则λ= .10.若12(1,0,2),(0,1,1)T T ==-αα都是线性方程组0=Ax 的解,则=A ( ).(A)()2,1,1- (B)201011-⎡⎤⎢⎥⎣⎦ (C)102011-⎡⎤⎢⎥-⎣⎦ (D)011422010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦3.4.2 提高练习1.设A 为5阶方阵,且()3R =A ,则*()R A = .2.设矩阵12332354445037a a -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,以下结论正确的是( ). (A)5a =时,()2R =A (B) 0a =时,()4R =A (C)1a =时,()5R =A (D) 2a =时,()1R =A3.设A 是43⨯矩阵,且()2R =A ,而102020103⎛⎫⎪= ⎪ ⎪-⎝⎭B ,则()R =AB .4.设12243311t-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,B 为3阶非零矩阵,且0=AB ,则t = . 5.设12312323k k k -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A , 问k 为何值,可使(1)()1R =A (2)()2R =A (3)()3R =A .6.设矩阵111111111111kk k k ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭A ,且()3R =A ,则k = .7.设133143134⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,试将A 表示为初等矩阵的乘积. 8.设n 阶方阵A 的个行元素之和均为零,且()1R n =-A ,则线性方程组0=Ax 的 通解为 .9.设11121314212121213132333441424344a a a a a a a a a a a a aa a a ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭A ,14131211242322213433323144434241a a a a aa a a a a a a a a a a ⎛⎫ ⎪ ⎪= ⎪⎪ ⎪⎝⎭B ,10001010000101000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭P21000001001000001⎛⎫⎪⎪= ⎪⎪⎪⎝⎭P ,其中A 可逆,则1-=B .10.设n 阶矩阵A 与B 等价,则必有( ).(A )当(0)a a =≠A 时,a =B (B )当(0)a a =≠A 时,a =-B (C )当0≠A 时,0=B (D )当0=A 时,0=B11.设a b b b a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,若*()1R =A ,则必有( ).(A )a b =或20a b += (B )a b =或20a b +≠ (C )a b ≠或20a b += (D )a b ≠或20a b +≠12.齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A ,若存在三阶矩阵0≠B ,使得0=AB ,则( ).(A )2λ=-且0=B (B )2λ=-且0≠B (C )1λ=且0=B (D )1λ=且0≠B13.设A 是三阶方阵,将A 的第一列与第二列交换得到B ,再把B 的第二列加到第三列得到C ,则满足=AQ C 的可逆矩阵Q 为( ).(A )010100101⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )010101001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )010100011⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )011100001⎛⎫ ⎪ ⎪ ⎪⎝⎭14.已知12324369t ⎛⎫⎪= ⎪ ⎪⎝⎭Q ,P 为三阶非零矩阵,且0=PQ ,则( ).(A )6t =时,()1R =P (B )6t =时,()2R =P (C )6t ≠时,()1R =P (D )6t ≠时,()2R =P15.若线性方程组121232343414x x a x x a x x a x x a +=-⎧⎪+=⎪⎨+=-⎪⎪+=⎩有解,则常数1234,,,a a a a 应满足条件 .16.设方程组123111111112a x a x a x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭有无穷多个解,则a = .17.设n 阶矩阵A 与n 维列向量α,若()0TR ⎛⎫= ⎪⎝⎭AA αα,则线性方程组( ). (A )=Ax α必有无穷多解 (B )=Ax α必有唯一解(C )00T⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭A x y αα仅有零解 (D )00T ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭Ax y αα必有非零解.18.设A 为m n ⨯矩阵,B 为n m ⨯矩阵,则线性方程组()0=AB x ( ). (A )当n m >时仅有零解 (B )当n m >时必有非零解 (C )当m n >时仅有零解 (D )当m n >时必有非零解19.求λ的值,使齐次线性方程组 123123123(3)20(1)03(1)(3)0x x x x x x x x x λλλλλλ+++=⎧⎪+-+=⎨⎪++++=⎩有非零解,并求出通解.20.设 123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问λ为何值时,此方程组有唯一解,无解或无穷多解并在有无穷多解时,求其通解.21.问,a b 为何值时,线性方程组 123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解、无解、有无穷多解并求出有无穷多解时的通解.22.问λ为何值时,线性方程组131231234226423x x x x x x x x λλλ⎧+=⎪++=+⎨⎪++=+⎩有解,并求通解.23.已知3阶矩阵A 的第一行为(,,)a b c ,,,a b c 不全为零,矩阵12324636k ⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,k 为常数.若0=AB ,求线性方程组0=Ax 的通解.24.设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1)证明B 可逆;(2)求1-AB .第三章参考答案3.4.1 基础练习1.()2R =A . 2.()3R =B . 3.因为()min{(),()}R R R ≤A B C 故选C .4.由已知(2)-=A E X A ,因为100386(2,)0102960012129r--⎛⎫ ⎪-−−→-- ⎪ ⎪-⎝⎭A E A 故1386(2)2962129---⎛⎫⎪=-=-- ⎪ ⎪-⎝⎭X A E A .5.100231342100⎛⎫- ⎪⎪ ⎪--- ⎪⎪- ⎪ ⎪⎝⎭. 6.()R n <A . 7.B . 8.(1)无解; (2)211x y z ⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; (3)12349,43x x c c R x ⎛⎫⎛⎫ ⎪- ⎪ ⎪=∈ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 9.有无穷多解的充分必要条件是系数矩阵的秩等于增广矩阵的秩且小于未知数的个数 得3λ=。
线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)
(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0
1≤i< j≤n
1
xn
x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;
1
1 0
0
0
a11 a21
a12 a22
a13 a23
=
a21 a11
a22 a12
a23 a13
0 0 1 a31 a32 a33 a31 a32 a33
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
⎯r⎯→
⎢⎢0
−1
2
6 −4⎥⎥ ⎯r⎯→
⎢⎣−1 0 2 5 −3⎥⎦
⎢⎣0 0 1 7 −3⎥⎦
⎡1 0 0 9 −3⎤ ⎢⎢0 1 0 8 −2⎥⎥ ⎢⎣0 0 1 7 −3⎥⎦
5
⎡9 −3⎤ 所以 X = (E − A)−1 B = ⎢⎢8 −2⎥⎥
⎢⎣7 −3⎥⎦
例
3.9
方程组
⎪⎨⎧ax1x1++axx22
⎢⎣1 0 1⎥⎦ 可得 R( A) = 2 .故 R( A2 + 2A) = R( A( A + E)) = R( A) = 2 .
例 3.6 设 A* 是 n 阶矩阵 A 的伴随矩阵,证明
(1) A* = A n−1 ,
⎧n, R( A) = n; (2) R( A*) = ⎨⎪1, R( A) = n −1;
⎢ ⎢
M
M
M
M
⎥ ⎥
⎢⎣a a a L a⎥⎦
(A) 1
1
(B)
1− n
(C) -1
1
(D)
n −1
解 因 为 R( A) = n −1 , 所 以 A = 0 . 又 A = (1− a)n−1[(n −1)a +1] , 故 a = 1 或
a = 1 .当 a = 1 时,易知 R( A) = 1 ,当 a = 1 时, R( A) = n −1.
⎡ x1 ⎤ ⎡− 2c1 + c2 − 1⎤
⎢ ⎢
x2
⎥ ⎥
⎢ ⎢
4c1 − 2c2
⎥ ⎥
⎡− 2⎤
⎢ ⎢
4
⎥ ⎥
⎡ 1 ⎤ ⎡− 1⎤
⎢⎢− 2⎥⎥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 矩阵的初等变换练习题参考答案
一、判断题
( √ )1.设A 是n 阶可逆方阵,则齐次线性方程组0Ax =只有零解。
( √ )2.若n 阶矩阵A 可逆,则()R A n =。
( × )3.n 元非齐次线性方程组Ax b =有解的充分必要条件()R A n =。
( √ )4. 两个n 阶矩阵A ,B 行等价的充要条件是存在n 阶可逆矩阵P 使得B PA =。
( × )5. 任何矩阵都可以经过有限次初等行变换化为行阶梯形矩阵,并且化为的行阶梯形矩阵是唯一确定的。
( × )6. 若n 阶矩阵A 的秩为1n -,则A 的所有1n -阶子式均不为零。
( √ )7. 可逆矩阵A 总可以只经过有限次初等行变换化为单位矩阵E 。
( √ )8. 设矩阵A 的秩为r ,则A 中所有1+r 阶子式必为零。
( × )9.设A 为)n m (n m <⨯矩阵,则Ax b =有无穷多解。
( × )10. 只有行等价的矩阵才具有相同的秩,列等价的矩阵不具有相同的秩.
二、填空题
1. 矩阵102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭
的行最简形矩阵为100000100001⎛⎫
⎪ ⎪ ⎪⎝⎭。
2. 设A 是5阶方阵,且满足2
A A E +=, 则()R A E += 5 。
3.非齐次线性方程组的增广矩阵为
B =21
01110
14000001220
00(1)1k k k k
k --⎛⎫
⎪
⎪
⎪
-- ⎪--⎝⎭
,则当k =
0时方程组
无解;当k =1时方程组有无穷解。
4.设线性方程组的增广矩阵为1323
3
12341
02420
21040013000
0a a a a a a a a a +⎛⎫
⎪
-
⎪ ⎪- ⎪
⎪+--⎝
⎭
,则该方程组有解的充要条件是12340
a a a a +--=。
5. 设矩阵A 经初等行变换可化为行阶梯形矩阵B 。
若A 的秩为3,则B 中非零行的行数为 3 。
6. 设矩阵121348412363A k -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,当k =____9___时,()1R A =。
三、简单计算题
1. 设矩阵A 和B 满足关系式=+2AB A B ,其中⎛⎫
⎪
= ⎪ ⎪⎝⎭
301110014A ,求矩阵B 。
解:由=+2AB A B 得-=2AB B A ,即(2)A E B A -=。
()213213
232
(1)101301101
3012110110011211012014012014101301100522011211010432001223001223100522010432001223r r r r r r r r r A E
A -+-+-⎛⎫⎛⎫ ⎪ ⎪-=-−−−→---- ⎪ ⎪
⎪ ⎪⎝⎭⎝⎭
--⎛⎫⎛⎫
⎪ ⎪−−−→----−−−→-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭--−−−→---由于,
⎛⎫ ⎪ ⎪ ⎪⎝⎭
所以--⎛⎫
⎪
=-- ⎪ ⎪-⎝⎭
522432223B 。
2. 设矩阵A 和B 满足关系=+2AB A B ,其中110011101A -⎛⎫
⎪
=- ⎪ ⎪-⎝⎭。
(1)试判定-2A E 是否可逆,说明理由。
(2)求矩阵B 。
解:(1)由于1102011101A E --⎛⎫
⎪
-=-- ⎪ ⎪--⎝⎭
,所以110201120011A E ---=--=-≠-,从而-2A E 可逆。
(2)由=+2AB A B 得-=2AB B A ,即-=-1(2)B A E A 。
利用初等变换法可求得B :
()311101101101102011011011011101101011211r r A E
A -------⎛⎫⎛⎫ ⎪ ⎪-=---−−−→--- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭
1
2332
2(1),()110110110110011011011011002220001110r r r r --+------⎛⎫⎛⎫
⎪ ⎪−−−→---−−−−−→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭
23121
,(1)110110100011010101010101001110001110r r r r r -+-----⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭
,
所以011101110B -⎛⎫
⎪
=- ⎪ ⎪-⎝⎭。
说明:此题目中证明矩阵-2A E 可逆,可以直接由-2A E 与单位矩阵行等价得到结论。
四、综合计算题
1. 设1100011000110001B -⎛⎫ ⎪-
⎪= ⎪
- ⎪
⎝⎭
,21
3402130021000
2C ⎛⎫ ⎪ ⎪
= ⎪ ⎪⎝⎭
,且矩阵A 满足1()T T A E C B C E --=,其中E 是4阶单位矩阵,1C -是C 的逆矩阵,T C 是C 的转置矩阵。
求矩阵A 。
答案:(方法并不唯一)
先化简关系式1()T T A E C B C E --=得到
11()[()]()T T T T A E C B C A C E C B A C B E ---=-=-=。
所以1
1()()T T A C B C B --⎡⎤⎡⎤=-=-⎣⎦
⎣⎦。
又由于1
234012300120
00
1C B ⎛⎫ ⎪ ⎪
-= ⎪ ⎪⎝⎭
,利用初等变换法可得 1
121
00121()001200
01C B --⎛⎫ ⎪-
⎪-= ⎪- ⎪
⎝⎭, 所以112101
00001212100()0012121000010121T
T A C B --⎛⎫⎛⎫
⎪ ⎪-- ⎪ ⎪⎡⎤=-==⎣⎦ ⎪ ⎪-- ⎪
⎪-⎝⎭⎝⎭。
2. 已知矩阵
11121321
2223313233a b a b a b A a b a b a b a b a b a b ⎛⎫
⎪= ⎪ ⎪⎝⎭
, 若110a b ≠,试至少用两种方法证明:矩阵A 的秩()1R A =. 证法一:(利用矩阵的秩的概念证明)
由于110a b ≠,所以矩阵A 有1阶子式110a b ≠。
又矩阵A 中任意两行元素都成比例,所以11
1213
21
222331
32
33
0a b a b a b A a b a b a b a b a b a b ==,且矩阵A 的任意一个2阶子式也为零。
从而矩阵A 的最高阶非零子式的阶数为1,即()1R A =。
证法二:(利用初等行变换化行阶梯形矩阵证明)
由于110a b ≠,所以10a ≠,从而对矩阵A 进行初等行变换可得:
2211331111
12131112
1321
222331
32
3300000
0a r r a a r r a a b a b a b a b a b a b A a b a b a b a b a b a b ⎛⎫+- ⎪⎝⎭
⎛⎫
+- ⎪⎝⎭⎛⎫⎛⎫
⎪ ⎪=−−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭
⎝⎭。
由于110a b ≠,所以矩阵A 的第一行为非零行,所以()1R A =。
证法三:(利用矩阵的秩的概念和矩阵的秩的性质(教材70页性质⑦)证明)
显然,()
121
2
33a A a b b b BC a ⎛⎫
⎪
= ⎪ ⎪⎝⎭
记作,则由矩阵的秩的性质知:
{}()min (),()R A R B R C ≤。
由于110a b ≠,所以110,0a b ≠≠,故()()1R B R C ==,从而()1R A ≤。
又由110a b ≠可得()1R A ≥。
所以()1R A =。
说明:证法三较难理解,不作要求,望有考研打算的同学尽量理解掌握!。