线性代数测试题(第三章)
线性代数习题答案第三章

所以当1时 方程组有无穷多解此时,增广矩阵为
B~ 方程组的解为
或 (k1 k2为任意常数) 18 证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT
使T 证明 必要性 由R(A)1知A的标准形为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r
第三章 矩阵的初等变换与线性方程组
1 把下列矩阵化为行最简形矩阵 (1) 解 (下一步 r2(2)r1 r3(3)r1 )
~(下一步 r2(1) r3(2) ) ~(下一步 r3r2 ) ~(下一步 r33 ) ~(下一步 r23r3 ) ~(下一步 r1(2)r2 r1r3 ) ~ (2) 解 (下一步 r22(3)r1 r3(2)r1 ) ~(下一步 r3r2 r13r2 ) ~(下一步 r12 ) ~ (3) 解 (下一步 r23r1 r32r1 r43r1 ) ~(下一步 r2(4) r3(3) r4(5) ) ~(下一步 r13r2 r3r2 r4r2 ) ~ (4) 解 (下一步 r12r2 r33r2 r42r2 ) ~(下一步 r22r1 r38r1 r47r1 ) ~(下一步 r1r2 r2(1) r4r3 ) ~(下一步 r2r3 ) ~ 2 设 求A 解 是初等矩阵E(1 2) 其逆矩阵就是其本身 是初等矩阵E(1 2(1)) 其逆矩阵是 E(1 2(1))
线性代数练习册第三章部分答案(本)

线性代数练习册第三章部分答案(本)第三章⾏列式及其应⽤§3-1 ⾏列式的定义⼀、填空题。
1、⾏列式a bc d=__ad bc -___;112213141---=____-24____. 2、⾏列式111112121200000a a a ab bc cd d =______0_____. 3、已知⾏列式1111111111111111D -=-----,则32M =___4__;32A =___-4__. 4、已知排列2145697m n 为奇排列,则m =__8_;n =__3_. 5、4阶⾏列式中含1331a a 且符号为负的项是____13223144a a a a -____.⼆、选择题。
1、⽅程0110001x x x=的实根为__C___. (A )0; (B )1; (C )-1; (D )2.(A )18; (B )19; (C )20; (D )21 4、n 阶⾏列式00102000D n = 的值为__D ___.(A )!n ; (B )!n -; (C )(1)!nn -; (D )(1)2(1)!n n n --.5、⾏列式312111321111x x x x x--中4x 的系数为__A____.(A )-1; (B )1; (C )2; (D )3.三、计算下列⾏列式1、12110001- 解:3331212110(1)(1)111001r +--=-按展开2、1010120012301234解:44432101010112004(1)120123012312341014120243、1132101123011002-- 解:414113211310111013223012303100210001300133033c c --------=--按r 展开四、设排列12n a a a 的逆序数为k ,证明排列11n n a a a - 的逆序数为(1)2n n k --. 证明:设i a 在排列12n a a a 的逆序数为i k ,则12n k k k k +++= ,且i a 在排列11n n a a a - 的逆序数为i t ,则i i i k t n a +=-,所以,i i i t n a k =--,所以,排列11n n a a a - 的逆序数为12112122122(1)()()2n n n n n n a k n n n t t t n a k n a k a a k k a k k ---=--+++=--+--++++++++=-(另解:因为12n a a a 中的任两个不同的元素,i j a a 必在排列12n a a a或排列11n n a a a - 中构成逆序且只能在其中⼀个中构成逆序,所以排列12n a a a 和11n n a a a - 的逆序数之和等于从n 个元素中任取两个不同数的组合数kn C ,即11n n a a a - 的逆序数为(1)§3-2 ⾏列式的性质与计算⼀、填空题。
线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。
3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。
(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。
线性代数 第三章自测题参考答案

自测题(三)参考答案与提示一、(1) ;2−n (2) 方程组的未知量个数为3,由基础解系所含向量个数与系数矩阵的秩的关系,可知1,不妨设所求方程组为()R =A 1230ax bx cx ++=,并将代入,得,故方程组的系数矩阵为. 12,ηη1,1a b c =−==(1,1,1)=−A 二、(1)(D );(2)(D ).三、123412341311~014537570000−−⎛⎞⎛⎜⎟⎜=−⎜⎟⎜⎜⎟⎜−⎝⎠⎝A ⎞⎟−⎟⎟⎠⎞⎟⎟⎟⎟⎟⎠ 得基础解系 . 1234111445,1001x x x x −⎛⎞⎛⎞⎛⎜⎟⎜⎟⎜−⎜⎟⎜⎟⎜=⎜⎟⎜⎟⎜⎜⎟⎜⎟⎜⎜⎟⎜⎜⎟⎝⎠⎝⎝⎠四、1111011011211131~00121211231200000−−−−⎛⎞⎛⎜⎟⎜=−−−⎜⎟⎜⎜⎟⎜−−−⎝⎠⎝A ⎞⎟⎟⎟⎠可见()()R R =A A ,方程组有解,并有1243412212x x x x x =++⎧⎨=+⎩ 取,则 240x x ==1312x x ==,即得原方程组的一个特解T*(12,0,12,0)=η. 对应齐次线性方程组的基础解系 , T 1(1,1,0,0)=ηT 2(1,0,2,1)=η原方程组的通解为 .112212*,(k k k k R =++∈ηηηη、)五、考虑向量方程1122330k k k ααα++=⎪⎩⎪⎨⎧=++=+−=+030422032132131ak k k k k k k k 013422101=−a,即 02)3(2=−−−a ,即2=a .六、当()R n =A 时,12,,,n αα"α0线性无关,设1122231()()()n n k k k αααααα++++++=",于是有 ,12310,0,,0n n k k k k k k −+=+=+="n 可见当为偶数时,有非零解,当n 为奇数时,n =Bx 0=Bx 0无非零解.七、由的每一列均为的解,那么矩阵中列向量组的秩必小于等于的解向量组的秩,即有R () = R (B =A x 0B =A x 0B s βββ,,,"21)()n R ≤−A所以 ()()R R n +≤A B .八、(1)由已知,得矩阵的秩小于3,又()1223123123101(,,),,11011a a αααααααααα−⎛⎞⎜⎟−+−++=−⎜⎟⎜⎟⎝⎠123,,ααα线性无关,所以矩阵10111011a −⎛⎞⎜⎟−⎜⎜⎟⎝⎠⎟4一定不可逆,推出.2a =(2)方程组1223123(,,)a αααααααα−+−++=x 可化为()()1231231011,,11,,10112a αααααα−⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠x ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠ 因为123,,ααα线性无关,所以原方程组与方程组同解.10111110112a −⎛⎞⎜⎟−=⎜⎟⎜⎟⎝⎠x ⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎞⎟⎟⎟⎠由此求出通解 .111210k ⎛⎞⎛⎜⎟⎜=−+⎜⎟⎜⎜⎟⎜⎝⎠⎝η九、方程组的系数行列式3[3]()a b b b ba b ba b a b b b a b bb ba==+A −b(1)当且时,方程组仅有零解.a b ≠3a ≠−(2)当时,对系数矩阵作行初等变换得原方程组的同解方程组,其基础解系为a b =A 12340x x x x +++=T 1(1,1,0,0),=−ηT 2(1,0,1,0),=−ηT 3(1,0,0,1)=−η于是方程组的通解为112233k k k =++x ηηηb 4 其中为任意常数.123,,k k k (3)当时,对系数矩阵作初等行变换,得原方程组的同解方程组为3a =−A 14234x x x x x x=⎧⎪=⎨⎪=⎩,由此得基础解系为 , T(1,1,1,1)=η于是方程组的通解为,其中k 为任意常数.k =x η十、2113112112~0113(111200(1)(2)3(1)a a a a a a a a a −−⎛⎞⎛⎜⎟⎜=−−−⎜⎟⎜⎜⎟⎜−−+⎝⎠⎝A )a a ⎞⎟−⎟⎟−⎠ 于是可知当a 1且a =-2时,方程组有唯一解. ≠≠ 当a =-2时,方程组无解. 当a =1时,方程组有无穷多解.通解为x = (k 1 ,k 2为任意常数).⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−+⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛11010120021321k k x x x 十一、必要性 由及知,=AB O ≠B O =A x 0有非零解,所以0=A .充分性 若0=A ,则=A x 0有非零解,记为.令0x ()0,,,,=≠B x O 000",满足.=AB O 十二、因为方程组的增广矩阵A 的行向量组是的行向量组的部分组,所以C A 的行向量组可由的行向量组线性表示,于是C A 的行向量组的秩小于或等于的行向量组的秩,因此有C ()()()R R R ≤=A C A ,又的列向量组可由A A 的列向量组线性表示,有()()R R ≤A A , 所以()()R R =A A ,故方程组有解.。
线性代数第三章练习册答案

线性代数第三章练习册答案线性代数第三章综合自测题一、单项选择题(在四个备选答案中,只有一项是正确的,将正确答案前的字母填入下面横线上。
本题共10小题,每小题3分,共30分) 1. 如果向量β能由向量组m ααα,,,21 线性表示,则( D )。
(A )存在一组不全为零的数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 (B )对β的线性表示惟一(C )向量组m αααβ,,,,21 线性无关(D )存在一组数m k k k ,,,21 ,使得m m k k k αααβ+++= 2211 2. 向量组t ααα,,,21 线性无关的充分条件是(C )(A )t ααα,,,21 均为非零向量;(B )t ααα,,,21 的任意两个向量的分量不成比例;(C )t ααα,,,21 中任意部分向量组线性无关;(D )t ααα,,,21 中有一个部分向量组线性无关。
3. 若m ααα,,,21 线性相关,且0=+++m m k k k ααα 2211,则( D )。
(A )021====m k k k (B )m k k k ,,,21 全不为零(C )m k k k ,,,21 不全为零(D )上述情况都有可能4. 一个n m ?阶矩阵A 的秩为m ,则下列说法正确的是( A )(A )矩阵A 的行向量组一定线性无关;(B )矩阵A 的列向量组一定线性无关;(C )矩阵A 的行向量组一定线性相关;(D )矩阵A 的列向量组一定线性相关。
5. 两个n 维向量组A :s ααα,,,21 ,B :t βββ,,,21 ,且r B R A R ==)()(,于是有( C )(A )两向量组等价,也即可以相互线性表出;(B )s R ααα,,,(21 ,r t =),,,21βββ ;(C )当向量组A 能由B 线性表出时,两向量组等价;(D )当t s =时,两向量组等价。
线性代数习题册(第三章 矩阵的初等变换与线性方程组参考答案)

(B) 若 A B ,则 R( A) = R(B) ;
(C ) 若 P,Q 可逆,则 R(PAQ) = R( A) ; (D) R( A + B) ≥ R( A) + R(B) .
分析:本题是考察矩阵秩的性质。(A)、(B)、(C)都是正确的。如
R(= PAQ) R= ( AQ) R( A) ,所以(C)是正确的。(D)不正确。因为
( X) (X)
3. 若矩阵 A 所有的 k 阶子式全为 0 ,则 R( A) < k .
( √)
4. 初等变换不改变矩阵的秩.
(√)
5. 设矩阵 A, B 分别为线性方程组相应的系数矩阵和增广矩阵,则线性方程组 Ax = b 有唯
一解当且仅当 R( A) = R(B).
(X)
6. 若 A 是 m × n 矩阵,且 m ≠ n ,则当 R( A) = n 时,齐次线性方程组 Ax = 0 只有零解.
( x j − xi ) ≠ 0
1≤i< j≤n
1
xn
x n−1 n
故齐次线性方程组只有唯一的零解,即 a=1 a=2 = a=n 0 。
13. 设 A 为 m × n 矩阵,且 R( A=) m < n ,则(
).
( A) 若 AB = O ,则 B = 0 ;
(B) 若 BA = O ,则 B = 0 ;
1
1 0
0
0
a11 a21
a12 a22
a13 a23
=
a21 a11
a22 a12
a23 a13
0 0 1 a31 a32 a33 a31 a32 a33
线性代数第三章测验题(含答案)

测试题答案
3 一、1. ; 2. 任意实数; 3. 2; 4. n s; 15 5. 5; 6. 2 1 1; 7. 1; 8. 1 , 2 .
二、1. 0,1,2 2;
2. 当t 2,3时, 1 , 2 , 3线性无关; 当t 2,3时, 1 , 2 , 3线性相关. 3. a b 0.
线性无关?
3 0,0,1,1与向量组 1 1, a, b,1, 2 2,1,1,2, 3 0,1,2,1可以互相线性表示 .
3. 求实数 和b, 使向量 (每小题8分,共24分).
四、 lm 1.
第三章
测试题
一、填空题(每小题5分,共40分).
4 1,0,2,1, 则k
4 1,3, t ,0, 则t
1. 设 1 2,1,0,5, 2 4,2,3,0 3 1,0,1, k , 时, 线性相关. 2. 设 1 2,1,3,0, 2 1,2,0,2, 3 0,5,3,4, 时, 线性无关.
3. 已知向量组 1 1,2,3,4, 2 2,3,4,5, 3
3,4,5,6, 4 4,5,6,7 , 则该向量组的秩是
4. n维单位向量组 1 , 2 , , n均可由向量组 1 , 2 , , s 线性表出 则向量个数 ,
1 0 1 0 0 1 1 0 0 0 5. 已 知A 0 1 1 0 0 , 则 秩r A 0 0 1 1 0 0 1 0 1 1
6. 方 程 组 0以1 1,0,2,2 0,1,1为 其 基 AX 础 解 系 则该方 程组的同解 方程 , 为
1 7. 设 2 , 1,2,3, A , 则 秩r A 3
线性代数第三章习题及解答

43
3 5 5
2 2 1 5 2 0 0 0 −1 1 0 0
−1 3 0
1
3
6. 设 α1 , α2 , . . . , αn 是一组 n 维向量,已知 n 维单位坐标向量 e1 , e2 , . . . , en 能由它们线性表示, 证明 α1 , α2 , . . . , αn 线性无关.
4 1 −1 1 −2 −22 1 −2 −1 3 6
−24 −11 3 −2 1 −2 −1 0 11 −→ 10 5 −20 0 0 0
10 0
5 9 1 T T 齐次方程的基础解系为 ξ1 = ( 21 11 , 11 , 1, 0) , ξ2 = (− 11 , 11 , 0, 1)
α4 = 8 α − α2 + 2α3 5 1 1 1 2 2 1 0 2 1 5 −1 (2) 3 2 0 3 −1 1 1 0 4 −1 1 1 2 2 1 1 1 0 2 1 5 −1 0 2 解: 2 0 3 −1 3 −→ 0 0 1 1 0 4 −1 0 0 α1 α2 α3 α4 α5 1 1 0 4 −1 1 0 0 1 0 1 0 3 −1 3 −→ 0 1 0 0 0 1 −1 1 0 0 1 −1 0 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3 α4 = α1 + 3α2 − α3 , α5 = α3 − α2
T
− 20 83
5 83
− 17 83
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数测试题(第三章)一、填空题(请将正确答案直接填在横线上,每小题3分,共15分): 1. 向量()()12243221αβ==-,,则 2α-3β =__________。
2. 一个含有零向量的向量组必线性 。
3. 设A 是一个n 阶方阵,则A 非奇异的充分必要条件是R (A )=__________。
4. 设12303206A t ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,当t = 时,R (A ) = 2。
5. 已知A 是m × n 矩阵,齐次线性方程组AX = 0的基础解系为12,,,s ηηηL 。
如R (A )= k ,则s =__________;当k =__________时方程只有零解。
二、单项选择题 ( 每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内,每小题3分,共15分):1. 设有4维向量组 α1 , …, α6,则( )。
A R (α1 , …, α6) = 4B R (α1 , …, α6) = 2C α1 , α2 , α3 , α4必然线性无关D α1 , …, α6中至少有2个向量能由其余向量线性表示2. 已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=4322351521215133A 则R (A )为 A 1 B 2 C 3 D 43. 设s ααα,,,21Λ为n 维向量组, 且秩12(,,,),s R r ααα=L 则( )。
A 该向量组中任意r 个向量线性无关B 该向量组中任意 1+r 个向量线性相关C 该向量组存在唯一极大无关组D 该向量组有若干个极大无关组4. 若1234,,,X X X X 是方程组AX O =的基础解系,则1234X X X X +++ 是AX O =的( )。
A 解向量B 基础解系C 通解D A 的行向量5. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+414343232121a x x a x x a x x a x x 有解的充分必要条件是() A 04321=+++a a a a B 04321=---a a a a C 03214=-+-a a a a D 04321=--+a a a a 三、计算题(每小题8分,共64分):1. 求向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113420112404321αααα,,,的极大线性无关组和秩,并将其余向量表示成极大线性无关组的线性组合。
2. 设,,,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=c 32213321321ααα试问当c 为何值时,向量组线性相关?c 为何值时向量组线性无关?3.设向量组1231111,,1,1.111λααλαβλ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一? (2)β可由123,,ααα线性表示,但表达式不唯一? (3)β不能由123,,ααα线性表示?4. 解方程组⎪⎩⎪⎨⎧=+-+=+-+=+++0752033202432143214321x x x x x x x x x x x x5. 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+-=++-=++-53323221242143143214321x x x x x x x x x x x x x x 的通解,并表示出向量形式。
6. 设线性方程组为⎪⎪⎩⎪⎪⎨⎧=+--=+--=+++=+++243214312143214321121053153363132k x x x x x x k x x x x x x x x x x 问1k 与2k 各取何值时,方程组无解,有唯一解,有无穷多解;有无穷多解时,求其一般解。
7. 已知三阶矩阵B ≠ 0且B 的每一个列向量都是方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ的解。
①求λ的值;②证明0B =。
四、证明题(每小题6分):1. 证明下列n 个n 维列向量必线性无关:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10001000121M ΛΛM M n e e e ,,2. 设向量组321a a a ,,线性无关,证明:向量组133221a a a a a a +++,,线性无关。
线性代数阶段测试题(三)参考答案一、填空题:1、()72105--2、相关3、n4、- 45、s n k =- ,k = n 二、单项选择题:1、D2、D3、B4、A5、C 三、计算题:1、 解:通过初等变换()123401212031414141412031012131102031203122012101210121012100000000αααα--⎛⎫⎛⎫⎪ ⎪=→ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪→--→-→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪⎝⎭所以这个向量组的极大线性无关组为1α,2α3α=231α—22α,4α=211α—2α2、解:122132132132,,213010717(5)32076005c c c c ααα==-=-=-------7所以当122,,ααα=0即c = 5时,向量组线性相关,当122,,0ααα≠即c ≠5时,向量组线性无关。
3、解:因为21111111111(1)11(1)010(1)(1)1111001λλλλλλλλλλλ=+=+-=+-- 所以(1)当λ≠ -1且λ≠ 1 时,β可由123,,ααα线性表示,且表达式唯一;(2)当λ= 1 时,123123(,,)(,,,)13R R ααααααβ==<,β可由123,,ααα线性表示,但表达式不唯一;(3)当λ= -1或λ= 1 时,β不能由123,,ααα线性表示。
4、解:经初等变换得1112111210432313011013125710330000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-3--9所以()2R A =, 方程组有解。
而⎩⎨⎧+432431334x x x x x x =-=- ,分别取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系为1η=4310⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭-,2η=3101⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭-. 故方程组的通解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛01341-k +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10132-k ,其中1k ,2k 为任意常数。
5.解:经初等变换得11211112112112301301()= 101120101310350602A B -⎛⎫⎛⎫⎪⎪-⎪ ⎪→⎪ ⎪⎪⎪-⎝⎭⎝⎭M M M M M M M M ----3-2 11211101120130101301000000000000000000⎛⎫⎛⎫⎪ ⎪--⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭M M M M M M MM ---00 所以()()2R A R A B ==, 方程组有解。
而134233x x x x x =-⎧⎨=⎩,分别取3410,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭得基础解系为 1η=1310⎛⎫⎪ ⎪ ⎪⎪⎝⎭,2η=1001-⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ 而方程组13423 21x x x x x -+=⎧⎨-=⎩的一个特解为1212U ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,所以方程组通解为 r k k +211ηη+=11310k ⎛⎫⎪⎪ ⎪ ⎪⎝⎭ +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10012-k +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2121 其中1k ,2k 为任意常数。
6. 解:将方程组的增广矩阵做初等变换得112211231112311361302422()3115304660151012061291A B k k k k ⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=→ ⎪ ⎪----- ⎪⎪-----⎝⎭⎝⎭112211231112310121101211046600022406129100035k k k k ⎛⎫⎛⎫⎪ ⎪⎪ ⎪→→ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭---------+所以,当⎩⎨⎧≠650221+=-k k 即⎩⎨⎧≠1221k k = 时,方程组无解; 当021≠k - 即21≠k 时,方程组有唯一解; 当⎩⎨⎧650221=+=-k k 即⎩⎨⎧1221==k k 时,方程组有无穷解。
此时112311123111205012110121101203()000240001200012000360000000000A B ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭---100080120300012000⎛⎫⎪⎪→ ⎪ ⎪⎝⎭- 所以()()3R A R A B ==, 方程组有解。
而齐次方程组123342,1x x x x x ⎧⎪-=⎨⎪⎩=0=取= 0,得基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛0120-=η非齐次方程组⎪⎩⎪⎨⎧23284321==+=-x x x x 的一个特解为 8112U⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭- 所以,方程组的通解为a k +η1=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛211801201-+-k 其中1k 为任意常数。
7.解: ① 经初等变换化为12212221054311055λλ--⎛⎫⎛⎫ ⎪ ⎪→+ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭--, 因为B 的列向量是方程组的解,所以0550450221=-+-λ-,154=∴=+∴λλ 秩R =2② 因为R =2,所以方程组的基础解系只有2个向量,3个解必线性相关,而B 的列向量都是方程组的解。
所以B 的列向量线性相关。
所以|B |= 0。
四、证明题: 1、 证明:利用反证法假设1e ,2e ,…..,n e 线性相关,则存在1k ,2k ,…,n k 不全为零,使得: 1k 1e +2k 2e +…+n k n e =0即1k ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0..01+2k ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0..10+…….+ nk ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1..00=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n k k k ..21=0故1k =2k =……=n k =0,这与假设矛盾,所以原命题成立, 1e ,2e ,…..,n e 线性无关。
2、证明:112223331131122233123131223123122331()()()0()()()0 0 01011100011 .k k k k k k k k k k k k k k k k k k αααααααααααααααααα+++++=+++++=+=⎧⎪+=⎨⎪+=⎩≠+++设,即因为,,线性无关,则所以=2,即,,有唯一零解故,,线性无关。