修订版-线性代数习题三答案

合集下载

上海交通大学 线性代数教材 课后答案 习题3

上海交通大学 线性代数教材 课后答案 习题3

习 题 三 (一)1.求下列矩阵的特征值与特征向量.(1)133353331A ⎛⎫ ⎪=--- ⎪ ⎪⎝⎭答案特征值为2,1321-===λλλ(二重)对应的特征向量. 1111c ⎛⎫ ⎪- ⎪ ⎪⎝⎭,23231110,,01c c c c --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数.(2)212533102A -⎛⎫⎪=- ⎪ ⎪--⎝⎭答案特征值为1231λλλ===-(三重)对应的特征向量. 11,1k k -⎛⎫⎪- ⎪ ⎪⎝⎭为任意非零常数. (3) 563101121A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭答案特征值为1232λλλ===(三重)对应的特征向量. 12122110,,01c c c c -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为不同时为零的任意常数. (4) 222214241A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭答案特征值为1236,3λλλ=-==(二重).对应的特征向量分别为:112,2k ⎛⎫ ⎪ ⎪ ⎪-⎝⎭232210,01k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。

(5) 322010423A -⎛⎫⎪=- ⎪⎪-⎝⎭答案特征值为1231,1λλλ===-(二重) 。

对应的特征向量分别为. 110,1k ⎛⎫ ⎪ ⎪ ⎪⎝⎭231120,02k k -⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭1k 为任意非零常数,23,k k 为不同时为零的任意常数。

(6) 0100100000010010A ⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭答案特征值为121λλ==-(二重) 341λλ==(二重) 。

对应的特征向量分别为. 120101,1010k k -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭340101,1010k k ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭12,k k 为不同时为零的任意常数,34,k k 为不同时为零的任意常数。

线性代数试题及答案3

线性代数试题及答案3

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于(D)A.m+nB.-(m+n)C.n-mD.m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于(B)A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C⎪⎪⎪⎪⎪⎭⎫⎝⎛21131D120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A*中位于(1,2)的元素是(B)A.–6B.6C.2D.–24.设A是方阵,如有矩阵关系式AB=AC,则必有(D)A.A=0B.B≠C时A=0C.A≠0时B=CD.|A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于(C)A.1B.2C.3D.46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则(D)A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中(C)A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是(A)A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有(A)A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是(B)A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有(A)A.k≤3B.k<3C.k=3D.k>312.设A是正交矩阵,则下列结论错误的是(B)A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则(D)A.A 与B 相似B.A 与B 不等价C.A 与B 有相同的特征值D.A 与B 合同 14.下列矩阵中是正定矩阵的为(C )A.2334⎛⎝ ⎫⎭⎪ B.3426⎛⎝ ⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪ D.111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,

线性代数第三章习题及答案

线性代数第三章习题及答案

习 题 3-11.设)1,0,2(-=α,)4,2,1(-=β,求32-αβ.解:)11,4,8()8,4,2()3,0,6()4,2,1(2)1,0,2(323--=---=---=-βα 2.设)4,3,2,1(=α,)3,4,1,2(=β,且324+=αγβ,求γ. 解:由324+=αγβ得αβγ232-= 所以)0,27,1,25()6,29,3,23()6,8,2,4()4,3,2,1(23)3,4,1,2(2-=-=-=γ。

3.试问下列向量β能否由其余向量线性表示,若能,写出线性表示式:(1))1,2(-=β,)1,1(1=α,)4,2(2-=α;(2))1,1(-=β,)1,1(1=α,)1,0(2=α,)0,1(3=α; (3))1,1,1(=β,)1,1,0(1-=α,)2,0,1(2=α,)0,1,1(3=α;(4))1,2,1(-=β,)2,0,1(1=α,)0,8,2(2-=α,0α(5)),,,(4321k k k k =β,)0,0,0,1(1=e ,)0,0,1,0(2=e ,)0,1,0,0(3=e ,)1,0,0,0(4=e . 解:(1)设2211ααβx x +=,即)4,2()4,2()1,1()1,2(212121x x x x x x -+=-+=-从而⎩⎨⎧-=-=+14222121x x x x ,解得⎪⎩⎪⎨⎧==21121x x所以β能由21,αα线性表示,表示式为2121ααβ+=。

(2)设332211αααβx x x ++=,即),()0,1()1,0()1,1()1,1(2131321x x x x x x x ++=++=-从而⎩⎨⎧-=+=+112131x x x x ,有无穷解⎪⎩⎪⎨⎧-=--==cx c x cx 11321所以β能由321,,ααα线性表示,表示式不唯一,为321)1()1(αααβc c c -+--+= (c 为任意常数)(3)设332211αααβx x x ++=即)2,,()0,1,1()2,0,1()1,1,0()1,1,1(213132321x x x x x x x x x +-++=++-=从而⎪⎩⎪⎨⎧=+-=+=+1211213132x x x x x x ,因为010********≠=-,所以有唯一解,解为⎪⎩⎪⎨⎧===011321x x x所以β能由321,,ααα线性表示,且表示式为3210αααβ⋅++=(4)设2211ααβx x +=,即)2,8,2()0,8,2()2,0,1()1,2,1(222121x x x x x x -+=-+=-从而⎪⎩⎪⎨⎧-==-=+1228121221x x x x ,由②,③式得211-=x ,412-=x 代入①式11)41(221≠-=-⋅+-所以该方程组无解, 即β不能由21,αα线性表示。

线性代数课后习题解答第三章习题解答

线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线代第3章习题答案

线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

线性代数第三章习题及解答

线性代数第三章习题及解答

解:取 α1 = (1, 0, 0)T , α2 = (0, 1, 0)T , β1 = (−1, 0, 0)T , β2 =
(0, −1, 0) α1 + α2 + β1 + β2 = 0, 但 α1 , α2 线性无关, 且 β1 , β2 也线性无关 (3) 若只有当 λ1 , . . . , λm 全为 0 时,等式 λ1 α1 + · · · + λm αm + λ1 β1 +· · ·+λm βm = 0 才能成立, 则 α1 , α2 , . . . , αm 线性无关, β1 , β2 , . . . , βm
证明:因为 n = R(e1 , . . . , en ) ≤ R(α1 , . . . , αn ) ≤ n 于是 R(α1 , . . . , αn ) = n, 则 α1 , α2 , . . . , αn 线性无关
7. 设向量组 α1 , α2 , . . . , αm 线性相关,且 α1 ̸= 0, 证明:存在某
2
(0, 0, 0)T , β3 = (−1, −1, 1)T 5. 利用初等行变换求下列矩阵的列向量组的一个最大线性无关
组, 并把其余列向量用最大线性无关组线性表示 . 25 31 17 43 75 94 53 132 (1) 75 94 54 134 25 32 20 48 25 31 17 43 25 31 17 75 94 53 132 0 1 2 解: 75 94 54 134 −→ 1 3 0 25 32 20 48 0 1 3 α1 α2 α3 α4 25 31 17 43 1 0 0 8 5 0 1 2 3 0 1 0 −1 −→ 0 0 1 2 −→ 0 0 1 2 0 0 0 0 0 0 0 0 于是最大线性无关向量组之一为 α1 , α2 , α3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性方程组一、温习巩固1. 求解齐次线性方程组⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x解: 化系数矩阵为行最简式⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛----=000001001-0215110531631121行变换A因此原方程同解于⎩⎨⎧=+-=023421x x x x 令2412,k x k x ==,可求得原方程的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1001001221k k x ,其中21,k k 为任意常数。

2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x解:把增广矩阵),(b A 化为阶梯形⎪⎪⎪⎭⎫⎝⎛−−→−⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A因此3),(2)(=<=b A R A R ,所以原方程组无解。

3. 设)1,2,1,3(),1,1,2,3(--=--=βα。

求向量γ,使βγα=+32。

解:⎪⎭⎫ ⎝⎛--=-=31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=-T )6,5,1,2(5=α的秩和一个极大线性无关组。

解:将51,ααΛ作为列向量构成矩阵,做初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=4400000000101102130124220101103033021301601424527121103121301A 所以向量组的秩为3,421,,ααα是一个极大线性无关组。

二、练习提高 ⒈ 判断题⑴ 初等变换总是把方程组变成同解方程组,这也是消元法的理论基础。

(√ ) ⑵ 设A 为n m ⨯矩阵,0=Ax 是非齐次线性方程组b Ax =的导出组,则(a )若0=Ax 仅有零解,则b Ax =有唯一解。

(⨯) (b )若0=Ax 有非零解,则b Ax =有无穷多解。

(⨯) (c )若b Ax =有无穷多解,则0=Ax 有非零解。

(√ )⑶ 设A 为n 阶矩阵,α是n 维列向量,若)(0A R AR T=⎪⎪⎭⎫⎝⎛αα,则线性方程组 00=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛y x A T αα必有非零解。

(√ ) ⑷ 对矩阵()E A M 施行若干次初等变换,当A 变为E 时,相应的E 变为1-A 。

(⨯)⑸ 设向量组321,,ααα线性无关,1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有321,,ααα,21ββ+k 线性相关。

(⨯)⑹ 设n 维列向量组s ααα,,,21Λ线性相关,A 是n m ⨯矩阵,则s A A A ααα,,,21Λ线性相关。

(√ ) ⑺ 若向量组B 能由向量组A 线性表示,B 和A 的秩分别为B R 和A R ,则A B R R >。

(⨯)⑻ 设A 为n m ⨯矩阵,n m r A R <<=)(,则A 的1-r 阶子式不能为0。

(⨯) ⑼ 设n 元齐次线性方程组的一个基础解系为4321,,,ηηηη,则321211,,ηηηηηη+++,4321ηηηη+++仍为该齐次线性方程组的基础解系。

(√ ) ⑽ 集合},0),,,({2121R x x x x x x x x V i n n ∈=⋅==ΛΛ是一个向量空间。

(⨯) ⒉ 填空题⑴ 齐次线性方程组01334=⨯⨯X A 有非零解的充要条件是__3)(<A R _。

⑵ 若线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=+=+-=+414343232121a x x a x x a x x a x x 有解,则常数4321,,,a a a a 应满足的条件是04321=+++a a a a 。

⑶ 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛-=403212221A ,三维列向量T a )1,1,(=α,已知αA 与α线性相关, 则=a 1- 。

⑷ 若),,0(2k k =β能由)1,1,1(),1,1,1(),1,1,1(321k k k +=+=+=ααα唯一线性表示,则k 满足条件 0≠k 且3-≠k 。

⑸ 设n 阶矩阵A 的各行元素之和均为0,且A 的秩为1-n ,则线性方程组0=Ax 的通解为 111k ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭M 。

⑹ 由向量组T T T T )3,2,6,2(,)7,1,1,5(,)4,1,1,2(,)1,1,3,1(4321-=-=--=-=αααα生成的向量空间的维数为 3 。

⒊ 计算题⑴ λ取何值时,方程组⎪⎩⎪⎨⎧=++=-+=++λλλλλ3213213211x x x x x x x x x 有唯一解,无解或有无穷多解?在有无穷多解时求解。

解:对此线性方程组的增广矩阵进行初等行变换可得[]132131322222111111111111111111011001100111001r r r r r r r r B A b λλλλλλλλλλλλλλλλλλλλλλλλλ↔--+⎡⎤⎡⎤⎢⎥⎢⎥==-−−−→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥−−−→---−−−→---⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦M M M M M M M M M M M M所以 当0,1λ≠±时,()()3R A R B ==线性方程组有唯一解。

当0λ=时,()23()R A R B =<=线性方程组无解。

当1λ=±时,()()23R A R B ==<线性方程组有无穷多解。

若1λ=,[]111111010020001000200000r rB A b ⎡⎤⎡⎤⎢⎥⎢⎥=−−→-−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦M M M M M M ,解为12131110;00x x c x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦若1λ=,[]111110110200010000000000r rB A b ----⎡⎤⎡⎤⎢⎥⎢⎥=−−→-−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M MM M M M , 解为1223110010x x c x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦。

⑵ 已知321,,ααα线性无关,若13322123,2,2αααααα+++a 线性相关,求a 的值。

解:由题意知存在不全为0的321,,k k k ,使得0)23()2()2(133322211=+++++ααααααk a k k ,整理得 0)3()22()2(332221131=+++++αααk ak k k k k因为321,,ααα线性无关,从而有齐次线性方程组⎪⎩⎪⎨⎧=+=+=+0302202322131k ak k k k k由321,,k k k 不全为0知方程组有非零解,则系数行列式必为023-=⇒a ⑶ 设向量t ααα,,,21Λ是齐次方程组0=Ax 的一个基础解系,向量β不是方程组0=Ax 的解,即0≠βA 。

试证明:向量组t αβαβαββ+++,,,,21Λ线性无关。

解: 设有一组数t k k k ,,,1Λ,使得0)()(11=+++++t t k k k αβαββΛ整理该式得0)(111=++++++t t t k k k k k ααβΛΛ ① 用A 左乘上式两边,注意0=i A α,故有0)(1=+++βA k k k t Λ因为0≠βA ⇒01=+++t k k k Λ ②将②代回①式,得到011=++t t k k ααΛ,因为t αα,,1Λ线性无关,故必有01===t k k Λ,再由②式,可得01====t k k k Λ⑷ 已知向量组T T T b a )0,1,(,)1,2,(,)1,1,0(321==-=βββ与向量组T )3,2,1(1-=α,,)1,0,3(2T =αT )7,6,9(3-=α具有相同的秩,且3β可由321,,ααα线性表示,求b a ,的值。

解:对矩阵()321,,ααα做初等行变换⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛--000210931713602931,所以()2,,321=αααR ,且21,αα是一个极大无关组 又因为()=321,,βββR ()321,,αααR ,所以 b a ba 30011121=⇒=-另一方面,3β可由321,,ααα线性表示,所以3β可由21,αα线性表示,即5001310231=⇒=-b b⑸ 设4元齐次线性方程组(Ⅰ)为⎩⎨⎧=-=+004221x x x x ,又已知某齐次线性方程组(Ⅱ)的通解为T T k k )1,2,2,1()0,1,1,0(21-+。

求:①方程组(Ⅰ)的基础解系;②方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有则求出所有的非零公共解。

①Ⅰ的系数矩阵为⎪⎪⎭⎫⎝⎛-=10100011A ,2)(=A R 故Ⅰ的基础解系含有224=-个解向量,可取为)0,1,0,0(和)1,0,1,1(- ②Ⅱ的通解为2421321221,2,2,k x k k x k k x k x =+=+=-=,代入Ⅰ可得⎩⎨⎧=-+=++-0202221212k k k k k k 21k k -=⇒所以当021≠-=k k 时,Ⅰ与Ⅱ有非零公共解,非零公共解为)1,1,1,1()1,2,2,1()0,1,1,0(121---=-+k k k⑹ 设有向量组(Ⅰ):T T T a )2,1,1(,)3,1,1(,)2,0,1(321+-===ααα和向量组(Ⅱ):T T T a a a )4,1,2(,)6,1,2(,)3,2,1(321+=+=+=βββ。

试问:当a 为何值时,向量组(Ⅰ)与(Ⅱ)等价?当a 为何值时,向量组(Ⅰ)与(Ⅱ)不等价? 解:对βα,构成的矩阵做初等行变换,⎪⎪⎪⎭⎫ ⎝⎛++++-=463232112110221111),,,,,(321321a a a a βββααα⎪⎪⎪⎭⎫ ⎝⎛-+-+-→111100112110221111a a a a 所以,①当1-≠a 时,3),,(321=αααR另外,06463112221,,321≠=+++=a a a βββ,所以3),,(321=βββR故==3),,,,,(321321βββαααR =),,(321αααR ),,(321βββR ,向量组等价②当1-=a 时,⎪⎪⎪⎭⎫ ⎝⎛--→200021101111),,,(1321βααα,所以≠),,(321αααR ),,,(1321βαααR ,即1β不能由321,,ααα线性表示,向量组不等价。

相关文档
最新文档