第六章 等差、等比数列
(完整版)等差等比数列的性质总结,推荐文档

6.等差数列的证明方法
定义法:若 an an1 d 或 an1 an d (常数 n N ) an 是等差数列.
7.提醒:
(1)等差数列的通项公式及前 n 和公式中,涉及到 5 个元素: a1 、 d 、 n 、 an 及 Sn ,其中 a1 、 d 称作
为基本元素。只要已知这 5 个元素中的任意 3 个,便可求出其余 2 个,即知 3 求 2。 (2)设项技巧:
①一般可设通项 an a1 (n 1)d ②奇数个数成等差,可设为…, a 2d , a d , a, a d , a 2d …(公差为 d ); ③偶数个数成等差,可设为…, a 3d , a d , a d , a 3d ,…(注意;公差为 2 d )
8..等差数列的性质:
(1)当公差 d 0 时,
5.等差数列的判定方法
(1) 定义法:若 an an1 d 或 an1 an d (常数 n N ) an 是等差数列. (2) 等差中项:数列 an 是等差数列 2an an-1 an1 (n 2) 2an1 an an2 . ⑶数列 an 是等差数列 an kn b (其中 k, b 是常数)。 (4)数列 an 是等差数列 Sn An2 Bn ,(其中A、B是常数)。
即 当 a1 0,d 0,由 aann1 00 可得 Sn 达到最小值时的 n 值.
或求 an中正负分界项
法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对
称轴最近的整数时, Sn 取最大值(或最小值)。若S
p
=
S
q则其对称轴为 n
pq 2
注意:解决等差数列问题时,通常考虑两类方法:
S奇 S偶
n 1 n
高考数学总复习 6-1数列的概念课件 新人教B版

点评:根据数列的前几项写通项时,所求的通项公式不是 唯一的.其中常用方法是观察法.观察 an 与 n 之间的联系, 用归纳法写出一个通项公式,体现了由特殊到一般的思维规 律.联想与转换是有效的思维方法,它是由已知认识未知、将 未知转化为已知的重要思维方法.
(文)写出下列数列的一个通项公式: (1)1,85,175,294,…,an=________. (2)-1,32,-13,34,-15,12,…,an=________.
3 . 已 知 {an} 的 前 n 项 和 Sn 求 an 时 , 用 an =
S1
n=1,
Sn-Sn-1 n≥2.
求解应注意分类讨论.an=Sn-Sn-1 是在
n≥2 条件下求出的,应检验 a1 是否适合.如果适合,则合写
在一块,如果不适合,则分段表示.
思想方法技巧
一、求数列的通项公式常见的有以下三种类型 1.已知数列的前几项,写出一个通项公式. 依据数列前几项的特点归纳出通项公式:方法是依据数 列的排列规律,求出项与项数的关系.一般步骤是:①定符 号,②定分子、分母,③观察前后项的数值特征找规律,④ 综合写出项与项数的关系.
●命题趋势 主要命题热点: 1.an 与 Sn 的关系 2.等差、等比数列的定义、通项公式以及等差、等比数列 的性质、求和公式. 3.简单的递推数列及归纳、猜想、证明问题.
4.数列与函数、方程、不等式、三角、解析几何综合问题. 5.数列应用题. 6.探究性问题.
●备考指南 1.数列是一种特殊的函数,要善于利用函数的思想来解决 数列问题. 2.运用方程的思想解等差(比)数列是常见题型,解决此类 问题需要抓住基本量 a1、d(或 q),常通过“设而不求,整体代入” 来简化运算.
(5)将数列统一为32,55,170,197,…,分子 3,5,7,9,…, 是等差数列,通项公式为 bn=2n+1,对于分母 2,5,10,17,… 联想到数列 1,4,9,16…即数列{n2},可得分母的通项公式为 cn =n2+1,
等差,等比数列的性质及应用

a1 + a2 + ⋯ + a6 = 36 ① 解:由题意知, an + an −1 + ⋯ + an − 5 = 180 ②
6( ∴①+②得: a1 + a n ) = 216, ∴ a1 + a n = 36
又 sn = 324
∴
n ( a1 + a n ) 2
= 324
即
n × 36 2
, 往往求解复杂,故常转换思路利用 整体代换和化归思想方法来解决。
练习: 练习
s 在等差数列{ 在等差数列{an}中, 2
则
= 7, s6 = 90,
s4
37 =______.
二.典型例题 典型例题 例4: 在等比数列{an}中,an>0(n∈N*),
公比 q∈(0,1),且a1a5+2a3a5+a2a8=25, 又a3与a5的等比中项为2. (1)求数列{an}的通项公式; (2)设bn=log2an ,数列{bn}的前n项和
S1 S 2 Sn + +⋯ + 最大时,求n的值. 1 2 n
解:由(1)知:
bn = log2 an = log2 2 =5−n
5−n
∵ bn +1 − bn = [5 − (n + 1) ] − ( 5 − n ) = −1
∴ {bn } 是以4为首项,-1为公差的等差数列
∴ Sn =
9 n − n2 2
2.等比数列 {a n } 中, a15 = 10, a 45 = 90 等比数列
则 a 60 =
±270
四.总结:
1.应用等差、等比数列的性质解题时,
高考数学一轮复习 第六章 第5讲 数列的综合应用配套课件 理 新人教A版

考点自测
1.若数列{an}为等比数列,则下面四个命题:
①{a2n}是等比数列; ②{a2n}是等比数列; ③a1n是等比数列; ④{lg|an|}是等比数列.其中正确的个数是________.
答案 3
2.(2012·南京一模)若数列{an}满足:lg an+1=1+lg an(n∈N*), a1+a2+a3=10,则lg(a4+a5+a6)的值为________.
答案 (-∞,7]
5.(2012·盐城第一学期摸底考试)设等差数列{an}满足:公差 d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的 一项.若a1=35,则d的所有可能取值之和为________.
解析 由题意知,an=35+(n-1)d.对数列{an}中的任意两 项ar,as其和为ar+as=35+35+(r+s-2)d,设at=35+(t -1)d,则35+(r+s-2)d=(t-1)d,即35=(t-r-s+1)d. 因为r,s,t,d∈N*,所以35是d的整数倍,即d所有可能 取值为1,3,9,27,81,243,和为364. 答案 364
∴{an}是以 a4 为首项,a2 为公比的等比数列.
(2)解 bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2. 当 a= 2时,bn=(2n+2)( 2)2n+2=(n+1)2n+2. Sn=2·23+3·24+4·25+…+(n+1)·2n+2,① 2Sn=2·24+3·25+4·26+…+n·2n+2+(n+1)·2n+3,② ①-②得 -Sn=2·23+24+25+…+2n+2-(n+1)·2n+3 =16+2411--22n-1-(n+1)·2n+3 =16+2n+3-24-n·2n+3-2n+3=-n·2n+3. ∴Sn=n·2n+3.
高中数学-数列

高中新课标
人教A版 · 数学(文)]
∵等比数列中隔一项的符号相同
∴b=- -1×-9=-3.∴ac=b2=9.
[答案]
B
高中新课标
人教A版 · 数学(文)
第六章 · §6.3
第17页
5.设{an}是由正数组成的等比数列,Sn为其前n项 和.已知a2a4=1,S3=7,则S5=( 15 A. 2 31 B. 4 33 C. 4 ) 17 D. 2
第六章 · §6.3
第11页
2.在等比数列{an}中,a1=1,公比|q|≠1.若am= a1a2a3a4a5,则m=( A.9 C.11 ) B.10 D.12
高中新课标
人教A版 · 数学(文)
第六章 · §6.3
第12页
[解析]
由于a1=1,据已知可得:am=a1a2a3a4a5
2 5 5 10 10 =a 5 = ( a q ) = a q = a q ,故am是等比数列{an}中的 3 1 1 1
高中新课标
人教A版 · 数学(文)
第六章 · §6.3
第18页
[解析]
2 根据等比数列的性质得a2a4=a 2 3 ⇒a 3 =1,
a3 a3 ∵an>0,∴a3=1,∵S3=7,∴a3+ + 2 =7,∵a3= q q 1 1 1 31 1,∴q=2,所以S5=S3+a4+a5=7+2+4= 4 .
示.
高中新课标
人教A版 · 数学(文)
第六章 · §6.3
第 5页
2.等比数列的通项公式 设等比数列{an}的首项为a1,公比为q,则它的通
n-1 a · q 1 项an=_______.
3.等比中项 设a、b为任意两个同号的实数,则a、b的等比中
2024届高考数学一轮复习+第六章《数列》第二节+等差数列及其前n项和+课件

√
(4) 等差数列的前 项和公式是常数项为0的二次函数.( )
√
2. (2022重庆期末)设 是等差数列,且 , ,则 ( )
A. B. C. D.
D
3. 已知等差数列 的前 项和为 , , ,则数列 的公差为( )
A. B. C. D.
[解析] 由(ⅰ)可得 ,则 ,整理得 ,解得 或 ,又 为正整数,故 的最小值为7.
方法感悟等差数列基本量的运算中常用的数学思想(1)方程思想:等差数列的通项公式及前 项和公式涉及 , , , , 五个量,知道其中三个就能求另外两个(简称“知三求二”),通常利用条件和通项公式、前 项和公式建立方程(组)求解.(2)整体思想:当所给条件只有一个时,可将已知和所求利用通项公式或递推关系得出另一等式,寻求两者之间的联系,得到一些结论,再求解.
(1) 证明:数列 是等差数列;
证明:由题设得 , ,故 ,即 .因此 是等差数列.
(2) 求 的通项公式.
[解析] 由 , 得 .因此 .于是 .又 ,所以 .因此 .又 ,所以 的通项公式为
例3 (2023湖南岳阳二模)已知数列 满足 ,且 .
(1) 求 , ;
迁移应用
1. 已知数列 的首项为1, ,则 _______.
1 011
[解析] 由 ①,得 ②,②-①得 ,所以 , , , 是首项为0,公差为1的等差数列,所以 .
2. (2020新高考Ⅰ,14,5分)将数列 与 的公共项从小到大排列得到数列 ,则 的前 项和为_________.
方法感悟求等差数列前 项和 的最值的两种方法(1)二次函数法:利用 ( , 为常数),通过配方或借助函数图象求二次函数的最值,注意 为正整数.(2)通项公式法:当 , 时,满足 的项数 使得 取得最大值 ;当 , 时,满足 的项数 使得 取得最小值 .
高考数学(理)一轮复习人教A版-第六章 第3节 (2)
...第3节等比数列及其前n项和最新考纲 1.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系.知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a na n-1=q(n≥2,q为非零常数).(2)如果三个数a,G,b成等比数列,那么G叫做a与b的等比中项,其中G=±ab.2. 等比数列的通项公式及前n项和公式(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=a1q n-1;通项公式的推广:a n=a m q n-m.(2)等比数列的前n项和公式:当q=1时,S n=na1;当q ≠1时,S n =a 1(1-q n ) 1-q =a 1-a n q1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .[常用结论与微点提醒]1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n ,则其前n 项和为S n =a (1-a n)1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列. 答案 (1)× (2)× (3)× (4)×2.(必修5P53AT1(2)改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12解析 由题意知q 3=a 5a 2=18,即q =12.3.(2018·湖北省七市联考)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8B .9C .10D .11解析 由题意得,2a 5a 6=18,a 5a 6=9,∴a 1a m =a 5a 6=9, ∴m =10. 答案 C4.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 65.(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 {a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2, ∴b 2=b 1·q =2,则a 2b 2=22=1.答案 1考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=(2)(2017·江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q . 由⎩⎨⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎨⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1), 则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32. 答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解. 2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.【训练1】 (1)(2018·武昌调研)设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则a 1=( ) A .-2B .-1C.12D.23(2)(2016·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析 (1)由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2中得a 1+32a 1=3×32a 1+2,解得a 1=-1,故选B.(2)设等比数列{a n }的公比为q ,∴⎩⎨⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎨⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎪⎨⎪⎧a 1=8,q =12, ∴a 1a 2…a n =a n 1q1+2+…+(n -1)=2-n 22+7n2.记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *,可知n =3或4时,t 有最大值6.又y =2t 为增函数.所以a 1a 2…a n 的最大值为64. 答案 (1)B (2)64考点二 等比数列的性质及应用【例2】 (1)(必修5P68BT1(1))等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A .12B .10C .8D .2+log 35(2)(2018·云南11校调研)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A .40B .60C .32D .50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)由数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B规律方法 1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度. 2.在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【训练2】 (1)(2018·西安八校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值是( )A .- 3B .-1C .-33D. 3(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)依题意得,a 36=(-3)3,a 6=-3,3b 6=7π,b 6=7π3,b 3+b 91-a 4·a 8=2b 61-a 26=-7π3,故tan b 3+b 91-a 4·a 8=tan ⎝⎛⎭⎪⎫-7π3=-tan π3=- 3.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3, ∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a ,所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a3a=73.答案 (1)A (2)73考点三 等比数列的判定与证明【例3】 (2016·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n.由S 5=3132得1-⎝⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.规律方法 证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练3】 (2017·安徽“江南十校”联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2),又由题意知a 1-2a 1=-3,所以a 1=3,则S 1-1+2=4, 所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.基础巩固题组(建议用时:40分钟)一、选择题1.已知{a n },{b n }都是等比数列,那么( ) A .{a n +b n },{a n ·b n }都一定是等比数列B .{a n +b n }一定是等比数列,但{a n ·b n }不一定是等比数列C .{a n +b n }不一定是等比数列,但{a n ·b n }一定是等比数列D .{a n +b n },{a n ·b n }都不一定是等比数列 解析 两个等比数列的积仍是一个等比数列. 答案 C2.(2018·太原模拟)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( ) A .2B .4C. 2D .2 2解析 在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q =4.答案 B3.(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏B .3盏C .5盏D .9盏解析 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则依题意S 7=381,公比q =2.∴a 1(1-27)1-2=381,解得a 1=3.答案 B4.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B .-18C.578D.558解析 因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18. 答案 A5.(2018·昆明诊断)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的A .-2B .- 2C .± 2D. 2解析 根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2. 答案 B 二、填空题6.(2018·河南百校联盟联考改编)若等比数列{a n }的前n 项和为S n ,a 5=40,且S 6+3a 7=S 8,则a 2等于________.解析 由S 6+3a 7=S 8,得2a 7=a 8,则公比q 为2,所以a 2=a 523=4023=5. 答案 57.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×⎝ ⎛⎭⎪⎫12n -1=12n .答案 12n8.(2018·成都诊断)已知数列{a n }中,a 1=2,且a 2n +1a n =4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析 由a 2n +1a n=4(a n +1-a n )得,a 2n +1-4a n +1a n +4a 2n =0,∴(a n +1-2a n )2=0,a n +1a n =2,∴数列{a n }是首项a 1=2,公比为2的等比数列,∴S 9=2(1-29)1-2=1 022.答案 1 0229.(2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得 ⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .(2)由(1)得S n =a 1(1-q n )1-q =-2[1-(-2)n ]1-(-2)=23[(-2)n -1],则S n +1=23[(-2)n +1-1],S n +2=23[(-2)n +2-1],所以S n +1+S n +2=23[(-2)n +1-1]+23[(-2)n +2-1]=23[2(-2)n-2]=43[(-2)n -1]=2S n , ∴S n +1,S n ,S n +2成等差数列.10.(2018·惠州调研)已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1. (1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)根据已知a 1=1,a n +1=a n +2, 即a n +1-a n =2=d ,所以数列{a n }是一个等差数列,a n =a 1+(n -1)d =2n -1. (2)数列{a n }的前n 项和S n =n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3, 所以q =3,b n =3n -1.数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 即3n -12≤n 2,又n ∈N *,所以n =1或2.能力提升题组 (建议用时:20分钟)11.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A .(3n -1)2B.12(9n -1) C .9n -1 D.14(3n -1) 解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1, ∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B12.(2018·东北三省三校联考)各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.解析 由题意知2b n =a n +a n +1,a 2n +1=b n ·b n +1,∴a n +1=b n b n +1,当n ≥2时,2b n =b n -1b n +b n b n +1,∵b n >0,∴2b n =b n -1+b n +1,∴{b n }成等差数列,由a 1=1,a 2=3,得b 1=2,b 2=92,∴b 1=2,b 2=322,∴公差d =22,∴b n =n +122,∴b n =(n +1)22, ∴a n =b n -1b n =n (n +1)2. 答案 a n =n (n +1)213.(2017·合肥模拟)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q ≠1,证明数列{a n +1}不是等比数列.(1)解 设{a n }的前n 项和为S n ,当q =1时,S n =a 1+a 1+…+a 1=na 1;当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n ,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎨⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1. (2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1. ∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾. 故数列{a n +1}不是等比数列.。
等差数列与等比数列的证明方法
等差数列与等比数列的证明方法高考题中,有关证明、判断数列是等差(等比)数列的题型比比皆是,如何处理这些题目呢?证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。
一、 定义法01.证明数列是等差数列的充要条件的方法:{}1()n n n a a d a +-=⇔常数是等差数列{}2222()n n n a a d a +-=⇔常数是等差数列 {}3333()n n n a a d a +-=⇔常数是等差数列02.证明数列是等差数列的充分条件的方法:{}1(2)n n n a a a d n --=≥⇒是等差数列 {}11(2)n n n n n a n a a a a +--=-≥⇒是等差数列03.证明数列是等比数列的充要条件的方法:{}1(00)n n na q q a a +=≠≠⇔1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法:1nn a q a -=(n>2,q 为常数且≠0){}n a ⇒为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有1nn a qa -==(常数0≠);②n *∈N 时,有1n na q a +==(常数0≠).例1. 设数列12,,,,n a a a 中的每一项都不为0。
证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有1223111111n n n na a a a a a a a +++++=。
证明:先证必要性设{}n a 为等差数列,公差为d ,则当d=0时,显然命题成立当d≠0时,∵111111n n n na a d a a++⎛⎫=-⎪⎝⎭∴再证充分性:∵122334111a a a a a a++⋅⋅⋅1111n n nna a a a++++=⋅⋅………①∴122334111a a a a a a++⋅⋅⋅11212111n n n n nna a a a a a++++++++=⋅⋅⋅………②②﹣①得:12121111n n n nn na a a a a a+++++=-⋅⋅⋅两边同以11n na a a+得:112(1)n na n a na++=+-………③同理:11(1)n na na n a+=--………④③—④得:122()n n nna n a a++=+即:211n n n na a a a+++-=-{}n a为等差数列例2.设数列}{na的前n项和为n S,试证}{na为等差数列的充要条件是)(,2)(*1NnaanS nn∈+=。
2022届高考数学大一轮总复习第六章 数 列:第六章 6
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100 答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________ 答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50. 4.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化法求和例1 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎨⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.(1)数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }前12项和等于( )A .76B .78C .80D .82(2)已知数列{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,则数列{a n }的通项公式a n =________,其前n 项和S n =________. 答案 (1)B (2)3n -1+2n12n (3n +1)+2n +1-2 解析 (1)由已知a n +1+(-1)n a n =2n -1,① 得a n +2+(-1)n +1a n +1=2n +1,②由①②得a n +2+a n =(-1)n ·(2n -1)+(2n +1), 取n =1,5,9及n =2,6,10, 结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78. (2)由已知得数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 思维点拨 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =6,8a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3,d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1,nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列. (1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n ,求满足不等式T n +2n +2≥116的最大n 值.解 (1)设等比数列{a n }的公比为q ,由题意知a 1=12,又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=S 1+a 1+S 3+a 3, 变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3, 即得3a 2=a 1+2a 3,∴32q =12+q 2,解得q =1或q =12, 又由{a n }为递减数列,于是q =12,∴a n =a 1q n -1=(12)n .(2)由于b n =a n log 2a n =-n ·(12)n ,∴T n =-[1·12+2·(12)2+…+(n -1)·(12)n -1+n ·(12)n ],于是12T n =-[1·(12)2+…+(n -1)·(12)n +n ·(12)n +1],两式相减得:12T n =-[12+(12)2+…+(12)n -n ·(12)n +1]=-12·[1-(12)n ]1-12+n ·(12)n +1,∴T n =(n +2)·(12)n -2.∴T n +2n +2=(12)n ≥116,解得n ≤4, ∴n 的最大值为4. 题型三 裂项相消法求和例3 (2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1.四审结构定方案典例:(12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .审题路线图S n =-12n 2+kn 及S n 最大值为8S n 是n 的函数n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值)k =4,S n =-12n 2+4n利用a n 、S n 的关系a n =92-n化简数列{}9-2a n 2n9-2a n 2n =n2n -1根据数列的结构特征,确定求和方法:错位相减法T n =1+22+322+…+n -12n -2+n 2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,① [7分]所以2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1.[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数. (3)可以通过n =1,2时的特殊情况对结论进行验证.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:45分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .-100 C .100 D .10 200 答案 B解析 f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2(n 为奇数)n 2(n 为偶数)=(-1)n ·n 2, 由a n =f (n )+f (n +1) =(-1)n ·n 2+(-1)n +1·(n +1)2 =(-1)n [n 2-(n +1)2] =(-1)n +1·(2n +1), 得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201) =50×(-2)=-100.3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185 答案 C解析 a 1+…+a k +…+a 10 =240-(2+…+2k +…+20) =240-(2+20)×102=240-110=130.4.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3) D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n (n >3) 答案 C解析 ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2.∴a n =-5+(n -1)×2=2n -7,∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3). 5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 答案 6解析 由a n +a n +1=12=a n +1+a n +2, ∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21)=1+10×12=6. 7.已知数列{a n }满足a n +a n +1=(-1)n +12(n ∈N *),a 1=-12,S n是数列{a n }的前n 项和,则S 2 013=________.答案 -1 0072解析 由题意知,a 1=-12,a 2=1,a 3=-32,a 4=2,a 5=-52,a 6=3,…, 所以数列{a n }的奇数项构成了首项为-12, 公差为-1的等差数列,偶数项构成了首项为1,公差为1的等差数列,通过分组求和可得S 2 013=[(-12)×1 007+1 007×1 0062×(-1)]+(1×1 006+1 006×1 0052×1)=-1 0072. 8.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x 41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=143log n a (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{c n }的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *), 又b n =143log 2n a ,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *), 所以c n =(3n -2)×(14)n (n ∈N *). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *). 10.(2013·江西)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n-(n 2+n )=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2 =116⎣⎡⎦⎤1n 2-1(n +2)2 T n =116⎣⎡⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+… ⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2 =116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564. B 组 专项能力提升(时间:30分钟)11.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A .2 008B .2 010C .1D .0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.12.1-4+9-16+…+(-1)n +1n 2等于( )A.n (n +1)2 B .-n (n +1)2C .(-1)n+1n (n +1)2 D .以上答案均不对答案 C 解析 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n 2(3+2n -1)2=-n (n +1)2; 当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2(n -1)-1]2+n 2 =n (n +1)2, 综上可得,原式=(-1)n +1n (n +1)2. 13.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116 (2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2), ∴a n =(-1)n a n -(-1)n -1a n -1+12n (n ≥2). 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 14.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2, 当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列,∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 15.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2.(1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n ,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎨⎧n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
广东专用2023版高考数学一轮总复习第六章数列6-4数列求和及应用课件
【常用结论】
3. 常见的裂项公式
(1)n(n1+1)=1n-n+1 1. (2)(2n-1)1(2n+1)=122n1-1-2n1+1.
(3)n(n+1)1(n+2)=12[n(n1+1)-(n+1)1(n+2)].
(4)
1 a+
b=a-1 b(
a-
b). (5)(n+n1)!=n1!-(n+11)!.
所以 an=f(n+1)1+f(n)=
6.4 数列求和及应用
1. 探索并掌握等差、等比数列前 n 项和公式,及其推导用到的“倒序相加法”、“错位相减法” 和其他一些重要的求和方法. 2. 能在具体的问题情境中,发现数列的等差、等比关系,并解决相应的问题.
【教材梳理】
1. 数列求和方法 (1)公式法 ①等差数列前 n 项和公式:Sn=n(a12+an)=na1+n(n-2 1)d.
(6)Cnm-1=Cnm+1-Cnm. (7)n·n!=(n+1)!-n!. (8)an=Sn-Sn-1(n≥2).
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)当 n≥2 时,n2-1 1=n-1 1-n+1 1.
()
(2)如果已知一个数列的通项公式,那么它的前 n 项和一定可以求解.
2 022sin
0232π=-1
011
3.
故填-1 011
3.
考点二 裂项相消法
(1)(2021 广东高一月考)已知等差数列{an}的通项公式为 an=3n+1. 若 bn=ana1n+1,数列
{bn}的前 n 项和为 Tn,则 Tn=
()
A.
3n 12n+16
B.
n 12n+16
C.
3n 3n+1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题序号 第六章 教学班级 1329—1333 教学课时 教学形式 复习课 课 题 名 称 第六章数列
使用教具 投影仪、电脑
教学目标 1.通过教与学的互动,明确数列、等差数列、等比数列的定义,使学生加深对数列、等差数列、等比数列的通项公式、求和公式的认识;
2.利用通项公式、求和公式求数列、等差数列、等比数列的项、项数、公差、首项,使学生进一步体会方程思想;
3.通过参与解题,激发学生学习的兴趣.
教学重点 等比数列数列的定义、通项公式、求和公式的应用
教学难点 对公式的灵活运用.
更新、补充、 删节内容
课前准备 课件制作 课外作业 数学过关训练和自出习题 板 书 设 计
一、 复习 三、例题分析 二、 数列、等差数列 、等比数列各种公式 四、练习小结 数列定义,通项公式 等差数列定义:从第二项起,每一项与它前面一项的差等于同一个常数
等差数列通项公式:dnaan)(11 等差中项:2baG
等差数列前n项求和公式:21211dnnnaaanSnn)()( 等比数列定义:从第二项起,每一项与它前面一项比值等于同一个常数 等比数列通项公式:)(011qqaann 等比中项:abG
等比数列前n项求和公式:(1)当q=1,Sn=na1 (2)当q≠1时,Sn=a1(1-qn)1-q ① 或Sn=a1-anq1-q ②
教 学 感 想 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 复习概念
例题讲解 1. 数列的定义
我们把按一定次序排成的一列数叫做数列.数列中的每一个数都叫做这个数列的项. 数列的一般形式可以写成 .,,,,,321naaaa 简记作}{na.其中1a叫做数列的第1项(或首项),2a叫做数列的第2项, „,na叫做数列的第n项(n是正整数)。 2.数列的通项公式 如果数列na的第n项na与项数n之间的关系可以用一个式子)(nfan来表示,我们把这个式子叫做数列na的通项公式。
例1:已知数列的nb通项公式nnnb21,求5b。 学生练习:
1.已知数列-1,41,-91,„,21)1(nn,„.该数列的第5项是( ) A.51 B.-51 C. 251 D. -251
2. 已知下列数列的通项公式,求8a。 (1)123nnan (2)(2)nann 3.判断16和45是否为数列{3n+1}中的项,如果是,请指出是第几项。
板书 学生思考,练习 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 例2:写出下列数列的通项公式 (1),41,31,21,11 (2)1,3,5,7,9,„ (3),8,6,4,2
练习: 1.求下列数列的一个通项公式 (1)2, -4, 6,-8,10,„ (2)1, 4, 7,10,13,„ (3)-1,4,-9,16,-25,„ 3.等差数列定义: 一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) na-1na=d (n≥2,n∈N) 例3:(1)下列数列中,是等差数列的为 ( ) A.7,1,7,1,„ B.1,3,9,27,„ C.0,2,4,6,„ D.-5,1,7,11,„ 例4:数列na满足23nan,求证:na是等差数列 4.等差数列的中项公式: 若a,A,b成等差数列,那么A叫做a与b的等差中项2baA 板书
板书 学生思考练习
板书 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 练习1
小结 作业布置
例5:下列数列都是等差数列,试求出其中未知项: (1)3,a,5; (2)3,b,c,-9.
练习:205,315的等差中项是 。 5.等差数列通项公式 等差数列的通项公式可得:dnaan)1(1 已知一数列为等差数列,则只要知其首项1a和公差d,便可求得其通项na 例6:命题①常数列是等差数列;②通项公式是14nan的数列na是等差数列;③通项公式是142nan的数列na
是等差数列;④通项公式是nan37的数列na是公差为3的等差数列.正确的命题有() A、1个 B、2个 C、3个 D、4个
例7:(1)在等差数列na中,,48100a,31d求首项.1a和10a.
(2)在等差数列na中,18,a公差3d,16na,求n 和通项公式.
(3)在等差数列na中,已知105a,3112a,求1a,d,
naa,20
学生完成,板演 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 引入
新课讲授 (4)求等差数列3,7,11,„„的第10项. 100是不是等差
数列2,9,16,„„的项?如果是,是第几项?求通项公式. 练习:
(1)等差数列{an}的公差为43d,则95aa
(2)等差数列11,8,5,2,„的通项公式为10a=
(3)na是等差数列,4102aa,那么6a .
(4)数列na满足2d,22a,则5a 6. 等差数列前n项求和公式: 11()(n1)22nn
naanSnad
例8:(1)求数列15,11,7,3,„的前6项和。 (2)等差数列na中,35a,3d,求:11S (3)等差数列na中,44a,812a ,求:nS (4)在等差数列na中,a1=6,d=12,求a9,S9. 练习: (1)已知等差数列na中,16a,12d,20na,求:nS
(2)已知等差数列na中,149,aa36a,求:10S
(3)等差数列na前n项和nnSn2,求等差数列的首项与公差. 7.性质:在等差数列中,若m+n=p+q,则,qpnmaaaa
即 m+n=p+q qpnmaaaa (m, n, p, q ∈N )
学生思考,练习
板书 学生思考,练习
板书 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 练习1
小结 作业布置
例9:在等差数列{na}中,若1a+6a=9, 4a=7, 求3a , 9a 练习: 1、已知等差数列na中,2481024,aaaa求:6a
2、已知等差数列na中,1326S,求:7a 8.等差数列的实际应用 1、在5,与7之间插入8个数,使它们成等差数列,这个等差数列所有项的和为多少? 2、三个正数成等差数列,和为18,若将这三个数分别加上1,2,7后,得到的三个数成等比数列,求这三个数。 3、一个屋顶的某一斜面成等腰梯形,最上面一层铺了瓦片21块,往下每层多铺2块,最下面一层铺了瓦片57块,问斜面上共铺瓦片多少层? 拓展:已知等差数列na,514a,3d,试问n为何值时,nS最大,最大值是多少? 9.等比数列定义: 一般地,如果一个数列从第二项起....,每一项与它的前一项
的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q表示(0)q,(注
意:等比数列的公比和项都不为零).1 nnaqa(0)q 说明:由等比数列的通项公式可以知道:当公比1q时该数列既是等比数列也是等差数列。 例10.判断下列数列是否为等比数列: (1)1,1,1,1; (2)0,1,2,4,8; 练习:下列数列不是等比数列的是( )
A.1,1,1,1 B.0,2,4,8 C.1111842,,, D.3241,239,,
学生思考,练习
学生思考,练习
学生思考,练习 课 堂 教 学 安 排 教学环节 主 要 教 学 内 容 教学手段 与 方 式 练习1 小结 作业布置 例11:数列na满足32nna,1) 求证:1)na是等比数列2)求这个数列的首项和公比 10.等比中项公式:若a,G,b成等差数列,那么G叫做a与b的等差中项2,GabGab
例11:求出等比数列2,,8a中的未知项: 练习:1、设51,55x,成等比数列,则x的值为() A.4或-4 B.-4或6 C.4或-6 D.4或6 2、5与125的等比中项是. 11.等比数列的通项公式:11nnqaa(0)q(n≥2) 例12:在等比数列{}na中, (1)已知13a,2q,求6a;
(2)已知320a,6160a,求na
(3)22,a1,3q2,729na求n和通项公式。 12.等比数列的前n项和公式 (1)当q=1,Sn=na1 (2)当q≠1时,Sn=a1(1-qn)1-q ①或Sn=a1-anq1-q ② 若已知a1,q,n,则选用公式①;当已知a1,q,an时,则选用公式②.
例13:已知数列{bn}为等比数列,
(1)12,5,bq求:5S
学生思考,练习
板书