界面内聚力模型及有限元法
有限元法介绍

通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。
这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。
有限元法也叫有限单元法(finite element m ethod, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。
由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。
有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。
事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。
理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。
为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。
有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。
大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。
有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。
基于内聚力模型(CZM)的单筋拉拔数值分析方法研究

基于内聚力模型(CZM)的单筋拉拔数值分析方法研究景剑;强峰;施凯【摘要】目前化学植筋粘结性能数值模拟中界面单元均以双弹簧单元为主,但是模拟结果与相应的试验结果有较大偏差.为了提高数值模拟的精确度,本文基于双线性内聚力模型(Cohesive Zone Model)进行了单筋拉拔试验的有限元模拟,采用双线性应力-张开位移模型定义内聚力单元本构关系,进行了参数分析,得到了内聚力参数对计算结果的影响规律,并对一些试验的荷载-位移曲线进行参数拟合以确定合理参数,从而验证了该植筋模拟方法的有效性.【期刊名称】《低温建筑技术》【年(卷),期】2018(040)007【总页数】5页(P57-60,64)【关键词】化学植筋;单筋拉拔试验;内聚力模型;参数分析【作者】景剑;强峰;施凯【作者单位】江苏省建筑工程质量检测中心有限公司,南京210008;河海大学土木与交通学院,南京210098;江苏省建筑工程质量检测中心有限公司,南京210008【正文语种】中文【中图分类】TU5020 引言化学植筋是目前加固改造领域应用相当广泛的后锚固连接技术,现有植筋承载力和力学性能的相关研究大多限于单筋拉拔试验研究,由于拉拔试验试件制作及试验装置比较简单,试验结果便于分析,长期以来一直作为研究化学植筋性能的有效方法,但是由于试验中存在诸多不确定性因素,如果通过大量的拉拔试验研究化学植筋性能,不仅耗费过多的试验材料,而且需要很长的试验周期,给研究带来诸多不便。
近些年来,应用有限元分析方法进行化学植筋锚固性能研究已成为一种方便有效的数值模拟方法。
在早期的植筋锚固系统研究中,国内外同行已发表了一些有关粘结锚固的研究成果。
Cook等人[1]通过单筋拉拔试验总结出了在混凝土构件中,植筋的破坏模式,研究了单个钢筋锚固的破坏过程和机理,给出了单筋的粘结锚固建议;郭晓飞[2]提出了采用双弹簧单元模拟混凝土与植筋胶界面单元和钢筋与植筋胶界面单元,并考虑了植筋胶的厚度,采用四边形滑移单元对植筋胶进行模拟。
界面问题的混合有限元法

第21卷 第1期岩石力学与工程学报 21(1):1~82002年1月 Chinese Journal of Rock Mechanics and Engineering Jan .,20022000年2月8日收到初稿,2000年6月20日收到修改稿。
* 香港(RGC-CA99/00,EG01)及武汉市科委(991002024)资助项目。
作者 郑 宏 简介:男,1964年生,博士,1985年毕业于东北工学院机械系,现任研究员,主要从事岩土力学数值方法的研究工作。
界面问题的混合有限元法*郑 宏1李焯芬2葛修润1 岳中琦2(1中国科学院武汉岩土力学研究所 武汉 430071) (2香港大学土木工程系 香港)摘要 给出了界面问题的混合有限元提法,由该提法可导出良态、小规模的有限元方程组。
对于复杂接触问题中的某些常见的技术性难题,如大面积、非光滑接触问题、刚体位移问题等都给出了相应的处理技术。
关键词 接触非线性问题,有限元,界面分类号 O 241.82 文献标识码 A 文章编号 1000-6915(2002)01-0001-081 引 言各类人工和天然界面的存在是岩土力学非线性问题的主要来源之一,当然,由于接触非线性本身就极具挑战性,所以几十年来,一直是非常活跃的研究领域。
最新的关于接触问题的算法和模型的评论可参见文[1]。
与计算力学相比,岩土工程中的接触问题要复杂得多,这表现在,岩土工程中的接触通常是大面积、非光滑的,而且还具有剪胀特性等。
即使忽略剪胀性,计算力学中所建议的一些算法如变分不等式方法[2]和数学规化法[3]等,在求解岩土工程中的界面问题时也会遇到某些困难,如变分不等法要求摩擦系数充分小才能确保解的存在[4],而数学规化法通常要求接触面充分光滑。
如果按单元形状进行分类,可将岩土力学中所使用的接触单元分成三类。
以二维情况为例,第一类是分布型或Goodman 型节理单元[5],这类单元含2个以上的节点对,其主要优点是程序实现简单,因而在应用中最为普遍。
基于内聚力理论的二维二次界面单元在ABAQUS中的UEL程序实现

基于内聚力理论的二维二次界面单元在ABAQUS中的UEL程序实现刘敏; 李旭【期刊名称】《《计算力学学报》》【年(卷),期】2019(036)005【总页数】6页(P693-698)【关键词】内聚力模型; 界面单元; 有限元法; ABAQUS; UEL【作者】刘敏; 李旭【作者单位】武汉理工大学理学院工程结构与力学系武汉430070; 武汉理工大学理学院新材料力学理论与应用湖北省重点实验室武汉430070【正文语种】中文【中图分类】O341; TB1241 引言内聚力模型的概念最早由Dugdale等[1,2]提出,该模型假设在实际裂纹尖端的前部存在一个内聚力区,如图1所示,该区域由两个相邻(不受力时无厚度)的上下表面组成,通过界面粘结力(内聚力)连接在一起。
当存在外力作用时,上下表面将逐渐发生分离,造成界面开裂或裂纹扩展,且此过程中的界面粘结力大小由界面间的相对分离位移来确定。
内聚力模型立足于相邻界面间的粘结应力-分离位移关系,也称内聚力法则,经历了数十年的研究发展,实践证明该模型能够较有效地表征粘结界面受载荷作用时的损伤失效过程[3]。
将有限元法与内聚力模型相结合,可定义得到内聚力界面有限单元[4,5],进而较方便地实现各种材料和结构内部界面破坏或裂纹扩展过程的数值分析/求解[6-8]。
在目前主流的有限元软件(ABAQUS,ANSYS及MARC等)中,都能够使用内聚力界面单元进行相关的模拟计算。
当然,现阶段通用有限元软件在这方面的功能还比较有限,以ABAQUS为例,其单元库中仅有位移函数线性插值的一次界面单元,内聚力模型也只提供双线性和指数型两种法则[9]。
然而,当考察的问题几何形状比较复杂时,如颗粒随机分布的橡胶高弹体复合材料,其内部结构呈现出高度非均匀性,一般需采用三角形或四面体单元建模,此时线性单元的精度往往有所不足,无论是表征橡胶材料自身或是界面层的力学性能,都最好选择二次单元[10,11],这种情况下商用有限元软件便无法满足相应的分析需求。
沥青混凝土的细观开裂模拟方法研究

本研究的目的是建立一个更有效、更精确的细观沥青混凝土模型研究其开裂 问题。本文采用两种数值建模方法分析沥青混凝土的开裂问题。第一种是随机骨 料分布及嵌入粘结单元有限元模型。本方法将沥青混凝土分为四个重要组成部分: 骨料、沥青砂浆、界面过渡区和初始缺陷。根据由 Full 和 Thompson 开发的级配 曲线,将骨料颗粒模拟成大小不同的随机分布多边形。采用了一些有效的方法来 提高骨料投递的成功率。对于初始缺陷,本研究仅考虑空隙。在沥青砂浆的初始 网格内,沿骨料与沥青砂浆的界面插入零厚粘性单元,模拟混凝土的开裂过程。 修正了以往的开裂初始准则和牵引分离规律,并用以描述粘结构件的破坏行为。 基于 python 语言,开发了骨料投递、内聚力单元插入和修正的构造本构模型的 用户自定义程序,并将其嵌入到商业有限元软件包 abaqus 中。通过与试验结果 的比较,验证了所提出的细观模型的有效性和准确性,并研究了细观结构对沥青 混凝土的宏观性能的影响。第二种方法采用基于 Voronoi 多边形的细观刚体弹簧 法进行数值建模,在第一种方法的基础上,采用随机骨料投递技术随机投放圆形 骨料,然后根据骨料形心点生成 Voronoi 网格,过 Voronoi 单元网格边界的几何 形状寻找骨料之间的相互作用关系,骨料间的粘结材料被浓缩为骨料间的界面弹 簧,其刚度由粘结材料的厚度定义。通过二维和三维数值单轴压缩实验进行验证 其有效性。 关键词:细观沥青混凝土;随机骨料投递算法;粘结单元嵌入算法;Voronoi 多 边形;细观刚体弹簧法
i
ABSTRACT
The purpose of this study is to establish a more effective and accurate mesoscopic asphalt mixture model to study its cracking problem.In this paper, two numerical modeling methods are used to analyze the cracking of asphalt mixture.The first is the random aggregate distribution and the embedded bond element finite element model.This method divides asphalt mixture into four important components: aggregate, asphalt mortar, interface transition zone and initial defect.Aggregate particles were simulated as randomly distributed polygons of different sizes according to the grading curves developed by Full and Thompson.Some effective methods are adopted to improve the success rate of aggregate delivery. For the initial defects, only the void was considered in this study. In the initial grid of asphalt mortar, zero-thickness viscous unit is inserted along the interface between aggregate and asphalt mortar to simulate the cracking process of concrete.The former cracking initial criterion and traction separation rule are modified to describe the failure behavior of bonded components. Based on the python language, a user-defined program for aggregate delivery, cohesive force unit insertion and modification of constitutive model construction was developed and embedded in abaqus, a commercial finite element software package. Compared with the experimental results, the validity and accuracy of the proposed meso-structure model are verified, and the effect of meso-structure on the macro performance of asphalt mixture is studied. The second method based on Voronoi polygon of the mesoscopic numerical model based on the rigid spring method and random on the circular aggregate by random aggregate delivering technology, then Voronoi grids were generated according to the aggregate centroid and a Voronoi unit grid boundary geometry for the interaction relationship between aggregate and bond between aggregate material is concentrated to aggregate the interface between the spring, defined by the thickness of the bonding material, The validity of the method is verified by two-dimensional and three-dimensional numerical uniaxial compression experiments.
有限元课件ppt

将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
钛铝层状复合材料界面损伤有限元模拟

陕西理工大学学报!自然科学版)Journal of Shaanxi University of TechnoloZ ( Natural Sciencc Edition)2021年4月第37卷第2期Apo.2021VoL37 No. 2引用格式:陈丽,樊瑜瑾•钛/铝层状复合材料界面损伤有限元模拟[J ]・陕西理工大学学报!自然科学版),2021,37(2":9e13.钛/铝层状复合材料界面损伤有限元模拟陈丽,樊瑜瑾"(昆明理工大学机电工程学院,云南昆明650500)摘 要:基于双线性内聚力模型,采用ABAQUS 软件建立了钛/铝层状复合材料的端部缺口弯 曲试验有限元模型,通过数值模拟得到载荷-位移曲线与试验曲线,对比曲线验证了模型的有 效性。
在数值模型基础上进一步研究界面参数中界面刚度、能量释放率、剪切强度对于复合材 料性能的影响。
结果表明:界面刚度对材料的峰值破坏载荷的影响不大;能量释放率、剪切强 度是影响材料性能的主要因素,随着两者的增大,界面失效的峰值载荷及对应位移都有一定的 增大。
关键词:内聚力模型;金属层状复合材料;有限元模拟中图分类号:TB331 文献标识码:A 文章编号:2096-3998(2021)02-0009-05金属层状复合材料与单一金属材料相比具有较好的比强度,良好的导电、导热、耐高温氧化、抗磨损 等性能,可广泛应用于汽车、航空航天、厨具用品、机械电子等工业领域$T )由于结合界面性能薄弱,其 中层与层之间的断裂是金属层状复合板的主要损伤形式之一,会严重影响材料的使用性能,因此对于界 面的断裂行为研究很有必要。
目前,内聚力单元是研究复合材料界面层的有效方法,大量学者运用内聚力单元对复合材料层间损 伤行为进行了一系列研究。
内聚力模型的概念最初由Barenblat e 5%和Dugdl 6%先后于1959年和I960 年提出。
朱兆一等[7%基于内聚力模型,研究了纤维增强复合材料层合板胶接结构时的最大承载能力和 界面损伤失效行为。
内聚力模型在裂纹萌生及扩展中的应用

内聚力模型在裂纹萌生及扩展中的应用孙家啟;纪冬梅;唐家志【摘要】断裂及开裂是工程中严重的结构失效形式.结合传统断裂力学中应力强度因子K以及J积分,综述了内聚力模型基本思想及发展,分析了典型的内聚力模型及模型应用的局限性,总结了不同内聚力模型在有限元中的实现形式,概述了国内外学者关于内聚力模型解决不同材料裂纹萌生与扩展的研究状况,得出了内聚力模型可以用以研究裂纹尖端塑性变形、静力和疲劳载荷条件下的蠕变开裂,以及金属、岩土材料及混凝土、复合材料及纳米晶材料裂纹萌生与裂纹扩展的结论.【期刊名称】《上海电力学院学报》【年(卷),期】2016(032)002【总页数】7页(P129-134,139)【关键词】内聚力模型;有限元方法;裂纹萌生;裂纹扩展【作者】孙家啟;纪冬梅;唐家志【作者单位】上海电力学院能源与机械工程学院,上海200090;上海电力学院能源与机械工程学院,上海200090;上海电力学院能源与机械工程学院,上海200090【正文语种】中文【中图分类】TB383.1对于含裂纹结构失效的问题,尤其是裂纹尖端应力场的分布与演化,研究者们尝试采用不同的方法予以解决.1921年,GRIFFITH A A[1]提出,当裂纹扩展过程中释放的弹性应变能与新裂纹形成的表面能相等时,裂纹就会失稳扩展,这对脆性材料的断裂理论做出了开创性研究.[2]严格地说,Griffith理论只适用于理想脆性材料,IRWIN G R[3]和OROWAN E[4]各自提出了裂纹尖端区域塑性耗散功的理论,将Griffith理论应用到工程材料中.1958年,IRWIN G R[5]提出了临界应力强度因子概念,巧妙地将能量释放率和裂纹尖端应力强度因子结合起来,进一步推动了断裂力学的发展.1961年,PARIS P C等人[6]将应力强度因子理论应用于疲劳裂纹扩展的研究中.当裂纹尖端塑性区尺寸不能忽略时,裂纹尖端塑性区域的应力应变场已无法由K场表征.RISE J R[7]提出了与路径无关的J积分,奠定了弹塑性断裂力学的理论框架.J 积分虽然可以处理弹塑性材料的断裂问题,但对于塑性过程区相当大的裂纹前缘,萌生后裂纹的扩展过程是人们更为感兴趣的阶段,[8]而且传统断裂力学往往不适用于研究裂纹的萌生阶段.近年来,内聚力模型(Cohesive Zone Model,CZM)已被广泛应用于有关裂纹扩展的研究中,相比于应力强度因子K,内聚力的存在使得裂纹尖端保持闭合的趋势,在一定程度上减轻甚至消除了应力的奇异性.CZM将裂纹问题归结为一个非线性边值问题,并不需要起裂扩展准则,而且该模型基于弹塑性断裂力学,其适应性强,可以解决很多的非线性、大变形问题.本文综述了CZM的发展过程、与有限元算法结合的具体实现,以及基于内聚力模型的有限元算法在不同材料裂纹萌生与扩展中的应用.1.1 内聚力模型的发展CZM首先由DUGDALE D S[9]和BARENBLATT G I[10]提出,BARENBLATT G I 将CZM应用于脆性材料的断裂研究中,DUGDALE D S采用类似CZM模型,研究了裂纹尖端的屈服和塑性区尺寸的大小.在这些早期关于非线性断裂的研究中,当内聚力区尺寸小于裂纹和试样尺寸时,CZM理论与GRIFFITH A A的能量平衡理论等效.对于内聚应力的分布,DUGDALE D S将其看作在数值上等于材料的屈服强度,但这与物理事实不符.BARENBLATT G I认为内聚应力是内聚区裂纹面各点处裂纹张开位移的函数,在分子尺度上引入了内聚力,但符合这一特性的解析式较难具体给出,而实际情况下,多数研究者仍然假设内聚力为常数.HILLERBORG A等人[11]在BARENBLATT G I的基础上加入了拉伸强度,首次将内聚力模型应用到有限元计算中,模拟了脆性材料的断裂过程.该模型不仅允许已有裂纹的增长,还允许新裂纹的萌生与演化,并且完整地描述了基于该模型断裂过程的细节.NEEDLEMAN A[12]采用高次多项函数,模拟了延性材料的断裂情况.KOLHE R 等人[13]在对镍铝合金的剪切断裂性能进行数值模拟时,采用了分段函数的方法来描述CZM.CZM的实质是表征分子和原子间相互作用的简化模型,裂纹的尖端被假定为两个裂纹界面组成的一个很小的内聚区,内聚区的本构关系即界面上作用牵引力T与两裂纹面间相对位移U之间的关系.图1为内聚力模型和裂纹尖端内聚区的分布.图1中,由未完全承载的点A开始,T随着U的增加而增加,随之达到一个应力最大值Tmax的点C,此时该材料点的应力承载达到了最大值,材料点开始出现初始损伤.随着界面位移的继续增大,应力开始下降,该阶段为材料点的损伤扩展阶段,点E为裂纹界面完全分离的材料点,其承载降为零.内聚力区内应力的变化通过内聚力法则和裂纹界面位移联系起来,针对不同的材料,可以选择不同的内聚力法则,通过选取适当的参数,可以反映界面层的强度、韧度等力学性能.1.2 内聚力模型分类1.2.1 基于有效位移的内聚力模型基于位移的内聚力模型将裂纹上下表面之间的有效牵引力定义为有效分离位移的函数,即牵引力分离法则.常见的牵引力分离法则有线性软化、双线性软化,以及指数、梯形等.将模型中有效牵引力与内聚强度σmax归一化处理后如图1所示.不同模型的区别在于与之间函数关系的不同,通常情况下,材料的断裂是基于裂纹面法向应力Tn 的1型裂纹和基于裂纹面切向应力Tt 的2型裂纹的混合失效模式. TVERGAARD V[14]引入的内聚力模型为:式中:δn,δt——断裂时对应的断裂面法向和切向位移;无量纲有效位移, ;立方多项式模型有效牵引力,αe——无量纲1型和2型断裂模式混合常数;Δn,Δt——裂纹面法向和切向位移.式(1)是基于有效位移的内聚力模型的代表形式,如文献[15]提出的内聚力模型为: 式中:ψ——界面表面能.而法向和切向的牵引力Tn和Tt满足令αe=δn/δt,式(3)和式(4)即式(1)的特例.文献[16]提出的能够应用于多晶脆性材料和沥青混凝土的线性软化模型为:式中:σmax——法向内聚强度;τma x——切向内聚强度;Ds——内部残余强度变量.上述模型亦可以扩展到三维裂纹的模拟,然而基于有效位移的内聚力模型存在以下两个问题:一是模型在软化条件下,正的刚度容易造成不合理的牵引力-位移关系的出现;二是模型的断裂能为常数,而实际上1型裂纹和2型裂纹的断裂能不同,在混合断裂模式中,断裂能不是常数,所以模型不能进行混合断裂的模拟.1.2.2 基于势能的通用内聚力模型基于有效位移的内聚力模型在解决裂纹扩展中出现的问题,可以在基于势能的通用内聚力模型中得到解决.基于势能的通用内聚力模型应用三次多项式表示法向牵引力,用线性关系式表示切向牵引力,例如文献[17]应用于研究空穴形成和生长的模型为:式中:αs——剪切刚度参数.由界面表面能函数可得到法向和切向牵引力:式中,Δn<δn,但当Δn>δn时,对应点的内聚力为零.内聚力模型在断裂力学研究的问题上有诸多的优势,并且随着计算机计算能力和有限元方法的日益发展,更多的研究者开始使用和改进内聚力模型并结合有限元方法,用以解决多种材料的断裂问题.有限元中内聚力模型的实现方式是引入内聚力单元,利用内聚力单元建立界面周围材料之间的应力应变关系,用应力-位移形式,即用TSL(Traction Separation Law)来定义内聚力单元的本构关系.当内聚力单元的应力或应变状态满足损伤起始准则后,内聚力单元开始发生损伤,即进入损伤演化阶段.目前,TSL法则主要有双线性、梯形、多项式以及指数等多种表达式,图2给出了常见的线性衰减演化和指数衰减演化模式.这两种演化模式都是在只受法向拉力作用下,应力值随着相对位移的增加而增大,当界面元的相对位移大于其损伤点U0所对应的位移后,随着相对位移的增加,界面元刚度开始下降;当界面元相对位移增加至图中B点时,界面单元刚度降为零,此时界面元的相对位移为Uf,界面元连接的上下两个单元可以完全分离.曲线O-A-B-O所包围的面积即为材料破坏过程中的应变能释放率,数值上等于新生裂纹面的界面表面能.利用内聚力单元模拟裂纹的扩展,首先要将内聚力单元嵌入有限元模型中,嵌入的方式有两种:一是在可能出现裂纹的路径中插入内聚力单元;二是在数值模拟的过程中,在需要的时间和位置自适应地插入内聚力单元.在使用内聚力模型分析工程材料的失效问题时,有限元分析是非常重要的.[18]对于内聚力模型本身的适用性不存在很大争议,但是如何在数值模拟中植入内聚力模型,提出了很多种方法,如XIE D等人将其分为两种:一是连续内聚力模型,二是离散型内聚力模型.[19-20]连续内聚力模型认为断裂过程区是一个连续的柔性层,连续介质的本构关系采用内聚力法则.目前常用的连续内聚力单元为CAMANHD P P等人[21]提出的零厚度的界面内聚力单元.离散内聚力模型认为断裂过程区为一个离散的弹簧基础,弹簧基础连接两个裂纹表面相邻的节点对,用非线性类型的弹簧基础模拟内聚力特性.CZM已经被广泛应用于研究多种材料的失效现象,其研究对象包括脆性材料、准脆性材料、高分子聚合物材料、功能梯度材料、纳米材料、单晶和多晶材料等.此外,CZM也被应用于疲劳裂纹扩展、钢筋混凝土的粘结滑移、材料的动态断裂等现象的研究中.3.1 脆性材料针对弹塑性分析中小范围屈服条件下线弹性裂纹的分析,研究者对内聚区作了很多种假设.1967年,KEER L M[22]假定内聚区牵引力沿着光滑连接的裂纹表面以经典弹性力学本构方程分布.在Keer方法的基础上,CRIBB J L和TOMKINS B[23]得到了一种满足脆性材料裂纹尖端应力分布的内聚区应力与裂纹面张开位移的关系.随后,SMITH E[24]得到了内聚区应力-张开位移的通用理论,并且可以用一系列简单公式表达其关系.对于混凝土、岩石、纤维混凝土等准脆性材料存在相对较大的非线性断裂区域,其表现出的明显非线性断裂特性和断裂参数,存在显著的尺寸效应现象引起了国内外许多学者的关注.HILLERBORG A等人[25]在模拟混凝土材料断裂的过程中引入了线性软化模型,该模型由材料的内聚力强度和产生新的裂纹面释放的断裂能决定.之后有许多断裂分析模型得到了应用,如等效裂纹、双参数和双K断裂模型,以及由初始断裂能和总断裂能确定的用于研究混凝土断裂及裂纹尺寸效应的双线性软化模型等.WEIBULL W[26]关于由随机统计性引起的尺寸效应的研究、CARPINTERI A[27]关于裂纹的分形特性引起的尺寸效应的研究和BAIANT Z P等人[28]关于裂纹的能量释放和应力重新分布引起的尺寸效应的研究是国内外关于混凝土材料断裂和裂纹尺寸效应研究的3个主要方面.另外,相关学者对纤维混凝土的断裂过程也进行了研究,纤维混凝土的断裂要考虑素混凝土失效以及与纤维相关的失效机制.3.2 聚合物聚合物典型的失效主要有材料的剪切屈服和银纹的产生两种形式.与剪切屈服相比,由于裂纹尖端应力集中而导致的银纹生成和积累更容易造成聚合物材料的失效,细观层次的银纹形成和断裂表现为宏观层次的裂纹生成和扩展.内聚力在聚合物材料银纹扩展的研究中得到了广泛应用.聚合物的断裂过程包括银纹的萌生、银纹的扩展和银纹的断裂3个过程.文献[29]应用基于细观力学的内聚表面模型来分析聚合物银纹断裂的3个阶段,研究者将高密度的内聚表面插入连续介质中,模拟了聚合物中的大规模银纹形成现象.3.3 纳米晶金属金属材料的断裂过程一般要经历微裂纹的萌生、裂纹的扩展和裂纹扩展到临界尺寸后扩展失稳至完全断裂几个阶段.随着晶粒尺寸的减小,与较粗晶金属相比,微、纳米晶金属材料的变形机制出现了很多新特征,晶粒内部会产生较大的应变梯度,原子模拟和传统连续介质方法无法解释材料的微结构由于尺寸效应而表现出的强化和尺度效应.于是表征超细晶和纳米晶金属晶粒内部不均匀塑性变形的基于机制的应变梯度塑性(CMSG)理论和模拟晶粒间滑移与分离,以及晶间微裂纹的萌生和扩展的内聚力界面模型在纳米晶金属断裂研究中得到广泛应用.HUANG Y等人[30]基于Taylor位错模型建立了CMSG,只包含传统应力、应变分量的CMSG理论的本构方程可以表示为:式中:应力率;K——体积弹性模量;kk——体应变率;δij——Kronecker张量;μ——剪切模量;应变率偏量;——等效应变率;σe——von Mises等效应力;σy——材料初始屈服强度;m——率敏感性指数;——应力偏量;f——单轴拉伸时塑性应变ξp的无量纲函数.基于该本构关系,利用内聚力模型,吴波等人[31]对纳米晶Ni晶间断裂进行了数值模拟.该研究利用Voronoi tessellation方法建立随机晶粒模型,假定晶间断裂是纳米晶Ni惟一的断裂失效模式,验证了纳米晶金属晶粒的尺度效应会对材料宏观力学性能产生重要影响,得到了纳米晶Ni晶间微裂纹的萌生和扩展很大程度上依赖于晶粒几何形状和晶粒材料特性分布的结果.吴波等人[32]利用同样的方法,得出了随着纳米孪晶铜晶粒尺寸和孪晶薄层间距的减小,晶内应变梯度效应增强、材料得到强化的结论.3.4 疲劳裂纹增长内聚力模型已成功地模拟了很多材料的单调断裂问题.对于疲劳裂纹而言,由于载荷的施加与卸载,致使裂纹尖端应力重新分布,疲劳裂纹扩展产生阻滞现象.因此,在循环载荷下,适合疲劳裂纹扩展的内聚力模型的开发成为解决此类问题的关键.YANG B 等人[33]在模拟材料的疲劳裂纹扩展时,提出了一种内聚力模型,该模型模拟准脆性材料在任意载荷下的疲劳裂纹的萌生和扩展比经典断裂力学更具优势和灵活性.BOUVARD J L等人[34]在研究单晶高温合金疲劳裂纹扩展时,提出了一种基于损伤演化的内聚力模型,该模型为不可逆转的内聚力模型,不仅能够解决带预置裂纹纯疲劳裂纹、高温下蠕变疲劳的萌生和扩展,还可以应用于复杂载荷下及几何形状复杂试样的裂纹扩展.(1) 相对于传统断裂力学,内聚力模型在模拟裂纹前缘、裂纹萌生过程中塑性区的演化过程有很大的优势;(2) 内聚力模型与有限元算法的结合推动了内聚力模型的发展,为材料塑形断裂的研究提供了强有力的手段;(3) 内聚力模型可用于研究裂纹尖端塑性变形、静力和疲劳载荷条件下的蠕变开裂,以及金属、岩土材料及混凝土、复合材料及纳米晶等多种材料的裂纹萌生与裂纹扩展.【相关文献】[1]GIRIFFITH A A.The phenomena of rupture and flow in solids[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1921,221(583-593):163-198.[2]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009:6-9.[3]IRWIN G R.Fracture dynamics in fracture ofmetals[Z].Cleveland,Am.Soc.Metals,1948:147-166.[4]OROWAN E.Fracture and strength of solids[J].Reports on Progress inPhysics,1948(12):185.[5]IRWIN G R.Analysis of stress and strains near the end of a crack transversing aplate[J].Applied Mechanics,1957(24):361-364.[6]PARIS P C,GOMEZ M P.A rational analytic theory of fatigue[J].The Trend in Engineering,1961(13):9-14.[7]RICE J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks[J].Journal of Applied Mechanics,1968,35(2):379-386.[8]吴艳青,张克实.利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展[J].应用数学和力学,2006,27(4):454-462.[9]DUGDALE D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8(2): 100-108.[10]BARENBLATT G I.The mathematical theory of equilibrium cracks in brittlefracture[J].Advances in Applied Mechanics,1962(7): 55-125.[11]HILLERBORG A,MODEER M,PETERSSON P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement and Concrete Research,1976(6): 773-782.[12]NEEDLEMAN A.An analysis of tensile decohesion along an interface[J].Journal of the Mechanics and Physics of Solids,1990,38(3): 289-324.[13]KOLHE R,TANG S,HUI C Y,et al.Cohesive properties of nickel-alumina interfaces determined via simulations of ductile bridging experiments[J].International Journal of Solids and Structures,1999,36(36):5 573-5 595.[14]TVERGAARD V.Effect of fibre debonding in a whisker-reinforced metal[J].Materials Science and Engineering: A,1990,125(2):203-213.[15]TVERGAARD V,HUTCHINSON J W.The influence of plasticity on mixed mode interface toughness[J].Mechanics and Physics of Solids,1993,41(6): 1 119-1 135.[16]GEUBELLE P H,BAYLOR J S.Impact-induced delamination of composites:a 2D simulation[J].Composites Part B: Engineering,1998,29(5): 589-602.[17]NEEDLEMAN A.A continuum model for void nucleation by inclusiondebonding[J].Journal of Applied Mechanics,1987,54(3):525-531.[18]何文涛.离散内聚力模型及其应用[D].武汉:华中科技大学,2013.[19]XIE D,SALVI A G,SUN C,et al.Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composite[J].Journal of CompositeMaterials,2006,40(22):2 025-2 046.[20]XIE D,WAAS A M.Discrete cohesive zone model for mixed-mode fracture using finite element analysis[J].Engineering Fracture Mechanics,2006,73(13):1 783-1 796.[21]CAMANHO P P,DAVILA C G,DE MOURA M F.Numerical simulation of mixed-mode progressive crack in composite materials[J].Journal of Composite Materials,2003,37(16):1 415-1 438.[22]KEER L M.Stress distribution at the edge of an equilibrium crack[J].Journal of the Mechanics and Physics of Solids,1964,12(3): 149-163.[23]CRIBB J L,TOMKINS B.On the nature of the stress at the tip of a perfectly brittle crack[J].Journal of the Mechanics and Physics of Solids,1967,15(2):135-140.[24]SMITH E.A generalization of elliott’s model of a crack tip[J].International Journal of Fracture,1975,11(2):295-299.[25]HILLERBORG A,MODEER M,PETERSSON P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cement andConcrete Research,1976,6(6): 773-781.[26]WEIBULL W.A statistical theory of the strength ofmaterials[M].Stockholm,Sweden:Generalstabens Litografiska Anstalts Förlag,1939:151-155.[27]CARPINTERI A.Fractal nature of material microstructure and size effects on apparent mechanical properties[J].Mechanics of Materials,1994,18(2):89-101.[28]BAZANT Z P,CHEN E P,Scaling of structural failure[J].Applied MechanicsReview,1997,50(10): 593-627.[29]TIJSSENS M G A,VAN DER GRESSEN E,SLUYS L J.Modeling of crazing using a cohesive surface methodology[J].Mechanics of Materials,2000,32(1):19-35.[30]HUANG Y,QU S,HWANGK C,et al.A conventional theory of mechanism based strain gradient plasticity [J].International Journal of Plasticity,2004(20):753-782.[31]吴波,魏悦广,谭建松,等.纳米晶Ni晶间断裂的数值模拟[J].金属学报,2009(9):1 077-1 082.[32]吴波,魏悦广.纳米孪晶铜力学性能和尺度效应的研究[J].金属学报,2007(12):1 245-1 250.[33]YANG B,MALL S,RAVI-CHANDAR K.A cohesive zone model for fatigue crack growth in quasibrittle materials[J].International Journal of Solids and Structures,2001,38(22):3 927-3 944.[34]BOUVARD J L,CHABOCHE J L,FEYEL F.A cohesive zone model for fatigue and creep-fatigue crack growth in single crystal superalloys[J].International Journal ofFatigue,2009,31(5):868-879.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内聚力模型为具有耦合关系的内聚力法则,参数q,r对
于耦合关系产生作用。 在指数内聚力模型计算时,界面开裂过程中,断裂能 值连续变化,其同样能够表征着界面开裂的状态。
2
2 2 t t n n q 1 q exp 2 t
界面内聚力模型
内聚力区域代表了待扩展 的裂尖前沿的区域,其中内
聚力区域中裂尖的概念是一
种数值定义,而非实际材料 中的裂尖范畴。 内聚力区域中定义的“虚
裂纹尖端
内聚力区
=f ( )
拟裂纹”描述了一对虚拟面
之间的动态应力场。
图1 裂纹尖端的内聚力区
界面内聚力模型
内聚力模型的重要特征是张力-位移曲线的形状和内
聚力参数。 目前,应用较为广泛的内聚力准则,如图2所示。
t t
t
a)指数型
t
b)双线性 型
c)多项式型
d)梯形型
图2 不同形式的内聚力准则 a)指数 b)双线性 c)多项式 d)梯形区
界面内聚力模型
双线性张力位移法则
双线性张力位移法则是一种简单有效的内聚力法则,
被广泛应用于有限元软件中已实现内聚力模型计算。
t2 t n n q 1 q exp 2 t
在单向开裂过程中,总断裂能值等于该向的断裂能计
算值,通过考察单向开裂条件下的应力值或断裂能的值,
都可以判断内聚力模型的计算结果与状态。
界面内聚力模型
作用。在 q 1时,总断裂能在应力较小为零时达到最
大值,但在 q 1 时,某一向应力首先减小为零后,总断 裂能值依然会保持增大,从而不能作为考察界面开裂状
态的量。
计算复合条件下的开裂过程时,各向的单向断裂能可
以作为考察界面是否完全开裂的条件,即若某一向单向
断裂能首先达到其临界的最大值,则该方向应力减小为 零,界面失效而完全开裂。
界面内聚力模型
在达到其最大值后应力开始减小至零时裂纹开裂完成,
其对应的位移值为最终开裂位移值 nf 。各项的断裂能临
界值 nc ,tc 。计算公式为:
1 max nf 2 1 c t max t f 2
c n
双线性内聚力模型简单有效,能较好的在有限元等方法
中计算而一般不会出现计算困难。
向时的最大内聚力, 0 为最大张开量。
界面内聚力模型
由 可得
T
2 2 2 n n n n 27 n Tn T0 1 2 1 4 0 0 0 0 0
n n 、t 分别为界面上的法向与切向位移值,
பைடு நூலகம்为纯法
向开裂状态下界面完全开裂时的界面断裂能, n 、 t 为
法向与切向界面开裂特征位移,即应力最大值点对应的 位移值。+ t q r 分别为: q 参数 ,
n
r n
*
n
t 为纯切向开裂状态下界面完全开裂时的界面断裂能。
*n
对于界面损伤的指数内聚力模型进行损伤因子修正时,
同时达到最大应力的界面开裂位移值也将减小。 界面损伤的指数内聚力模型通过在张力位移关系控制 方程中加入损伤因子实现。
要考虑界面出现损伤后,内聚力模型的最大应力值减小,
界面内聚力模型
开裂界面损伤的指数内聚力模型 在指数模型的张力位移关系及断裂能控制方程的研究 基础上,在模型中加入损伤因子 ,其中0 1 。
界面内聚力模型
其中 为法向的应力值,
max 、 max 为切向的应力值,
max
max
分别为法向及切向的最大 应力值,对应的裂纹界面
n
n0
nf
t
t0
t f
张开位移值分别为 n0 t0 。 图线斜率为内聚力刚度。
a)法向张力位移关系 b)切向张力位移关系 图3 双线性张力位移关系
界面内聚力模型及内聚力 有限元法
xxx xxxx.xx.xx
界面内聚力模型
随着复合材料结构种类的多样性发展,传统断裂力学 基于弹塑性断裂力学的内聚力模型(cohesive zone model,
已不能满足韧性开裂以及复合材料界面开裂等研究需求。
CZM) 已被应用于计算复合材料界面损伤和断裂过程。
内聚力实际上是物质原子或分子之间的相互作用力。 在内聚力区域内,应力是开裂位移的函数,即张力-开 裂位移(Traction-separation)关系,也称为内聚力准则。
2 2 t n 27 t Tr T0 1 4 0 0 0
与双线性及梯形张力位移关系不同,多项式张力位移 关系为连续性的方程,首先提出断裂能的控制方程,对 其进行偏导求得张力位移关系的控制方程。
控制方程为
max 0 n f n max f 0 n n ( )
0 n
( n0)
max 0 t f t max f f t t
( t0) ( t0)
2
1 n 2 0 2 2 1 t 4 t 1 n 1 2 0 3 0 2 0
2
T0 为纯法 为法向与切向刚度之间的一个比例系数,
T
将断裂能控制方程对于各向位移值进行偏导得到各向
max max分别为内聚力界面上法向与切向强度,则指数
内聚力模型中的参数之间的关系为:
n e max n
e t max t 2
界面内聚力模型
复合开裂时应力耦合关系分析
实际材料或结构开裂过程中,在复合开裂条件下,若
为在法向应力为零时,切向完全开裂时的法向位移值。
界面内聚力模型
界面上的各向应力为: 应力与位移的关系式为:
2 2 2 n n t 1 q t n n Tn - exp exp 1 exp r 2 r 1 2 n n n t t n n n t r q n n 2t Tt - 2 exp 2 exp q n t t r 1 n n t
界面内聚力模型
指数内聚力模型在开裂过程中的断裂能控制方程为:
n t2 n 1 q r q n n n exp 1 r q exp 2 n r 1 r 1 n n t
梯形张力位移关系中,其模型
max
的参数除了最大应力值以及临界
断裂能之外,还必须给出 1 2 的值。
1
c
2
f
图4 梯形张力位移
界面内聚力模型
多项式张力位移法则
多项式张力位移法则的内聚力模型由Needleman于
1992年提出,采用了高次多项式的函数。
断裂能的控制方程
27 1 n 4 n T0 0 1 4 3 0 2 0
界面内聚力模型
修正后的各单项断裂能计算式为:
n n 1 q r q n n q 1 r n n exp r 1 r 1 n n n
界面内聚力模型
开裂界面损伤的指数内聚力模型 对于两相材料结合界面以及粘接界面等,在其使用过 程中由于受外载荷、温度或湿度作用,以及周期载荷循 环作用等,结合界面将出现不可恢复的累积损伤,从而 导致界面承载能力下降。
采用内聚力模型计算界面损伤后的开裂过程,可以通
过加入损伤因子来对模型进行修正。
界面内聚力模型
当 为1时,界面没有损伤;而 逐渐减小至接近零时,
接近至零时,损伤积累使 界面损伤且程度逐渐增加;
得结合界面破坏失效。
修正后的两向张力位移关系为如下式:
2 2 2 n n t 1 q t n n Tn - exp exp 1 exp r 2 r 1 2 n n n t t n n n t r q n n 2t Tt - 2 exp 2 exp q n t t r 1 n n t
复合开裂条件下,在 q 1 时,不论两向同时开裂速 度的差异,两向的张力位移关系完全耦合。计算开裂过
程的总断裂能以及法向与切向的单向断裂能,其随着开
裂位移变化如图5所示。
a)法向开裂速度大于切向开裂速度 b)切向开裂速度大于法相开裂速度 图5 当q=l时,两向断裂能与总断裂能比较
界面内聚力模型
界面内聚力模型
梯形张力位移法则(逐段线性张力位移法则) 控制方程为
max 1 max f max ( f - ) - 2 0
c
1 1 2 2 f f
1 ( f 2 1) 临界的断裂能值为: max 2