平面齿轮机构设计

平面齿轮机构设计
平面齿轮机构设计

平面齿轮机构设计

一、特点:

1)功率和速度范围↑。

2)η↑。

3)寿命长。

4)保证精确角速比,传动比i。

5)制造设备要求↑(专门机构,刀具),成本↑,装配要求↑。

二、分类

1、按两齿轮轴相对位置分:平行,相交,交叉。平行(外啮合,内啮合):直齿,斜齿,人字齿,图8-1(a,b,c);相交:直齿圆锥,斜齿圆锥,曲齿圆锥,图8-4(a,b,c);交错:螺旋(图8-5),蜗轮蜗杆(图8-7),双曲线体(图8-6)。

2、按两齿轮相对运动:a).平面运动机构(平行轴);b).空间运动机构(其他:相交,交叉)。

3、按齿廓曲线分:渐开线,摆线,圆弧。

§7-2 齿廓啮合基本定理与渐开线齿廓(图8-8)

一、齿廓啮合基本定理(齿廓曲线与齿轮传动比关系)

一对齿轮啮合传动是靠主动轮的齿廓推动从动轮的齿廓来实现的,所以当主动轮按一定角速度转动时,从动轮转动角速度显然与两轮齿廓的形

状有关,也就是说:两齿轮传动时,其传动比变化规律与两轮齿廓曲线有关。

两轮角速比称传动比:i=ω1/ω2=常数。

如图:为一对互相啮合的齿轮:

主动轮1,ω1方向

从动轮2,ω2 方向

两轮齿齿廓C1,C2在K点接触,两轮在K点的线速度分别为V k1,V k2,过点k作两齿廓公法线n-n,要一对齿廓能连续地接触传动,它们沿接触点的公法线方向是不能有相对运动的。否则,两齿廓将不是彼此分离就是互相嵌入,因而不能达到正常传动目的。这就是说,要使两齿廓能够接触传动,则V k1和V k2在公法线n-n方向的分速度应相等,所以两齿廓接触点间的相对速度V k2k1只能沿两齿廓接触点的公切线方向,设以η表示两齿廓在接触点的公法矢量,则有:V k2k1 xη=0。

这就是齿廓的啮合基本要求,上式为齿廓啮合基本方程式,由于V k1和V k2在公法线方向分速度应相等。

故:

故由图得:

P--啮合点齿廓公法线(n-n)和连心线交点

上式表明:互相啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮俣合齿廓在接触点处的公法线所分成的两段成反比---齿廓啮合基本定理。

由齿廓啮合基本定理知:如两齿轮齿廓在不同位置啮合时,过其接触点的公法线与两齿轮连心线交点的位置不同,则两齿轮传动比也不同。两齿廓在接触点公法线方向如何,则决定于两齿廓曲线形状,所以根据齿廓啮合基本定理,即得齿廓曲线与齿轮传动林关系。(下面就讨论此关系)

由:i12=ω1/ω2 =O1P/O2P,知:欲使i12为常数,则O1P/O2P应为一常数,由于轴心O1,O2均为(即O102为定长)所以欲使O1P/O2P为常数,则点P 在连心线上为一定点,由此得出结论:要使两齿轮作定传动比传动,则其齿廓曲线必须满足下述条件:

即:不论两齿廓在任何位置接触,过其接触点所作的齿廓公法线必须与两齿轮的连心线相交于一固定点p(节点),由于点P为定点,故在轮1上的轨迹为以O1为圆心,O1P半径圆。由于点P为定点,故在轮2上的轨迹为以02为圆心,O2P为半径圆。O1P、O2P---节圆。

由此可知:轮1与轮2节圆在P点相切,而且在P点两轮线速度相等:

ω1O1P =ω2O2P,故两齿轮的啮合传动可以视为两节圆作无滑动的滚动。

二、渐开线性质

1、形成及其性质(如图)

形成:当一直线ll沿一圆周作纯滚动,直线上任意点K的轨迹AK,就是该圆的渐开线,这个圆称基圆。如果发生线沿相反方向在基圆上滚动,亦可得到方向相反的同样的渐开线。

性质:(图8-10)1)发生线沿基圆滚过的长度,等于基圆滚过的圆弧长度BK=BA,KK1=AA1。2)因发生线L-L沿基圆作纯滚动,故它与基圆的切点B即为速度瞬心,所以发生线e-e即为渐开线在点K法线,又因发生恒切于基圆,故可得结论:渐开线上任意点的法线恒为基圆的切线。即K点的法线(e-e)=r b的切线。3)发生线与基圆的切点B也是渐开线在点K的曲率中心,而线段BK是渐开线在点K的曲率半径,即P k=BK, P k(k 点的曲率半径)。由图可知:渐开线愈接近于基圆的部分,其曲率半径愈小,即曲率愈大,曲线愈弯曲,反之则曲线愈平直。4)渐开线形状取决于基圆大小。基圆愈小,渐开线愈弯曲,基圆愈大,渐开线愈平直。即:

齿条的齿廓曲线就是变成直线的渐开线。5)rb(基圆)内无渐开线。2、方程:由图得:

由上可知:已角θk是随压力角αk大小而变化,只要知道渐开线上各点的压力角αk,则该点展角θk就可由上式求出。所以称展角θk为压力角αk的开线函数,工程上有invαk表示θk.

(b) rk=r b/cosαk,渐开线极坐标方程:

三、渐开线齿廓满足齿廓啮合基本定理:(图8-11)

1、满足基本要求:

了解了渐开线的形成及其性质以后,首先需证明:用渐开线作为齿轮的齿廓能否满足定传动比要求。如图(8-11),G1,G2分别为两渐开线传动齿轮的齿廓,当它们在任意点K啮合时,过K点作这对齿廓公法线N1N2。根据渐开线性质:此公法线N1N2必同时与两齿轮的基圆相切,即N1N2为两轮基圆内的一条内公切线,它于连心线o1o2相交于点P。

由于基圆大小和位置都不变,所以不论这两个齿廓在任何位置啮合,例如在点K′啮合,则从K′所作两齿廓的公法线都将与N1N2重合(因为两事实上圆在同一方向只有一条内公切线),这就说明了N1N2为一定直线,其与连心线O1O2交点为一定点P,所以两轮传动比i=ω1/ω2=O1P/O2P=常数。所以开线齿廓满足齿廓啮合基本定理。

2、渐开线传动特点:

1)接触点公法线=两基圆内公切线(一条)

2)啮合线=公法线(因为所有啮合点均在线N1N2上,因此线N1N2是两齿廓接触点的轨迹,故将N1N2称啮合线)

3)啮合角α=节点上压力角α′,(过节点P作两节圆公切线,它与啮合线N1N2所夹锐角---啮合角α)

4) i=ω1/ω2 =O2P/O1P=r b2/r b1(不仅与两节圆成反比,而且还与两基圆成反比)

§7-3 直齿圆柱齿轮各部分名称和几何尺寸

由于直齿圆柱的齿向与轴线平行,所以在垂直于齿向的所有剖面上的齿廓形状(齿形)与端面相同,故直齿圆柱齿轮几何尺寸可按端面齿形计算。

一、外齿轮(图8-12)

1、名称:

2、几何尺寸计算:

已知:m,z, m(模数)=P/π(为便于计算,制造,检验和互换,使用而规定的齿轮基本参数)

五个基本参数:m、z、h a*、c*、α。表8-3,标准直齿圆柱齿轮传动的

几何尺寸计算公式。

3、任意半径齿厚s k

设计和检验齿轮时,常常要知道某一圆周上的齿厚。如为了检查齿顶强度而计算厚度,为确定齿侧间隙而要计算节圆上齿厚等。

如图8-13,

二、齿条

齿数为无限多的外齿轮的一部分,称齿条。∵齿轮齿数增加,顶圆,根圆,分度圆,基圆亦相应增大。如果Z增到无限多时,四个圆就变成四条互相平行直线。分度圆---分度线。

h a=h a*m ,h f=(h a*+c*)m

分度线上齿厚:s=e(齿槽宽)=πm/2。

与齿轮相比,有两个特点(图8-14):

1)由于齿条的基圆直径为无限大,渐开线齿廓是倾斜角等于压力角α的直线。所以齿廓上各点法线互相平行。又由于齿条是作平移运动,故齿廓上任一点的压力角均相等。大小等于分度圆压力角α,即:各点压力角相等,且等于α等于齿廓倾斜角。

2)各点齿距(周节)P=πm , ∵齿条上各点的同侧齿廓是平行的,所以在任何一条分度线平行的直线上,其齿距均相等。

三、内齿轮(图8-15),d b=dcosα ,d ad f

一、正确啮合条件

由上述分析可知:一对渐开线齿廓是能够保证定传动比,但这并不等于说任意两个渐开线齿轮都能搭配起来正确地传动,例如:一个齿轮周节很大,另一个齿轮周节很小,显然,这两个齿轮是无法搭配的,那一对渐开线齿轮传动,正确啮合

应具备什么条件?

图8-17,一对渐开线齿轮传动,当主动轮1的齿廓K

1和从动轮2的齿廓K

2

在啮

合线上的K点接触时,为保证两轮能连续正确啮合,后一对齿廓K

1′,和K

2

′,

如果已进入啮合区,则它们应在啮合线上另一点K′接触,即轮1的两齿廓K

1

和K

1′在啮合线上的距离应等于轮2的两齿廓k

2

和k

2

′在啮合线上的距离。

k 1k

1

′=k

2

k

2

′=bb′ =cc′ (基圆上齿距),渐开线性质:发生线在基圆上滚过长

度等于基圆上滚过弧长。

§7-5 渐开线直齿圆柱齿轮传动的中心距和可分离

一、中心线:

两齿轮回转中心距离为中心距,等于两节圆半径之和,a=r

1'+r

2

'

二、中心距可分性

1、外啮合

1)正确安装:图8-18,没有侧隙存在的传动称正确安装传动,此时中心距称正确安装中心距,或标准中心距。

侧隙:为避免齿轮反转时发生冲击和出现空程,理论上要求两齿轮传动时轮齿不受力的一侧齿廓之间没有空隙存在,这个空隙称齿侧间隙(侧隙)。无侧隙传动:节圆上:

一对标准齿轮(分度圆)无侧隙安装(标准安装)

两正确安装的标准齿轮传动的中心距:

正确安装的径向间隙(一个齿轮齿顶到与之相啮合齿轮齿根径向距离):

2)可分性:(图8-18)

若两渐开线齿轮由于制造和安装误差,或因齿轮轴受载变形和轴承磨损等而使两

轮中心位置变动,(中心距由a →a ′),此时啮合线N

1′N

2

′仍为两基圆内公

切线,而c′>c=c*.m,但啮合线与连心线o

1′o

2

′的交点p ′亦为定点,故此时

瞬时传动比仍为定值,即:公法线=啮合线=内公切线(一条),满足基本定理:节点p ′为定点

故由上述可知:两正确安装的标准齿轮传动时,节点就是两分度圆的切点,分度圆与节圆重合,啮合角等于节圆压力角,也等于分度圆压力角。当中心距改变时,节点位置随之改变,节圆与分度圆不重合,啮合角仍等于节圆压力角,但不等于分度圆压力角。不过,不论中心距是否改变,两渐开线齿轮传动时的传动比均不改变。这称为渐开线齿轮传动可分离性。

注意:中心距分离后,将出现齿侧间隙,故齿轮反向转动会出现冲击。

§7-6 渐开线圆柱齿轮传动的重合度

齿轮传动是依靠两轮的轮齿依次接触来实现的但是,由于轮齿的高度有限,故一对轮齿的啮合区间也是有限的。因此,为了使传动不至中断,在轮齿高替工作中,必须保证当前一对轮齿尚未脱离啮合时,后一对轮齿就应进入啮合。这样,我们首先必须了解两的啮合过程。然后,进而研究两齿轮传动的连续条件。

一、啮合过程

图8-16,为一对渐开线齿轮的啮合情况:轮1,主动轮,角速度ω

1

顺时针回转;

轮2,从动轮,角速度ω

2逆时针回转。两轮轮齿在啮合起始啮合(B

2

为啮合线N1N2

与从动轮顶圆的交点)此时,主动轮轮齿根与从动轮齿顶接触,随着传动的进行,

两齿廓的啮合点将沿着啮合线N

1N

2

移动,而同时啮合点将分别沿着主动轮的齿

廓,由齿根逐渐移走向齿顶;沿着从动轮齿廓,由齿顶向齿根,当啮合进行到主动轮的齿顶圆与啮合线的交点B

1

时,两轮齿即将脱离接触。

B 2点---始点,B

1

---终点,P---节点。B

2

P:啮合区;PB

1

:脱离区;B

2

B

1

:实际啮合

线,N

1N

2

:理论啮合线;齿轮1:1~a,齿轮2:2~b,有效工作段(有阴影线部分)

二、重合度

从轮齿啮合过程,得知:为了使齿轮能连续传动,必须在前一对轮齿尚未脱离啮合时,后一对轮齿就应及时地进入啮合。而为了达到这一目的,就必须使B

1

B2

≥P

b ,即要求实际啮合线段B

1

B

2

大于或等于齿轮基圆齿距P

b

。当B

1

B

2

=P

b

,它表明

除了正好在点B

1,B

2

接触瞬间是两对轮齿接触外,始终只有一对轮齿处于啮合状

态。

B 1B

2

>P

b

,有时为一对换轮齿啮合,有时多于一对轮齿啮合;B

1

B

2

b

,前一对轮齿在

点B

1

脱离啮合,后一对轮齿尚未进入啮合,结果使传动中断,引起轮齿间冲击,

影响传动平稳性。连续传动条件:B

1B

2

≥P

b

图8-

1)外啮合:

2)内啮合:B

1P公式不变,图8-20,外齿轮1,内齿轮2,基圆半径r

b1

,r

b2

。两渐

开线齿廓k

1,k

2

,在k点接触,过k点分别作两基圆的切线KN

1

,KN

2

,显然,KN

1

N

2

两基圆的外公切线,也是接触点的公法线,即啮合线。

如果轮1和轮2顶圆分别与啮合线交于B

1,B

2

则B

1

B

2

就是实际啮合线。由于基圆

以内无渐开线,故B

2O

1

距离必>r

b1

(O

1

N

1

)所以实际啮合线B

1

B

2

必在N

1

N

2

之外。

故重合度:B

1

P不变

内啮合传动:正确安装标准中心距:

啮合角等于分度圆压力角。

3)齿轮齿条:(图8-19)

外啮合齿轮:当轮2齿数z→∞(即r

b

→∞),变成齿轮齿条传动。

啮合线N

1N

2

与齿轮的基圆相切于点N

1

,由于齿条的基圆→∞,故啮合线与齿条基

圆的切点N

2

在无穷远处,过齿轮轴心而与齿条分度线垂直的直线与啮合线交点P--节点。当齿轮齿条标准安装:(轮分度圆与条分度线相切)

齿轮:分度圆与节圆重合;齿条:分度线与节线重合。传动啮合角α′等于齿轮分度圆压力角,等于齿条齿形角α。

当齿条沿径向线O

1

P远离或靠近齿轮(相当中心距改变),由于齿条齿廓为直线,所以不论齿条的位置如何改变,齿条的齿廓总是与原始位置时齿廓平行的,又由

于啮合线N

1N

2

与齿廓垂直,所以不论齿轮,齿条是否标准安装,啮合线N

1

N

2

的位

置也总不变。因此,其啮合角α′恒等于分度圆压力角α。

此外:∵N

1N

2

位置不变→节点P不变→齿轮节圆大小不变,而且恒与分度圆重

合。但是,若非标准安装的:齿条节线与其分度线将不再重合,而是在其间将有

一段距而已。

重合度:

§ 7-7 渐开线齿轮的加工

一、齿廓切削的基本原理

齿轮加工方法很多:铸造法,热轧法,冲压法,模锻法,粉末冶金法和切制法(应用最广)。

切削法:滚齿法,插齿,剃齿,刨齿,铣齿,磨齿等,但就其原理来说有两种。

1、仿形法:

所采用的刀具在其轴剖面(包括刀具轴线的剖面)内,刀刃的形状和被切齿槽的形状相同。

用仿形法加工齿廓所用刀具主要有:盘形铣刀,指状铣刀等。

图8-22,8-23,切削时:铣刀转动,毛坯沿自身轴线移动,每切完一个齿槽,毛坯退回原位,并用分度盘将毛坯转过360°,再切削第二齿槽,直至切完。(指状铣刀一样)。这种方法特点:1)不连续切削,生产率↓,成本↑;2)加工精度低。

因为渐开线形状取决于基圆,而d

b

=mzcosα,故渐开线形状随m,z,α而变,因此,不同m,z的齿轮应由不同成型刀具加工。但这样所需刀具,为减少刀具数量,规定每一种m,z一定的刀具,有8把左右,所以每反刀具要加工几种到几十种齿数的齿轮。

表8-4,圆盘铣刀的加工齿数范围,由于同样m和α的齿轮,齿数愈少,渐开线愈弯曲,所以它的齿槽顶p愈宽,为避免卡齿(啮合时),一般每把刀具都是以所加工的一组齿轮中齿数最少者来设计,故用这把刀加工同组其他齿数齿轮会产生齿形误差。

这种方法优点:在普通铣床上(或刨床)就可加工,不需专门机床,故常用于单件或修配生产。

2、展成法

利用两个相互啮合传动齿轮的齿廓曲线互为包络线的原理加工轮齿。

如图8-24,两个相互啮合传动的标准渐开线齿轮1和2,如果它们的m,α,h

a

,c(径

向间隙系数),z

1z

2

为已知,则它们正确安装中心距a

12

=m(z

1

+z

2

)/2,若将轮2改

为用软材料(胶泥,软腊)制成直径为顶圆的的毛坯,再用力将轮1与齿轮坯靠近到原有中心距a

12

,并使它们按原传动比转动,则齿轮坯在轮1的挤压下转过一周后,其上将出现与原齿轮2完全相同的齿廓--展成法。

展成法加工齿轮相当于被加工齿轮与作为刀具的齿轮的啮合的传动过程,被加工齿轮的齿廓就是它与刀具齿轮作相对运动时,由刀具齿轮的齿廓包络而成。1)齿轮插刀

齿轮插刀外形像一个具有刀刃的外齿轮,插齿刀装在插齿刀上进行加工(图

8-25,8-26)

当插刀参数:m、α、z,去加工m 、α、z齿轮,将插刀和轮坯装在专用的插齿

机床上,通过机床的传动系统,使插刀与轮坯按传动比n

刀/n

=z

/z

回转,实

现展成运动。其中:刀具与轮坯之间相对运动,主要有:

(a)展成运动:即刀沿坯以恒传动比i=z

坯/z

回转

(b)切削运动:即刀沿坯的齿宽方向作往复切削运动

(c)进给运动:即为切出轮齿高度,切削中,刀具还需向坯中心作径向进给,直至达到规定全齿高。

(d)在切削中,为防止插刀向上退刀时与轮坯发生摩擦,损伤已切好齿面等原因,所以在插刀退刀时,轮坯还需让开一小段距离。(插刀向下切削时,再恢复到原来位置)。

这种加工方法:只要按被加工齿轮齿数,改变毛坯直径和齿轮插刀与轮坯传动比,就可用一把刀加工m,z相同齿轮。

2)齿条插刀(图8-27)

齿轮插刀z →∞,r

b

→∞,渐开线为直线---成为齿条插刀加工过程同齿轮插刀。但此时展成运动成为齿轮齿条传动。即:当轮坯角速度为ω,齿条移动速度v=Υω=ω m z/2(m,z,Υ,为齿轮的参数)。图8-28,齿条插刀齿廓形状,与传动齿条相似,分度线上齿厚等于齿槽宽,齿廓倾角α为压力角→刀具角。但若加工齿数多齿轮,齿条长度增加工,机床结构复杂,应用较小。

3)蜗杆滚刀,(图8-29,8-30)

能连续切削,蜗杆滚刀装在滚齿机上。刀具外形象螺杆,其上开有若干斜槽,以形成刀刃。轴向剖面齿形与齿条插刀相似。当蜗杆滚刀转动时,它的轴向剖面齿形与齿条插刀相似。当蜗刀转动时,它的轴向剖面相当于一个齿条在连续向前移动。

§7-8 渐开线标准齿轮无根切现象的最少齿数

1.根切—刀具齿顶超过理论极限位置N

1

(图8-31,8-32)

要了解根切产生的原因,则必须知道范成法切齿时,齿廓渐开线部分的形成过程。

如图:刀具分度线与轮坯分度圆相切,由轮齿啮合过程知:刀具的刀刃将

从B

1点开始切制被切齿轮的渐开线齿廓至B

2

点结束,过了点B

2

由于刀具已

离开啮合线,故不能继续切制渐开线齿廓,此即说明:被切齿轮的齿廓从点B

2

开始至齿顶部分,点B2为渐开线齿廓的起始点过点B2所作圆为渐开线齿廓起始圆

齿廓在该圆以内的部分是由刀具圆角切出的非渐开线称过渡曲线部分。按渐开线形成原理:渐开线是从基圆开始。但按上述齿廓渐开线起始点取决于刀具国内外轮坯的相对位置,如果将刀具齿增大,使刀具齿顶线通过啮合极限点N1,则被切齿轮齿廓渐开线部分将从基圆开始。

根切原因:如果将刀具齿顶再增大,使其超过点N

1,那么这时的点N

1

不再是啮合终止点了,所以刀具的齿顶与已经切出的齿廓在点N

1

不能脱离接触。因而当范成运动继续进行,产生根切。

这种现象用方法证明:

设刀具由3到4(移动rΨ)刀刃与啮合线交于K点,

基圆转弧长:

′必落在刀刃左下方被切掉。

故知齿廓曲线上的点N

1

加工轮齿时,若刀具齿顶线超过啮合线与轮坯基圆切点N

,则被切齿轮发

1

生根切。

2.无根切的最少齿数

由图8-32,用齿条型刀具加工标准齿轮,不发生根切:

§7-9 变位齿轮概述

一、标准齿轮传动的主要缺点及改善方法:

1、(1)两齿轮啮合,材料相同时,小齿轮工作条件差,接触次数多,容易破坏。

(2)小齿轮齿根厚度小,强度↓

(3)小齿轮曲率半径小,齿根厚度↓,接触应力大。

2、不适用于中心距

3、z

,发生根切,但z↑,机构尺寸↑

min

二、变位齿轮

1、概念:

a)用齿条刀具加工标准齿轮,刀具v=Υω(工件),工件分度圆是在加工过程中,与刀具作纯滚动的节圆---分度圆(因为刀具线上的齿厚与齿槽宽相等,故被加工齿轮,在分度圆上齿厚亦等于齿槽宽,称标准齿轮)。

b)若将刀具移动,刀具中线相对加工齿轮移动x

m

,(但此时,相对运动不变,即v=Υω)由于此时刀具节线不是中线,而是平行于中线的直线N′N′,因刀具节线N′N′上的齿厚与齿槽宽亦不相等。---则产生变位,xm---变位系数

x m >0,x>0 (刀具离开中心)“+”变位,h

f

↓,d

f

↑,s↑,e↓

x m <0,x<0 (刀具离开中心)“-”变位,h

f

↑,d

f

↓,s↓,e↑

2、变位后齿轮尺寸计算

a)d=mz(分度圆不变,因为齿条刀具任一平行中线的直线,m,相等)

b)d

b

=dcosα

c)分度圆齿厚:

d)d

f , d

f

=d-2h

f

+2x

m

e)d

a ,d

a

=d+2h

a

维持齿顶圆直径不变(此时,齿顶高不变);d

a

=d+2h

a

+2x

m

,

维持齿全高不变,此时应增大毛坯圆2x

m

,齿顶高:

;上述计算方法只适用于变位较小场合,因为这种变位径向间隙减少,故常用维

持啮合时径向间隙不变,c=c*.m,来计算顶圆d

a =2a'-d

2

+2m(h

a

*-x

2

)

二、X

min

,最小变位系数(无根切条件下)

由于加工变位齿轮时,是在刀具与工件相对运动不变,而把刀具由加工标准

齿轮的位置移动X

m 而产生,如果刀具齿顶线超过N

1

点,则发生根切。此时刀具

从虚线位置移到实线位置(图8-35),使其顶线移至N

1

点之下,则不发生根切。此时,

用齿条刀加工标准齿轮不发生根切最少齿数:

故得条刀加工标准齿轮不发生根切最少变位系数:

由上分析:

三、变位齿轮传动

1、啮合方程式:

因为计算齿轮的公称尺寸时,都是按无侧隙啮合来考虑,由上述各:一对标

准齿轮正确安装,可得到无侧隙啮合:e

1=s

1

s

1

'=e

2

' s

2

'=e

1

' s

2

=e

2

但当一对变位齿轮传动时,能否满足无侧隙啮合条件。

虽然变位齿轮和标准齿轮在分度圆上,m,α相等。但它们的齿厚和齿槽宽不相等,故变位齿轮作无侧隙啮合传动时,分度圆不一定相切:r1≠r1′(即分度圆不等于节圆),a≠a′(中心距不一定相等)

但两轮的节圆应满足:(图8-36)

s 1'=e

2

' s

2

'=e

1

'

故节圆齿距:p

1

'=s

1

'+e

1

'=s

1

'+s

2

'

任意圆半径齿厚:

上式中:变位后分度圆齿厚:

上式表明变位齿轮在无侧隙啮合时,变位系数之和和啮合角α′的关系。若两变

位系数之和(x

1+x

2

≠0),则两轮作无侧隙啮合时,其啮合角α′不等于分度圆压

力角α,此时两轮分度圆不是分离,就是相交。(不重合)两轮中心距不等于标准中心距:

2、传动几何尺寸

计算:

保持径向间隙不变的d

a

计算。

3、传动分类(在无侧隙条件下)

按相互啮合的两齿轮的变位系数之和X=X

1+X

2

之值分类。

①零传动 x=x

1+x

2

=0

齿轮机构及其设计分析

(八)齿轮机构及其设计 1、本章的教学要求 1)了解齿轮机构的类型及应用。 2)了解齿廓啮合基本定律。 3)深入了解渐开线圆柱齿轮的啮合特性及渐开线齿轮的正确啮合条件、连续传动条件等。 4)熟悉渐开线齿轮各部分名称、基本参数及各部分几何尺寸的计算。 5)了解渐开线齿廓的展成切齿原理及根切现象;渐开线标准齿轮的最少齿数;及渐开线齿轮的变位修正和变位齿轮传动的概念。 6)了解斜齿圆柱齿轮齿廓曲面的形成、啮合特点,并能计算标准斜齿圆柱齿轮的几何尺寸。 7)了解标准支持圆锥齿轮的传动特点及其基本尺寸的计算。 8)对蜗轮蜗杆的传动特点有所了解。 2、本章讲授的重点 本章讲授的重点是渐开线直齿圆柱齿轮外啮合传动的基本理论和设计计算。对于其他类型的齿轮及其啮合传动,除介绍它们与直齿圆柱齿轮啮合传动的共同特点外,则着重介绍他们的特殊点。 3、本章的教案安排 本章讲授12-14学时,安排了六个教案,习题课穿插在课堂教学中进行,其中教案JY8-5(2)可根据学时及专业的不同选讲。此外本章有两个实验:齿轮范成实验和齿轮基本参数测绘。 [教案JY8-1(2) ] 1)教学内容和教学方法 本讲的教学内容有:齿轮机构的类型及应用;齿轮的齿廓曲线;渐开线的形成及其特性。 1、齿轮机构的应用及分类 齿轮机构是在各种机构中应用最广泛的一种传动机构。它可用来传递空间任意两轴间的运动和动力,并具有功率范围大、传动效率高、传动比准确、使用寿命长、工作安全可靠等特点。齿轮机构的应用既广,类型也多。根据空间两轴间相对位置的不同,齿轮机构的基本类型如下:(1)用于平行轴间传动的齿轮机构 外啮合齿轮传动,两轮转向相反; 内啮合齿轮传动,两轮转向相同。 齿轮与齿条传动。 斜齿轮传动。 人字齿轮传动。 (2)用于相交轴传动的齿轮机构 直齿圆锥齿轮传动。 曲线圆锥齿轮(又称弧齿圆锥齿轮)能够适应高速重载的要求,故目前也得到了广泛的应用。 (3)用于交错轴间传动的齿轮机构 交错轴斜齿轮传动。 蜗杆传动。 准双曲面齿轮传动。

机械原理平面机构的运动简图及自由度习题答案

1. 计算齿轮机构的自由度. 解:由于B. C 副中之一为虚约束,计算机构自由度时,应将 C 副去除。即如下 图所示: 该机构的自由度1213233231=?-?-?=--=h p p n F 2. .机构具有确定运动的条件是什么如果不能满足这一条件,将会产生什么结果 机构在滚子B 处有一个局部自由度,应去除。 该机构的自由度017253231=-?-?=--=h p p n F 定轴轮系 A B C 1 2 3 4 图2-22 A B C D G E H F

当自由度F=1时,该机构才能运动, 如果不能满足这一条件,该机构无法运动。 该机构当修改为下图机构,则机构可动: N=4, PL=5, Ph=1; F=?-?-= 自由度342511 3. 计算机构的自由度. 1)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?-= 自由度342511

2)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度31211 3)由于机构具有虚约束, 机构可转化为下图机构。 F=?-?= 自由度33241 第一章平面机构的运动简图及自由度 一、判断题(认为正确的,在括号内画√,反之画×) 1.机构是由两个以上构件组成的。() 2.运动副的主要特征是两个构件以点、线、面的形式相接触。() 3.机构具有确定相对运动的条件是机构的自由度大于零。() 4.转动副限制了构件的转动自由度。() 5.固定构件(机架)是机构不可缺少的组成部分。() 个构件在一处铰接,则构成4个转动副。() 7.机构的运动不确定,就是指机构不能具有相对运动。() 8.虚约束对机构的运动不起作用。() 二、选择题 1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。 A.构件数、运动副的类型及数目 B.构件的运动尺寸 C.机架和原动件 D. A 和B 和C 2.下面对机构虚约束的描述中,不正确的是()。 A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。 B.虚约束可提高构件的强度、刚度、平稳性和机构工作的可靠性等。 C.虚约束应满足某些特殊的凡何条件,否则虚约束会变成实约束而影响机构的正常运动。为此应规定相应的制造精度要求。虚约束还使机器的结构复杂,成本增加。 D.设计机器时,在满足使用要求的情况卜,含有的虚约束越多越好。 三、综合题

第十章齿轮机构及其设计

第十章齿轮机构及其 设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十章齿轮机构及其设计 10-1 填空题 (1)渐开线齿廓的齿轮啮合的特点是 。 (2)影响渐开线直齿圆柱齿轮齿廓形状的参数有、、。 (3)决定单个渐开线标准直齿圆柱齿轮几何尺寸的五个基本参数是,其中参数是标准值。 (4)一对外啮合渐开线直齿圆柱齿轮机构的正确啮合条件是和分别相等。(5)渐开线斜齿圆柱齿轮的标准参数在面上,在几何尺寸计算时应按面参数代入直齿轮的几何计算公式。 (6)用标准齿条型刀具加工标准齿轮时,其刀具的线与轮坯圆相切并作纯滚动。(7)斜齿圆柱齿轮的螺旋角对传动的主要影响有、、、,其常用的取值范围为。 (8)用标准齿条型刀具加工n=20°,h*an=1,=20°的标准斜齿轮时,其不根切的最少齿数是。 (9)一对渐开线直齿圆柱齿轮(=20°,h*a=1)啮合时,当安装的实际中心距a′大于标准中心距a时,啮合角′是变大还是变小;重合度是增大还是减小;传动比i又是如何变化的。 (10)一对正常齿制的渐开线标准直齿圆柱外啮合齿轮传动,其模数m=4mm,当两轮以标准中心距安装时,其顶隙为 mm,理论上侧隙为 mm;当中心距增大时,其顶隙变为mm,侧隙于零。 10-2 选择题 (1)渐开线直齿圆柱齿轮传动的可分性是指不受中心距变化的影响。 A.节圆半径; B.传动比; C.啮合角。 (2)模数m=2mm, 压力角=20°,齿数z=20,齿顶圆直径d a=,齿根圆直径d f=正常齿制的渐开线直齿圆柱齿轮是齿轮。 A.标准; B. 变位; C. A、B皆不是。

第十章 齿轮机构及其设计要点

第十章齿轮机构及其设计 1 一个齿轮不同圆上的压力角和模数是否相同?是否都是标准值? 2 为什么模数值要标准化? 3 标准为什么规定压力角为20°? 4 如果齿轮的五个基本参数中,除模数以外其余四个基本参数都相同,齿轮的几何尺寸有何不同? 5 确定蜗杆头数和蜗轮的齿数要考虑哪些问题? 6 何谓蜗杆蜗轮机构的中间平面?在中间平面内,蜗杆蜗轮传动相当于什么传动? 7 确定蜗杆直径系数的目的是什么?的大小对蜗杆蜗轮机构有什么影响?它与蜗杆分度圆直径是什么关系? 8 何谓圆锥齿轮的背锥和当量齿轮?引入背锥和当量齿轮的目的是什么?当量齿数如何计算? 9 在直齿圆锥齿轮中何处为标准值? 10 渐开线标准齿轮是指m、α、*a h、*c均为标准值,且分度圆齿厚齿槽宽的齿轮。 11 渐开线直齿圆柱齿轮与齿条啮合时,其啮合角恒等于齿轮上的压力角。 12 用标准齿条型刀具加工标准齿轮时,刀具的线与轮坯的圆之间作纯滚动。 13 一对渐开线圆柱齿轮传动,其圆总是相切并作纯滚动,而两轮的中心距不一定等于两轮的圆半径之和。 14 一对渐开线标准直齿圆柱齿轮按标准中心距安装时,两轮的节圆分别与其圆重合。 15 用同一把刀具加工m、z、α均相同的标准齿轮和变位齿轮,它们的分度圆、基因和齿距均。 16 正变位齿轮与标准齿轮比较其齿顶高,齿根高。 17 要求一对外啮合渐开线直齿圆柱齿轮传动的中心距略小于标准中心距,并保持无侧隙啮合,此时应采用传动。 18 斜齿圆柱齿轮的齿顶高和齿根高,无论从法面或端面来看都是的。 19一对外啮合斜齿圆柱齿轮的正确啮合条件为。 20 蜗杆的标准模数和标准压力角在面,蜗轮的标准模数和标准压力角在面。 21 直齿锥齿轮的几何尺寸通常都以作为基准。 22 渐开线直齿圆柱齿轮正确啮合的条件是: 。 23 一对直齿圆锥齿轮传动的正确啮合条件是。 24蜗杆蜗轮传动的正确啮合条件是。 25标准渐开线直齿圆锥齿轮的标准模数和压力角定义在端。 26一对渐开线直齿圆柱齿轮啮合传动时,两轮的圆总是相切并相互作纯滚动的,而两轮的中心距不一定总等于两轮的圆半径之和。 27 共轭齿廓是指一对的齿廓。 28 用齿条刀具加工标准齿轮时,齿轮分度圆与齿条中线,加工变位齿轮时,中线与分度圆。被加工的齿轮与吃条刀具相"啮合"时,齿轮节圆与分度圆。 29 有两个模数、压力角、齿顶高系数及齿数相等的直齿圆柱齿轮,一个为标准齿轮1,另一个为正变位齿轮2,试比较这两个齿轮的下列尺寸,哪一个较大、较小或相等:d b1d b2; d a1d a2;d1d2;d f1d f2;s a1s a2;s1s2。 30标准齿轮除模数和压力角为标准值外,还应当满足的条件是。 31斜齿轮在上具有标准模数和标准压力角。

齿轮机构与其设计(全部习题参考答案)

第5章 齿轮机构及其设计 5.1 已知一对外啮合正常齿标准直齿圆柱齿轮123, 1941m mm z ===,z ,试计算这对齿轮的分度圆直径、齿顶高、齿根高、顶隙、中心距、齿顶圆直径、齿根圆直径,基圆直径、齿距、齿厚和齿槽宽。 解: ()1212121219357,413123133,1.253 3.753.7530.75,0.55712390572363, 12323129572 3.7549.5,1232 3.75115.557cos2053.563,123cos20a f a a f f b b d mm d mm h mm h mm c mm a mm d mm d mm d mm d mm d mm d =?==?==?==?====?+==+?==+?==?==?==??==??=---115.58339.425mm p ==mm π 5.2 已知一正常齿标准直齿圆柱齿轮20,540m mm z α=?==,,试分别求出分度圆、基圆、齿顶圆上渐开线齿廓的曲率半径和压力角。 解:分度圆上:0.554010020 sin 100sin 2034.20r mm r mm αρα=??====?= 基圆上: 100c o s 2093.97 00 b b b r r c o s m m ααρ=?=??==? = 齿顶圆上:1 1005105cos (/ )26.5 sin 105sin26.546.85a a b a a a a r mm r r r mm αρα-=+=====?= 5.4 在某项技术革新中,需要采用一对齿轮传动,其中心距144a mm =,传动比2i =。现在库 房中存有四种现成的齿轮,已知它们都是国产的正常齿渐开线标准齿轮,压力角都是20°,这四种齿轮的齿数z 和齿顶圆直径a d 分别为: 1a12a23a34a424,=104mm;47,196mm; 48,250mm; 48,200mm. z d z d z d z d ======= 试分析能否从这四种齿轮中选出符合要求的一对齿轮来。 解:根据传动比要求,显然齿轮2不合适。又

合肥工业大学05 齿轮机构及其设计答案共7页文档

齿轮机构及其设计 1、设有一渐开线标准齿轮z =20,m =8mm,α=20o,* a h =1,试求:1)其齿廓曲线在分度圆及齿顶圆上的曲率半径ρ、a ρ 及齿顶圆压力角a α;2)齿顶圆齿厚a s 及基圆齿厚 b s ;3)若齿顶变尖(a s =0)时,齿顶圆半径a r '又应为多少? 解1)求ρ、a ρ、a α 2)求 a s 、b s 3)求当a s =0时a r ' 由渐开线函数表查得:5.2835'?='a a 2、试问渐开线标准齿轮的齿根圆与基圆重合时,其齿数z '应为多少,又当齿数大于以上求得的齿数时,基圆与齿根圆哪个大? 解 由b f d d ≥有 当齿根圆与基圆重合时,45.41='z 当42≥z 时,根圆大于基圆。 3、一个标准直齿圆柱齿轮的模数m =5mm ,压力角α=20o,齿数z =18。 如图所示,设将直径相同的两圆棒分别放在该轮直径方向相对的齿槽中,圆棒与两侧齿廓正好切于分度圆上,试求1)圆棒的半径p r ;2)两圆棒外顶点之间的距离(即棒跨距)l 。 解:)(22 /2/2 1rad z mz m KOP π π=?=∠ 4、有一对渐开线标准直齿圆柱齿轮啮合,已知=1z 19,=2z 42,=m =5mm 。 1)试求当='α20°时,这对齿轮的实际啮合线B 1B 2的长、作用弧、作用角及重合度;2)绘出一对齿和两对齿的啮合区图(选适当的长度比例尺仿课本上图5-19作图,不用画出啮合齿廓),并按图上尺寸计算重合度。 解:1)求21B B 及a ε

2)如图示 5、已知一对外啮合变位齿轮传动,21z z ==12,m =10mm,α=20○, *a h =1,a '=130mm,试设计这对齿轮传动,并验算重合度及齿顶厚(a s 应大于0.25m ,取21x x =)。 解 1)确定传动类型 故此传动应为 正 传动。 2)确定两轮变位系数 取294.017/)1217(1/)(6245.0min min * min 21=-?=-=≥===z z z h x x x x a 1) 计算几何尺寸

平面齿轮机构设计(甲类精制)

平面齿轮机构设计 一、特点: 1)功率和速度范围↑。 2)η↑。 3)寿命长。 4)保证精确角速比,传动比i。 5)制造设备要求↑(专门机构,刀具),成本↑,装配要求↑。 二、分类 1、按两齿轮轴相对位置分:平行,相交,交叉。平行(外啮合,内啮合):直齿,斜齿,人字齿,图8-1(a,b,c);相交:直齿圆锥,斜齿圆锥,曲齿圆锥,图8-4(a,b,c);交错:螺旋(图8-5),蜗轮蜗杆(图8-7),双曲线体(图8-6)。 2、按两齿轮相对运动:a).平面运动机构(平行轴);b).空间运动机构(其他:相交,交叉)。 3、按齿廓曲线分:渐开线,摆线,圆弧。 §7-2 齿廓啮合基本定理与渐开线齿廓(图8-8) 一、齿廓啮合基本定理(齿廓曲线与齿轮传动比关系) 一对齿轮啮合传动是靠主动轮的齿廓推动从动轮的齿廓来实现的,所以

当主动轮按一定角速度转动时,从动轮转动角速度显然与两轮齿廓的形状有关,也就是说:两齿轮传动时,其传动比变化规律与两轮齿廓曲线有关。 两轮角速比称传动比:i=ω1/ω2=常数。 如图:为一对互相啮合的齿轮: 主动轮1,ω1方向 从动轮2,ω2 方向 两轮齿齿廓C1,C2在K点接触,两轮在K点的线速度分别为V k1,V k2,过点k作两齿廓公法线n-n,要一对齿廓能连续地接触传动,它们沿接触点的公法线方向是不能有相对运动的。否则,两齿廓将不是彼此分离就是互相嵌入,因而不能达到正常传动目的。这就是说,要使两齿廓能够接触传动,则V k1和V k2在公法线n-n方向的分速度应相等,所以两齿廓接触点间的相对速度V k2k1只能沿两齿廓接触点的公切线方向,设以η表示两齿廓在接触点的公法矢量,则有:V k2k1 xη=0。 这就是齿廓的啮合基本要求,上式为齿廓啮合基本方程式,由于V k1和V k2在公法线方向分速度应相等。 故:

齿轮机构及其设计

第十章 齿轮机构及其设计 本章学习任务:齿廓啮合定律,渐开线齿形,渐开线圆柱齿轮各部分名称和尺寸,渐开线直齿圆柱齿轮机构的啮合传动,其他齿轮机构的啮合特点。 驱动项目的任务安排:完善项目中齿轮机构的详细设计。 10.4 其他齿轮机构的啮合特点 10.4.1平行轴斜齿圆柱齿轮机构 1.齿面的形成及啮合特点 图10-26 渐开螺旋面的形式 图10-27 一对斜齿轮的啮合情况 图10-28 斜齿轮齿面接触线 如图10-26所示,当发生面S 在基圆柱上相切并作纯滚动时,发生面上一条与基圆柱母线成角的直线KK 在空间所展开的轨迹为斜齿轮的齿廓曲面。从端面上看(垂直于轴线的b β平面)各点的轨迹均为渐开线,只是各渐开线的起点不同而已。由于斜线KK 在其上各点依次和基圆柱相切,因此各切点在基圆柱上形成螺旋线,线上各点为渐开线的起始点,00k k 00k k 它们在空间展开的曲面为渐开螺旋面。角称为基圆柱上的螺旋角。 b β一对平行轴斜齿轮啮合传动时,可以看成发生面(啮合面) 分别与两个基圆圆柱相切并作纯滚动,发生面上的斜线KK 分别在两基圆柱上形成螺旋角相同,方向相反的渐开螺旋面,

如图10-27所示。这对齿轮的瞬时接触线即为KK 线,即一对斜齿轮啮合时其接触线为一斜直线。由于一对斜齿轮的轮齿是反向倾斜的(一个左旋,另一个右旋),因此啮合时,是由前端面进入啮合,由后端面退出啮合,其接触线由短变长,再由长变短变化,图10-28为齿轮啮合时从动轮上接触线的情况,这种接触方式使齿轮传动的冲击与振动减小,传动较平稳,故斜齿轮传动适用于高速传动。 从端面上看,斜齿圆柱齿轮传动与直齿圆柱齿轮传动相同,啮合线为两基圆内公切线,所以斜齿轮传动能保证准确的传动比。传动过程中,具有啮合角不变及中心距可分性等特点。 2.标准参数及基本尺寸 (1)标准参数 由于斜齿轮的轮齿倾斜了角,切制斜齿轮时,刀具沿着螺旋线方向b β进刀,此时轮齿的法面参数与刀具的参数一样。因此斜齿轮的标准参数为法面参数,即法面 模数,法面压力角,法面齿顶高系数,法面顶隙系数为标准值。 n m n α*an h *n c (2)分度圆柱螺旋角及基圆柱螺旋角 与直齿圆柱齿轮一样,斜齿轮的基本尺寸是以其分度圆为基准圆来计算的。斜齿轮分度圆柱上的螺旋线的切线与其轴线所夹之锐角称为分度圆柱螺旋角(简称螺旋角)用表示。与间的关系如图10-29所示,可得: ββb β (10-21) tan tan cos b t ββα= (a ) (b ) 图10-29 斜齿轮的螺旋角 图10-30 斜齿轮的端面压力角与法面压力角 式中,,,其中L 为螺旋线的导程,对同一个斜齿轮而言,任一圆 tan d L πβ=tan b b d L πβ=柱面上螺旋线的导程应相同。 斜齿轮的螺旋角是重要的基本参数之一,由于斜齿轮的轮齿倾斜了角,使斜齿轮ββ传动时产生轴向力,越大,轴向力越大。 β(3)法面参数和端面参数 从斜齿轮的端面来看,斜齿轮形状与直齿轮相同,因此可按端面参数用直齿轮的计算公式进行斜齿轮基本尺寸的计算。而法面参数为标准值,故需建立法面参数与端面参数之间的关系。 1)模数 如图10-29(b )所示,、分别为斜齿轮法面和端面的齿距。它们之间的n p t p 关系为 cos n i p p β=由于,因此就求得 n n p m π=t t p m π= (10-22) cos n t m m β=

教案平面机构的自由度

平面机构的自由度 【教学目的】 1、掌握运动链成为机构的条件。 2、熟练掌握机构自由度的计算方法。能自如地运用自由度计算公式计算机构自由度,尤其是平面机构的自由度。 【教学内容】 1、引出自由度的概念,明确自由度和约束的关系; 2、推导自由度计算公式,并加以举例说明; 3、学会利用公式计算平面机构的自由度。 【教学重点和难点】 1、机构自由度的计算 【教学方法】 1、课堂以讲授为主,结合实物文件进行分析讲解。 2、注重师生交流,提倡师生互动,上课时细心观察学生的反应,课间与学生交谈,了解学生的掌握情况,根据反馈的信息,适当地调整授课内容和方法等。【教学内容】 1、概念:平面机构的自由度——机构具有确定运动的独立运动参数称为机构的 自由度。 2、自由度的引入 构件的独立运动称为自由度。一个作平面运动的自由构件具有3个独立的运动,见图1。 图1 平面自由度 即沿x轴、y轴移动及绕垂直于xoy面的轴线的转动。 构件组成运动副后,其运动就受到了约束,其自由度数随之减少,不同类型的运动副带来的约束不同。 如图2移动副中,限制了2相对1沿垂直于导路的移动及相对限制转动,引入两个约束。 如图3中转动副限制了2相限制1沿x轴y轴移动,引入两个约束。

如图4高副中,限制了2相对1沿法线轴的移动,引入一个约束。 图4 高副及表示符号 3 自由度公式的推导 如设平面机构共有n 个活动构件(不包括机架),当此机构的各构件尚未通过运动副联接时,显然它们共有3n 个自由度。 当两构件构成运动副之后,它们的运动就将受到约束,其自由度将减少,假设各构件间共构成了L p 个低副和H p 个高副,自由度减少的数目等于运动副引入的约束(H L p p +2)。于是,该机构的自由度应为 ()H L H L p p n p p n F --=+-=2323 (1) 4 自由度的计算 图5 平面四连杆机构 图6 平面五连杆机构 (1)三个活动构件,四个低副,零个高副。 104233=-?-?=F (2)四个活动构件,五个低副,零个高副 342502F =??= 总结: 平面机构自由度的计算是教学中的重点和难点,计算自由度时需要找准活动构件的个数,注意低副和高副的约束,然后进行计算。

变位齿轮设计

齿轮机构及其设计 > 变位齿轮 变位齿轮的意义 (1)避免根切现象.切削z

(2)刀具的分度线(中线)与被加工齿轮分度圆相切位置远离轮坯中心一段径向距离xm(m为模数,x 为径向变位系数,简称变位系数)。这样加工出来的齿轮成为正变位齿轮。xm>0,x>0。 (3)刀具的分度线靠近轮坯中心移动一段径向距离xm,刀具分度线与轮坯分度圆相割。这样加工出来的齿轮称为负变位齿轮。xm<0,x<0。 变位齿轮的基本参数和几何尺寸 基本参数:比标准齿轮多了一个变位系数x 几何尺寸(与相同参数的标准齿轮

的尺寸比较): 正变位负变位 分度圆直 不变不变 径 基圆直径不变不变 齿顶圆直 变大变小 径 齿根圆直 变大变小 径 分度圆齿 不变不变 距 分度圆齿 变大变小 厚 分度圆齿 变小变大 槽宽 顶圆齿厚变小变大 根圆齿厚变大变小 无侧隙啮合方程 变位齿轮传动的中心距与啮合角 符合无侧隙啮合要求的变位齿轮传动的中心距a'是这样确定的:

(1)首先由无侧隙啮合方程求得啮合角α': (2)再由求得中心距a' 此中心距a'与标准中心距a之间的差值用ym表示(y称为中心距变动系 数): 则 可推导得: 可见:当x1+x2=0 时, α'=α,a'=a 当x1+x2>0 时, α'>α,a'>a 当xx1+x2<0 时, α'<α,a'0时,如果保证无侧隙安装,而且还要满足隙, 则两轮的齿顶高应各减小。称为齿顶高降低系数,其值为: 这时,齿轮的齿顶高为:

第十章 齿轮机构及其设计讲解

第十章齿轮机构及其设计 1.本章的教学目的及教学要求 了解齿轮机构的类型和应用;了解齿廓啮合基本定律及有关共轭齿廓的基本知识; 了解渐开线性质,掌握渐开线直齿圆柱齿轮的啮合特点及渐开线齿轮传动的正确啮合条件、连续传动条件等;熟记渐开线齿轮各部分的名称、基本参数及各部分几何尺寸的计算;了解渐开线齿廓的范成法切削原理及根切成因;渐开线标准齿轮的最少齿数;了解渐开线齿轮的变位修正和变位齿轮传动的概念;熟悉斜齿圆柱齿轮齿廓曲面的形成,啮合特点,并能计算标准斜齿圆柱齿轮的几何尺寸;了解直齿圆锥齿轮的传动特点及其基本尺寸的计算;对蜗杆蜗轮的传动特点有所了解。 2.本章教学内容的重点及难点 渐开线直齿圆柱齿轮外啮合传动的基本理论和几何设计计算;对于其它类型的齿轮机构,着重介绍它们的特殊点。 3.本章教学工作的组织及学时分配 本章的理论教学时数为12学时,实验2学时。 3.1第1讲(2学时) 1)教学内容 齿轮机构的类型和应用;齿轮的齿廓曲线;渐开线的形成及特性。 2)教学方法 首先介绍齿轮机构的类型和应用。这部分的内容可以利用各种类型齿轮机构的模型、CAI课件或现场教学等联系实际进行介绍,强调齿轮机构的类型虽然很多,但直齿圆柱齿轮机构是最简单,最基本,也是应用最广泛的一种。为什么齿轮机构的应用会如此广泛,而类型又如此之多呢?主要由于齿轮机构有许多独特的优点,如结构紧凑,传动平稳可靠,传递功率大,机械效率高等。最好联系当代工程成就,介绍齿轮机构所达到的新水准,这样更能激发学生对本部分内容的极大兴趣。 讲授齿轮的齿廓曲线时,应指出,齿轮传动中最重要的部位是轮齿廓线.因为一对齿轮是依靠主动轮的齿廓推动从动轮的齿廓来实现传动的。共轭齿廓就是能实现预定传动比的一对齿廓。这里可以提出一个问题,即齿轮的齿廓曲线与一对齿轮的传动比有什么关系?通过一对齿轮的运动分析,我们可以证明:互相啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线被其啮合齿廓在接触点处的公法线所分成的两段线段的长度成反比,这一规律即齿廓啮合基本定律。根据该定律,可以得出结论:要使两齿轮作定传动比传动,首先其齿廓曲线必须满足下述条件:即不论两齿廓在何位置接触,过接触点所作的齿廓公法线必须与两齿轮的连心线相交于一固定点。该结论十分重要,因为工程中使用的齿轮传动,绝大多数是定传动比传动;而且,实现定传动比的一对共轭齿廓就是根据这个结论作出来的。 根据齿廓啮合基本定理,只要给出一条齿廓曲线,就可以求出与之共轭的另一条齿廓曲线。因此,理论上讲,可以作为共轭曲线的齿廓是很多的。但在生产实践中,考虑设计、制造、安装和使用等方面的局限,对于定传动比齿轮,其齿廓曲线目前只采用渐开线、摆线、变态曲线、圆弧线和抛物线等几种。就动力传动齿轮而言,目前绝大部分的齿轮仍然采用渐开线作为齿廓曲线。这是由于渐开线齿廓具有许多独

第十章 齿轮机构及其设计

第十章齿轮机构及其设计 10-1 填空题 (1)渐开线齿廓的齿轮啮合的特点是 。 (2)影响渐开线直齿圆柱齿轮齿廓形状的参数有、、。 (3)决定单个渐开线标准直齿圆柱齿轮几何尺寸的五个基本参数是,其中参数是标准值。 (4)一对外啮合渐开线直齿圆柱齿轮机构的正确啮合条件是和分别相等。(5)渐开线斜齿圆柱齿轮的标准参数在面上,在几何尺寸计算时应按面参数代入直齿轮的几何计算公式。 (6)用标准齿条型刀具加工标准齿轮时,其刀具的线与轮坯圆相切并作纯滚动。 (7)斜齿圆柱齿轮的螺旋角对传动的主要影响有、、、 ,其常用的取值范围为。 (8)用标准齿条型刀具加工n=20°,h*an=1,=20°的标准斜齿轮时,其不根切的最少齿数是。(9)一对渐开线直齿圆柱齿轮(=20°,h*a=1)啮合时,当安装的实际中心距a′大于标准中心距a时,啮合角′是变大还是变小;重合度是增大还是减小;传动比i又是如何变化的。(10)一对正常齿制的渐开线标准直齿圆柱外啮合齿轮传动,其模数m=4mm,当两轮以标准中心距安装时,其顶隙为 mm,理论上侧隙为 mm;当中心距增大时,其顶隙变为 mm,侧隙于零。 10-2 选择题 (1)渐开线直齿圆柱齿轮传动的可分性是指不受中心距变化的影响。 A.节圆半径; B.传动比; C.啮合角。 (2)模数m=2mm, 压力角=20°,齿数z=20,齿顶圆直径d a=,齿根圆直径d f=正常齿制的渐开线直齿圆柱齿轮是齿轮。 A.标准; B. 变位; C. A、B皆不是。 (5)齿轮经过正变位修正后,其分度圆与标准齿轮的分度圆相比,是。 A.相同; B.减小; C.增大。 (6)等移距(高度)变位齿轮传动的中心距和啮合角必分别标准中心距和标准压力角。

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 结论:构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接触的) 移动副 高副(点或线接触) 约束数为2 约束数为1

例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 H P -=L 2P -3n F =3×2 -2×2-1 =1 图 凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F (F >0或F≥1)。 若 原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度 (b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动

平面机构自由度的计算

平面机构自由度的计算 1、单个自由构件的自由度为 3 如所示,作平面运动的刚体在空间的位置需要三个独立的参 数(x ,y, θ)才能唯一确定。 2、构成运动副构件的自由度 图2—19运动副自由度 运动副 自由度数 约束数 回转副 1(θ) + 2(x ,y ) =3 移动副 1(x ) + 2(y ,θ) =3 高 副 2(x,θ) + 1(y ) =3 构件自由度=3-约束数 3、平面机构的自由度 1)机构的自由度:机构中活动构件相对于机架所具有的独立运动的数目。 2).机构自由度计算公式 H P -=L 2P -3n F 式中: n-------活动构件数目(不包含机架) L P -----低副数目(回转副、移动副) H P ------高副数目(点或线接 触的) 例题1: 计算曲柄滑块机构的自由度。 解:活动构件数n=3 低副数 PL=4 高副数 PH=0 H P -=L 2P -3n F 图 曲柄滑块机构 =3×3 - 2×4 =1 例题2:计算五杆铰链机构的自由度。 解:活动构件数n=4 低副数 PL=5 高副数 PH=0 H P -=L 2P -3n F 图 五杆铰链机构 =3×4 - 2×4 =2 例题3: 计算凸轮机构的自由度 解:活动构件数n=2 低副数 PL=2 高副数 PH=1 =3×2 -2×2-1 =1 图 运动 副 低副(面接触) 移动副 高副(点或线接触) 约束数为2 约束数为1

凸轮机构 4.机构具有确定运动的条件 原动件的数目=机构的自由度数F(F>0或F≥1)。 若原动件数<自由度数,机构无确定运动; 原动件数>自由度数,机构在薄弱处损坏。 (a)两个自由度(b)一个自由度 (c)0个自由度 图3-11 不同自由度机构的运动 5.计算机构自由度时应注意的事项 1)复合铰链:两个以上个构件在同一条轴线上形成的转动副。 由m个构件组成的复合铰链,共有(m-1)个转动副。 2)局部自由度:在某些机构中,不影响其他构件运动的自由度称为局部自由度局部自由度处理:将滚子看成与从动杆焊死为一体。 注意:在去除滚子的 同时,回转副也应同 时去除,这就相当于 使机构的自由度数减 少了一个,即消除了 局部自由度。 3)虚约束:重复而不起独立限制作用的约束称为虚约束 计算机构的自由度时,虚约束应除去不计。 几种常见虚约束可以归纳为三类: 第一类虚约束:两构件之间形成多个运动副,它们可以是移动副(图2-17)或转动副(图2-18),这类虚约束的几何条件比较明显,计算自由度的处理也较简单,两个构件之间只按形成一个运动副计算即可。 图3-14 导路重合的虚约束图3-15 轴线重合的虚约束第二类虚约束:机构中两构件上某两点的距离始终保持不变。如用一个附加杆件把这两点铰接,即形成虚约束。这两个点可以是某动点对某固定点的关系(如2-15中的E、F),也可以是两个动点之间的关系。这类虚约束常见于平行四边形机构,计算自由度时应撤去附加杆及其回转副。 第三类虚约束:机构中对运动不起作用的对称部分可产生虚约束(图2-19)。这类虚约束常见于多个行星齿轮的周转轮系,计算自由度时应只保留一个行星轮而撤去所有多余的行星轮及其有关运动副。 最后必须说明,虚约束是人们在工程实际中为改善机构或构件受力状况,在一定条件下所采取的

齿轮机构及其设计练习题

第十章齿轮机构及其设计 一、填空题 1.一对渐开线齿廓啮合传动时,它们的接触点在____________线上,它的理论啮合线长度为____________。 2.渐开线齿廓上任一点的压力角是指___________,渐开线齿廓上任一点的法线与_________相切。 3.齿轮分度圆是指______________的圆,节圆是指___________的圆。 4.当采用_______________法切制渐开线齿轮齿廓时,可能会产生跟切。 5.一对渐开线斜齿圆柱齿轮的正确啮合条件是___________,___________,________________。 6.一个锥顶角δ=25°,z=16的直齿圆锥齿轮,它的当量齿数z v =____________(写出公式和结果)。7.一对渐开线直齿圆柱齿轮的重叠系数ε与齿轮的有关,而与齿轮的__________无关。 8.一对渐开线直齿圆锥齿轮的正确啮合条件是、。 9.釆用法切制渐开线齿廓时发生根切的原因是。 10.渐开线齿廓能保证以定传动比传动,其传动比不仅与半径成反比,也与其半径成反比,还与其半径成反比。 11.一对渐开线齿轮正确啮合的条件是相等,亦即两齿轮的 和分别相等。 12.一对蜗杆蜗轮正确啮合条件是。 13.一对斜齿圆柱齿轮传动的重合度由、两部分组成。 14.渐开线上各处的压力角等。 15.生产上对齿轮传动的基本要求是。 16.渐开线上任一点的法线与基圆,渐开线上各点的曲率半径是的。 17.按标准中心距安装的渐开线直齿圆柱标准齿轮,节圆与重合,啮合角在数值上等于上的压力角。 18.渐开线斜齿圆柱齿轮的标准参数在面上;在尺寸计算时应按面参数代入直齿轮的计算公式。19.基本参数相同的正变位齿轮与标准齿轮比较,其分度圆齿厚,齿槽宽,齿顶高,齿根高。20.决定单个渐开线标准直齿圆柱齿轮几何尺寸的五个基本参数是,其中参数是标准值。 21.用极坐标表示的渐开线方程式为:和。 22.渐开线齿轮上基圆的压力角是,分度圆压力角是或。 23.一斜齿轮法面模数m n =3mm,分度圆螺旋角β=15度,其端面模数m t =。 24.在设计直齿圆柱齿轮机构时,首先考虑的传动类型是,其次是,在不得已的情况下如,只能选择。 25.用同一把刀具加工m,z,α均相同的标准齿轮和变位齿轮,它们的分度圆,基圆和齿距均。26.渐开线齿廓上任一点的曲率半径等于;渐开线齿廓在基圆上的曲率半径等于。 27.一对共轭齿廓,在公法线上的相对速度等于,而相对速度应在。 28.一对渐开线标准直齿轮非正确安装时,节圆与分度圆大小,分度圆的大小取决于,而节圆的大小取决于。 29.一对斜齿圆柱齿轮传动的重合度由,两部分组成;斜齿轮的当量齿轮是指的直齿轮。 30.用标准齿条刀具加工标准齿轮,其刀具的线与轮坯圆之间做纯滚动;加工变位齿轮时,其刀具的线与轮坯的圆之间做纯滚动。 31.蜗杆的标准模数和标准压力角在面,蜗轮的标准模数和标准压力角在面。 二、选择题 1.渐开线直齿圆柱齿轮传动的可分性是指不受中心距变化的影响。 A.节圆半径;B.传动比;C.啮合角 2.模数m=2mm,压力角α=20度,齿数z=20,齿顶圆直径d a=42.3mm,齿根圆直径d f=35.0mm的渐

第五章 齿轮机构及其设计

第五章 齿轮机构及其设计 20.在图中,已知基圆半径r b =50 mm ,现需求: 1)当r K =65 mm 时,渐开线的展角θK 、渐开线的压力角αK 和曲率半径ρK 。 2)当θK =5。时,渐开线的压力角αK 及向径r K 的值。 解:(1)cos /50/650.7692k b k r r α===, 0'3943k α=, 000.1375257.37.8799k θ=?=, 0'tan 50tan394341.54k b k p r mm α=== (2)∵ 05k k inv θα== ∴0'1650k α=, 0'5052.247cos cos1650 b k k r r α=== 25.已知一对渐开线标准外啮合圆柱齿轮传动的模数m=5 mm ,压力角α=20。,中心距a=350 mm ,传动比i 12=9/5,试求两轮的齿数、分度圆直径、齿顶圆直径、基圆直径以及分度圆上的齿厚和齿槽宽。 解:因为1193505m a z z z ??=+= ??? ,所以有,150z =,290z =, 分度圆直径:11550250d mz ==?=,22590450d mz ==?= 齿顶圆直径:()112260a d m z ha *=+=,() 222460a d m z ha *=+= 基圆直径:11cos 234.92b d mz α==,22cos 422.86b d mz α== 齿厚:1031.4162m s ππ= ==,齿槽宽:515.7082m e ππ=== 27.设有一对外啮合齿轮的z 1=30,z 2=40,m=20 mm ,α=20。,ha*=1。试求当a ’=725 mm

平面机构自由度计算例题及答案

1. 2. 3. 4. 5. 6.

1.构件数n为7,低副p为9,高副pn为1,局部自由度为1,虚约束为0. E处为局部自由度,C处为复合铰链. F=3n-2p-pn=3*7-2*9-1=2(与原动件数目一致,运动确定) 2. B处有复合铰链,有2个转动副。 无局部自由度。 B点左侧所有构件和运动副带入的约束为虚约束,属于与运动无关的对称部分。n=5, PL=7, PH=0, F= 3n-2PL -PH=3×5-2×7-1×0=1。 运动链有确定运动,因为原动件数= 自由度数。 3.A处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。B处为局部自由度,假设将滚子同构件CB固结。 无虚约束。 n=6, PL=8, PH=1, F= 3n-2PL -PH=3×6-2×8-1=1。 运动链有确定运动,因为原动件数= 自由度数。 4. 没有复合铰链、局部自由度、虚约束。 n=4, PL=5, PH=1, F= 3n-2PL -PH=3×4-2×5-1=1。 运动链有确定运动,因为原动件数= 自由度数。 5. 计算自由度:n=4, P L=6, P H=0, F= 3n-2P L -P H=3×4-2×6-1×0=0,运动链不能动。修改参考方案如图所示。 6. F处为复合铰链,因为有3个构件在此处组成成转动副,所以应算2个转动副。 B处为局部自由度,假设将滚子同构件CB固结。 移动副M、N中有一个为虚约束,属于两构件在多处组成运动副。 n=7, PL=9, PH=1, F= 3n-2PL -PH=3×7-2×9-1=2。 运动链没有确定运动,因为原动件数< 自由度数。

齿轮机构及其设计(全部习题参考答案)

第5章 齿轮机构及其设计 已知一对外啮合正常齿标准直齿圆柱齿轮123, 1941m mm z ===,z ,试计算这对齿轮的分度圆直径、齿顶高、齿根高、顶隙、中心距、齿顶圆直径、齿根圆直径,基圆直径、齿距、齿厚和齿槽宽。 解: ()1212121219357,413123133,1.253 3.753.7530.75,0.55712390572363, 12323129572 3.7549.5,1232 3.75115.557cos2053.563,123cos20a f a a f f b b d mm d mm h mm h mm c mm a mm d mm d mm d mm d mm d mm d =?==?==?==?====?+==+?==+?==?==?==??==??=---115.58339.425mm p ==mm π 已知一正常齿标准直齿圆柱齿轮20,540m mm z α=?==,,试分别求出分度圆、基圆、齿顶圆上渐开线齿廓的曲率半径和压力角。 解:分度圆上:0.554010020sin 100sin 2034.20r mm r mm αρα=??====?=o 基圆上: 100cos2093.9700 b b b r r cos mm ααρ=?=??==? = 齿顶圆上:1 1005105cos (/ )26.5 sin 105sin26.546.85a a b a a a a r mm r r r mm αρα-=+=====?=o 在某项技术革新中,需要采用一对齿轮传动,其中心距144a mm =,传动比2i =。现在库房中存有四种现成的齿轮,已知它们都是国产的正常齿渐开线标准齿轮,压力角都是20°,这四种齿轮的齿数z 和齿顶圆直径a d 分别为: 1a12a23a34a424,=104mm;47,196mm; 48,250mm; 48,200mm. z d z d z d z d ======= 试分析能否从这四种齿轮中选出符合要求的一对齿轮来。 解:根据传动比要求,显然齿轮2不合适。又

平面机构自由度计算 (1)

百度文库- 让每个人平等地提升自我! 1 平面机构虚约束的分析 机构是由若干构件组成的,是实现机械预期运动的装置,这些“预期运动”都是在原动 件的驱动下实现的,而其原动件的数目必须等于它的自由度。由此可见,准确计算机构的自由度对于正确分析和设计机构至关重要。在各种实际机构中,为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,往往要多增加一些构件与运动副(1)这些运动副中往往包括虚约束。 在计算平面机构自由度时,最常用的公式是契贝舍夫公式,简称契氏公式(2): W=3n-2P L-P H 现计算下图所示机构的自由度: 可知,n=4, P L=6, P H=0,所以W=3*4-2*6=0 显然答案是错误的,原动件个数是1。这是因为该机构中出现了虚约束。所谓虚约束,笔者认为就是指不产生约束的约束,也即是所引入的构件由于几何尺寸满足一定的规律,不会对所在机构产生约束。 在机构自由度计算中.产生虚约束的情况有4种情况(3): (1)如果将机构的某个运动副拆开,机构被拆开的两部分在原联接点的运动轨迹仍相互重合,则产生虚约束。 (2)在机构运动过程中,如果某两构件上两点之间的距离始终保持不变.那么,若将此两点以构件相连,则因此而引入的约束必为虚约束。 (3)如果两构件在几处接触而构成移动副,且各接触处两构件的相对运动方向一致;或者两构件在几处配合而构成转动副,且各配合处的轴线重合,则只应考患一处运动副引入的约束,其他各处为虚约束。 (4)机构中对运动不起作用的对称部分亦是虚约束。 笔者认为,在分析机构是否含有虚约束时,最好的方法是先分析该构件的功能,特别是“可疑”构件的作用,然后试着去掉该构件,看该机构还能否实现所期待的功能,因为引入虚约束的目的是为了改善构件的受力情况,增加机构的刚度,或保证机构运动的顺利,且不影响机构的运动规律。例如以上机构的虚约束的作用是约束下面的导杆在水平方向运动,如果去掉E,,该机构的运动规律并没有发生改变,就可以断定E,是虚约束。 在机械设计中,虚约束往往是“点睛之笔”,它能够使机械变得更加科学、实用。学会分析虚约束的最终目的是在自己设计机械机构的时候能够“因地适宜”、灵活地运用虚约束。能否熟练实用虚约束是判断机械设计者是否合格的重要标准。—————————————————————————————————————— 参考文献 (1)徐锦康.机械原理[M].北京:机械工业出版社 (2)李学荣.四连杆机构综合概论(第一册)[M].北京:机械工业出版 社。1985. (3)孙桓,陈作模机械原理(第5版)[MJ北京:高等教育出 版社,1996. 电气工程及自动学院 胡佳男

相关文档
最新文档