2015年高考数学导数真题与答案
2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。
2015年(陕西版)高考数学分项汇编专题03导数(含解析)理

专题03 导数一.基础题组1. 【2006高考陕西版理第题】n→∞lim 12n(n 2+1-n 2-1) 等于( ) A. 1 B. 12 C.14 D.0【答案】考点:求极限.2. 【2007高考陕西版理第13题】=⎪⎭⎫ ⎝⎛---++→11212lim 21x x x x x .【答案】13考点:求极限.3. 【2008高考陕西版理第13题】(1)1lim 2n a n n a∞++=+→,则a = .【答案】1考点:求极限.4. 【2014高考陕西版理第3题】定积分1(2)x x e dx +⎰的值为( ).2A e + .1B e + .C e .1D e -【答案】C 【解析】 试题分析:1212120(2)()|(1)(0)x x x e dx x e e e e +=+=+-+=⎰,故选C .考点:定积分. 二.能力题组1. 【2007高考陕西版理第11题】f(x)是定义在(0,+∞)上的非负可导函数,且满足x ()f x '+f(x)≤0,对任意正数a 、b ,若a <b ,则必有 A.af(b) ≤bf(a) B.bf(a)≤af(b)C.af(a) ≤f(b) D.bf(b) ≤f(a)【答案】A考点:导数的概念.2. 【2007高考陕西版理第20题】设函数f (x )=,22aax x c ++其中a 为实数.(Ⅰ)04a <<;(Ⅱ) 当02a <<时,()f x 的单调减区间为(02)a -,;当24a <<时,()f x 的单调减区间为(20)a -,.【答案】(Ⅰ)若f (x )的定义域为R ,求a 的取值范围; (Ⅱ)当f (x )的定义域为R 时,求f (x )的单减区间.当24a <<时,()f x 的单调减区间为(20)a -,. 考点:导数的应用.3. 【2009高考陕西版理第16题】设曲线1n y x +=*()n ∈N 在点(1,1)处的切线与x 轴的交点的横坐标为n x ,令lg n n a x =,则1299a a a +++的值为 .4. 【2009高考陕西版理第20题】已知函数1()ln(1)1xf x ax x-=+++,0x ≥,其中0a >. (Ⅰ)若()f x 在1x =处取得极值,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)若()f x 的最小值为1,求a 的取值范围.5. 【2011高考陕西版理第11题】设20lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .【答案】1 【解析】 试题分析:考点:分段函数、定积分.6. 【2012高考陕西版理第7题】设函数()2ln f x x x=+,则( ) A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点C .2x =为()f x 的极大值点D .2x =为 ()f x 的极小值点【答案】D考点:导数的应用.7. 【2014高考陕西版理第10题】.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降, 已知下降飞行轨迹为某三次函数图像的一部分,则函数的解析式为( )(A )3131255y x x =- (B )3241255y x x =-(C )33125y x x =- (D )3311255y x x =-+【答案】A考点:函数的解析式.三.拔高题组1. 【2006高考陕西版理第22题】已知函数f(x)=x 3-x 2+x2 + 14 , 且存在x 0∈(0,12 ) ,使f(x 0)=x 0.(I )证明:f(x)是R 上的单调增函数;设x 1=0, x n+1=f(x n ); y 1=12, y n+1=f(y n ), 其中 n=1,2,……(II )证明:x n <x n+1<x 0<y n+1<y n ; (III )证明:y n+1-x n+1y n -x n < 12.【答案】(I )详见解析;(II )详见解析; (III )详见解析 .(2)假设当n =k (k ≥1)时有x k <x k +1<x 0<y k +1<y k .考点:导数的应用.2. 【2008高考陕西版理第21题】已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-. (Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围.【答案】(Ⅰ)1x =;(Ⅱ)(2)[2)-∞-+∞,,.(ii )当2k <-时,()f x 在()c -∞-,和(1)+∞,内是增函数,在(1)c -,内是减函数.考点:导数的应用,拔高题.3. 【2010高考陕西版理第21题】已知函数f (x ),g (x )=a ln x ,a ∈R .(1)若曲线y =f (x )与曲线y =g (x )相交,且在交点处有共同的切线,求a 的值和该切线方程;(2)设函数h (x )=f (x )-g (x ),当h (x )存在最小值时,求其最小值φ(a )的解析式; (3)对(2)中的φ(a )和任意的a >0,b >0,证明:φ′()()2()()2a b a b abx a bϕϕϕ+'+'≤≤'+. 【答案】(Ⅰ)a=2e ,()212y e x e e-=- ;(Ⅱ)()h x 的最小值 ()a ϕ的解析式为 ()2(1ln 2)(0).a a a a ϕ=->(Ⅲ)详见解析.当x >4a 2时,h ′(x )>0,h (x )在(4a 2,+∞)上递增.考点:导数的应用,拔高题.4. 【2011高考陕西版理第21题】设函数()f x 定义在(0,)+∞上,(1)0f =,导函数1()f x x'=,()()()g x f x f x '=+.(1)求()g x 的单调区间和最小值; (2)讨论()g x 与1()g x的大小关系; (3)是否存在00x >,使得01|()()|g x g x x-<对任意0x >成立?若存在,求出0x 的取值范围;若不存在,请说明理由.【答案】(1)(0,1) 是()g x 的单调减区间, (1,)+∞ 是()g x 的单调增区间,最小值为(1)1g =;(2)当01x <<时 , 1()()g x g x > 当1x > 时, 1()()g x g x<; (3)满足条件的0x 不存在,证明详见解析.【解析】试题分析:(Ⅰ)由题设易知()ln f x x = ,1()ln g x x x =+21()x g x x-'∴=,令()0g x '= 得1x =,当01|()()|g x g x x-<对任意0x > 成立。
2015年高考数学真题导数(文科)及答案

导数1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 【考点定位】平均变化率.【名师点晴】本题主要考查的是平均变化率,属于中档题.解题时一定要抓住重要字眼“每100千米”和“平均”,否则很容易出现错误.解此类应用题时一定要万分小心,除了提取必要的信息外,还要运用所学的数学知识进行分析和解决问题.4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心.5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.6.【2015高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)xxy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞,,. 2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减. 因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【考点定位】本题主要考查了函数的定义域、利用导数求函数的单调性,以及求函数的极值等基础知识.【名师点睛】本题在利用导数求函数的单调性时要注意,求导后的分子是一个二次项系数为负数的一元二次式,在求0)(>'x f 和0)(<'x f 时要注意,本题主要考查考生对基本概念的掌握情况和基本运算能力.8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(I )单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=.由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题. 【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数()f x 的单调性与极值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③求方程()0f x '=的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得210x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点. 综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:①基本初等函数的单调性;②导数法.判断函数零点的个数的方法:①解方程法;②图象法.11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.12.【2015高考山东,文20】设函数()()ln f x x a x =+,2()ex x g x =. 已知曲线()y f x =在点(1(1))f ,处的切线与直线20x y -=平行.(I ) 求a 的值;(II ) 是否存在自然数k ,使得方程()()f x g x =在(1)k k +,内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(III ) 设函数()min{()()}m x f x g x =,(min{}p q ,表示p q ,中的较小值),求()m x 的 最大值.【答案】(I )1a = ;(II) 1k = ;(III)24e . 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =, 又'()ln 1,a f x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根. 设2()()()(1)ln ,x x h x f x g x x x e=-=+- 当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e =-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),x x x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减; 可知24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e . 【考点定位】1.导数的几何意义;2.应用导数研究函数的单调性、最值;3.函数零点存在性定理.【名师点睛】本题考查了导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等,解答本题的主要困难是(II )(III)两小题,首先是通过构造函数,利用函数零点存在性定理,作出判断,并进一步证明函数在给定区间的单调性,明确方程()()f x g x =在(,1)k k +内存在唯一的根.其次是根据(II )的结论,确定得到()m x 的表达式,并进一步利用分类讨论思想,应用导数研究函数的单调性、最值.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等基础知识的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力及分类讨论思想.本题是教辅材料的常见题型,有利于优生正常发挥.13.【2015高考四川,文21】已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0.(Ⅰ)设g (x )为f (x )的导函数,讨论g (x )的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【解析】(Ⅰ)由已知,函数f (x )的定义域为(0,+∞) g (x )=f '(x )=2(x -1-lnx -a )所以g '(x )=2-22(1)x x x-=当x ∈(0,1)时,g '(x )<0,g (x )单调递减当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增(Ⅱ)由f '(x )=2(x -1-lnx -a )=0,解得a =x -1-lnx令Φ(x )=-2xlnx +x 2-2x (x -1-lnx )+(x -1-lnx )2=(1+lnx )2-2xlnx则Φ(1)=1>0,Φ(e )=2(2-e )<0于是存在x 0∈(1,e ),使得Φ(x 0)=0令a 0=x 0-1-lnx 0=u (x 0),其中u (x )=x -1-lnx (x ≥1)由u '(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增 故0=u (1)<a 0=u (x 0)<u (e )=e -2<1即a 0∈(0,1)当a =a 0时,有f '(x 0)=0,f (x 0)=Φ(x 0)=0再由(Ⅰ)知,f '(x )在区间(1,+∞)上单调递增当x ∈(1,x 0)时,f '(x )<0,从而f (x )>f (x 0)=0当x ∈(x 0,+∞)时,f '(x )>0,从而f (x )>f (x 0)=0又当x ∈(0,1]时,f (x )=(x -a 0)2-2xlnx >0故x ∈(0,+∞)时,f (x )≥0综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师点睛】本题第(Ⅰ)问隐藏二阶导数知识点,由于连续两次求导后,参数a 消失,故函数的单调性是确定的,讨论也相对简单.第(Ⅱ)问需要证明的是:对于某个a ∈(0,1),f (x )的最小值恰好是0,而且在(1,+∞)上只有一个最小值.因此,本题仍然要先讨论f (x )的单调性,进一步说明对于找到的a ,f (x )在(1,+∞)上有且只有一个等于0的点,也就是在(1,+∞)上有且只有一个最小值点.属于难题.14.【2015高考新课标1,文21】(本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a +,即证明了所证不等式.试题解析:(I )()f x 的定义域为,()2()=20x a f x e x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【名师点睛】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.15.【2015高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈. (1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--【解析】(1)将函数进行配方,利用对称轴与给定区间的位置关系,通过分类讨论确定函数在给定上的最小值,并用分段函数的形式进行表示;(2)设定函数的零点,根据条件表示两个零点之间的不等关系,通过分类讨论,分别确定参数b 的取值情况,利用并集原理得到参数b 的取值范围.试题解析:(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++. 当22a -<≤时,()()12ag a f =-=. 当2a >时,2()(1)24a g a f a =-=-+. 综上,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设,s t 为方程()0f x =的解,且11t -≤≤,则s t a st b +=-⎧⎨=⎩. 由于021b a ≤-≤,因此212(11)22t t s t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.【考点定位】1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.【名师点睛】本题主要考查函数的单调性与最值,函数零点问题.利用函数的单调性以及二次函数的对称轴与给定区间的位置关系,利用分类讨论思想确定在各种情况下函数的最小值情况,最后用分段函数的形式进行表示;利用函数与方程思想,确定零点与系数之间的关系,利用其范围,通过分类讨论确定参数b 的取值范围.本题属于中等题,主要考查学生应用函数性质解决有关函数应用的能力,考查学生对数形结合数学、分类讨论思想以及函数与方程思想的应用能力,考查学生基本的运算能力.。
2015届高考数学(理)二轮专题配套练习:专题2_第3讲_导数及其应用(含答案)

①ʃkf(x)dx=kʃf(x)dx;
②ʃ[f1(x)±f2(x)]dx=ʃf1(x)dx±ʃf2(x)dx;
③ʃf中a<c<b).
(2)微积分基本定理:
一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃf(x)dx=F(b)-F(a).
思维启迪(1)先根据导数的几何意义求出切线的斜率,写出点斜式方程,再化为一般式方程.(2)A点坐标是解题的关键点,列方程求出.
思维升华(1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.
A.2B.4C.2 D.4
思维启迪(1)利用微积分基本定理先求出a,再求分段函数的函数值;(2)利用图形将所求面积化为定积分.
思维升华(1)直接使用微积分基本定理求定积分时,要根据求导运算与求原函数运算互为逆运算的关系,运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出原函数.
(2)利用定积分求所围成的阴影部分的面积时,要利用数形结合的方法确定出被积函数和积分的上限与下限.同时,有的定积分不易直接求出,需要借用其几何意义求出.
(2)求导函数f′(x);
(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0.
②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.
2015年湖南省高考数学试题及答案(理科)【解析版】

2015年湖南省高考数学试卷〔理科〕参考答案与试题解析一、选择题,共10小题,每题5分,共50分1.〔5分〕〔2015•湖南〕已知=1+i〔i为虚数单位〕,则复数z=〔〕A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,求得z的值.解答:解:∵已知=1+i〔i为虚数单位〕,∴z===﹣1﹣i,故选:D.点评:此题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.〔5分〕〔2015•湖南〕设A、B是两个集合,则“A∩B=A”是“A⊆B”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答:解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.点评:此题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.〔5分〕〔2015•湖南〕执行如下列图的程序框图,如果输入n=3,则输出的S=〔〕A.B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B点评:此题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.〔5分〕〔2015•湖南〕假设变量x、y满足约束条件,则z=3x﹣y的最小值为〔〕A.﹣7 B.﹣1 C.1D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C〔0,﹣1〕.由解得A〔﹣2,1〕,由,解得B〔1,1〕∴z=3x﹣y的最小值为3×〔﹣2〕﹣1=﹣7.故选:A.点评:此题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.〔5分〕〔2015•湖南〕设函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,则f〔x〕是〔〕A.奇函数,且在〔0,1〕上是增函数B.奇函数,且在〔0,1〕上是减函数C.偶函数,且在〔0,1〕上是增函数D.偶函数,且在〔0,1〕上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答:解:函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,函数的定义域为〔﹣1,1〕,函数f〔﹣x〕=ln〔1﹣x〕﹣ln〔1+x〕=﹣[ln〔1+x〕﹣ln〔1﹣x〕]=﹣f〔x〕,所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f〔0〕=0;x=时,f〔〕=ln〔1+〕﹣ln〔1﹣〕=ln3>1,显然f〔0〕<f〔〕,函数是增函数,所以B错误,A正确.故选:A.点评:此题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.〔5分〕〔2015•湖南〕已知〔﹣〕5的展开式中含x的项的系数为30,则a=〔〕A.B.﹣C.6D.﹣6考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.点评:此题考查二项式定理的应用,此题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.〔5分〕〔2015•湖南〕在如下列图的正方形中随机投掷10000个点,则落入阴影部分〔曲线C为正态分布N〔0,1〕的密度曲线〕的点的个数的估计值为〔〕附“假设X﹣N=〔μ,a2〕,则P〔μ﹣σ<X≤μ+σ〕=0.6826.p〔μ﹣2σ<X≤μ+2σ〕=0.9544.A.2386 B.2718 C.3413 D.4772考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:求出P〔0<X≤1〕=×0.6826=0.3413,即可得出结论.解答:解:由题意P〔0<X≤1〕=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.点评:此题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.〔5分〕〔2015•湖南〕已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,假设点P的坐标为〔2,0〕,则||的最大值为〔〕A.6B.7C.8D.9考点:圆的切线方程.专题:计算题;直线与圆.分析:由题意,AC为直径,所以||=|2+|=|4+|.B为〔﹣1,0〕时,|4+|≤7,即可得出结论.解答:解:由题意,AC为直径,所以||=|2+|=|4+|.所以B为〔﹣1,0〕时,|4+|≤7.所以||的最大值为7.故选:B.点评:此题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.〔5分〕〔2015•湖南〕将函数f〔x〕=sin2x的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的x1、x2,有|x1﹣x2|min=,则φ=〔〕A.B.C.D.考点:函数y=Asin〔ωx+φ〕的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f〔x〕=sin2x的周期为π,函数的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g〔x〕在x2=,取得最小值,sin〔2×﹣2φ〕=﹣1,此时φ=,不合题意,x1=,x2=,即g〔x〕在x2=,取得最大值,sin〔2×﹣2φ〕=1,此时φ=,满足题意.故选:D.点评:此题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.〔5分〕〔2015•湖南〕某工件的三视图如下列图.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为〔材料利用率=〕〔〕A.B.C.D.考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=〔1﹣〕,0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解答:解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=〔1﹣〕,0<x<2,∴长方体的体积Ω=2〔1﹣〕2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断〔0,〕单调递增,〔,2〕单调递减,Ω最大值=2〔1﹣〕2×=,∴原工件材料的利用率为=×=,故选:A点评:此题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每题5分,共25分11.〔5分〕〔2015•湖南〕〔x﹣1〕dx=0.考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:〔x﹣1〕dx=〔﹣x〕|=0;故答案为:0.点评:此题考查了定积分的计算;关键是求出被积函数的原函数.12.〔5分〕〔2015•湖南〕在一次马拉松比赛中,35名运发动的成绩〔单位:分钟〕的茎叶图如下列图.假设将运发动成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运发动人数是4.考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运发动人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运发动应抽取7×=4〔人〕.故答案为:4.点评:此题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.〔5分〕〔2015•湖南〕设F是双曲线C:﹣=1的一个焦点.假设C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F〔c,0〕,P〔m,n〕,〔m<0〕,设PF的中点为M〔0,b〕,即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F〔c,0〕,P〔m,n〕,〔m<0〕,设PF的中点为M〔0,b〕,即有m=﹣c,n=2b,将点〔﹣c,2b〕代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:此题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.〔5分〕〔2015•湖南〕设S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答:解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4〔1+q〕=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.点评:此题考查等差数列以及等比数列的应用,基本知识的考查.15.〔5分〕〔2015•湖南〕已知函数f〔x〕=假设存在实数b,使函数g〔x〕=f 〔x〕﹣b有两个零点,则a的取值范围是{a|a<0或a>1}.考点:函数的零点.专题:计算题;创新题型;函数的性质及应用.分析:由g〔x〕=f〔x〕﹣b有两个零点可得f〔x〕=b有两个零点,即y=f〔x〕与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围解答:解:∵g〔x〕=f〔x〕﹣b有两个零点,∴f〔x〕=b有两个零点,即y=f〔x〕与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f〔x〕的图象如下列图,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f〔x〕在定义域R上单调递增,故不符合题意③当0<a<1时,函数f〔x〕单调递增,故不符合题意④a=0时,f〔x〕单调递增,故不符合题意⑤当a<0时,函数y=f〔x〕的图象如下列图,此时存在b使得,y=f〔x〕与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}点评:此题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.〔6分〕〔2015•湖南〕如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:〔1〕∠MEN+∠NOM=180°〔2〕FE•FN=FM•FO.考点:相似三角形的判定.专题:选作题;推理和证明.分析:〔1〕证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°〔2〕证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:〔1〕∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°〔2〕在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:此题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.〔6分〕〔2015•湖南〕已知直线l:〔t为参数〕.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.〔1〕将曲线C的极坐标方程化为直坐标方程;〔2〕设点M的直角坐标为〔5,〕,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:〔1〕曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;〔2〕直线l的方程化为普通方程,利用切割线定理可得结论.解答:解:〔1〕∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为〔x﹣1〕2+y2=1;〔2〕直线l:〔t为参数〕,普通方程为,〔5,〕在直线l上,过点M作圆的切线,切点为T,则|MT|2=〔5﹣1〕2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.点评:此题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.〔2015•湖南〕设a>0,b>0,且a+b=+.证明:〔ⅰ〕a+b≥2;〔ⅱ〕a2+a<2与b2+b<2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:〔ⅰ〕由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;〔ⅱ〕运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:〔ⅰ〕由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;〔ⅱ〕假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:此题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.〔2015•湖南〕设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.〔Ⅰ〕证明:B﹣A=;〔Ⅱ〕求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:〔Ⅰ〕由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;〔Ⅱ〕由题意可得A∈〔0,〕,可得0<sinA<,化简可得sinA+sinC=﹣2〔sinA﹣〕2+,由二次函数区间的最值可得.解答:解:〔Ⅰ〕由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin〔+A〕又B为钝角,∴+A∈〔,π〕,∴B=+A,∴B﹣A=;〔Ⅱ〕由〔Ⅰ〕知C=π﹣〔A+B〕=π﹣〔A++A〕=﹣2A>0,∴A∈〔0,〕,∴sinA+sinC=sinA+sin〔﹣2A〕=sinA+cos2A=sinA+1﹣2sin2A=﹣2〔sinA﹣〕2+,∵A∈〔0,〕,∴0<sinA<,∴由二次函数可知<﹣2〔sinA﹣〕2+≤∴sinA+sinC的取值范围为〔,]点评:此题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.〔2015•湖南〕某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,则获一等奖,假设只有1个红球,则获二等奖;假设没有红球,则不获奖.〔1〕求顾客抽奖1次能获奖的概率;〔2〕假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:〔1〕记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.〔2〕顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.解答:解:〔1〕记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P〔A1〕=,P〔A2〕=,所以,P〔B1〕=P〔A1〕P〔A2〕==,P〔B2〕=P〔〕+P〔〕=+==,故所求概率为:P〔C〕=P〔B1+B2〕=P〔B1〕+P〔B2〕=.〔2〕顾客抽奖1次可视为3次独立重复试验,由〔1〕可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P〔X=0〕==,P〔X=1〕==,P〔X=2〕==,P〔X=3〕==.故X的分布列为:X 0 1 2 3PE〔X〕=3×=.点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.〔2015•湖南〕如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.〔1〕假设P是DD1的中点,证明:AB1⊥PQ;〔2〕假设PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:〔1〕首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q〔6,y1,0〕,只需求即可;〔2〕设P〔0,y2,z2〕,根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P〔0,y2,12﹣2y2〕.由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q〔6,y2,0〕,设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如下列图空间直角坐标系,则:A〔0,0,0〕,B〔6,0,0〕,D〔0,6,0〕,A1〔0,0,6〕,B1〔3,0,6〕,D1〔0,3,6〕;Q在棱BC上,设Q〔6,y1,0〕,0≤y1≤6;∴〔1〕证明:假设P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;〔2〕设P〔0,y2,z2〕,y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴〔0,y2﹣6,z2〕=λ〔0,﹣3,6〕;∴;∴z2=12﹣2y2;∴P〔0,y2,12﹣2y2〕;∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6〔y1﹣y2〕=0;∴y1=y2;∴Q〔6,y2,0〕;设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8〔舍去〕;∴P〔0,4,4〕;∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.〔13分〕〔2015•湖南〕已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1〔a>b>0〕的一个焦点.C1与C2的公共弦长为2.〔Ⅰ〕求C2的方程;〔Ⅱ〕过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.〔ⅰ〕假设|AC|=|BD|,求直线l的斜率;〔ⅱ〕设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题.分析:〔Ⅰ〕根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;〔Ⅱ〕设出点的坐标,〔ⅰ〕根据向量的关系,得到〔x1+x2〕2﹣4x1x2=〔x3+x4〕2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;〔ⅱ〕根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.解答:解:〔Ⅰ〕抛物线C1:x2=4y的焦点F的坐标为〔0,1〕,因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为〔±,〕,所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.〔Ⅱ〕设A〔x1,y1〕,B〔x2,y2〕,C〔x3,y3〕,A〔x4,y4〕,〔ⅰ〕因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是〔x1+x2〕2﹣4x1x2=〔x3+x4〕2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得〔9+8k2〕x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16〔k2+1〕=+,即16〔k2+1〕=,所以〔9+8k2〕2=16×9,解得k=±.〔ⅱ〕由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1〔x﹣x1〕,即y=x1x﹣x12,令y=0,得x=x1,M〔x1,0〕,所以=〔x1,﹣1〕,而=〔x1,y1﹣1〕,于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.点评:此题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.〔13分〕〔2015•湖南〕已知a>0,函数f〔x〕=e ax sinx〔x∈[0,+∞]〕.记x n为f〔x〕的从小到大的第n〔n∈N*〕个极值点.证明:〔Ⅰ〕数列{f〔x n〕}是等比数列;〔Ⅱ〕假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:〔Ⅰ〕求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;〔Ⅱ〕由sinφ=,可得对一切n∈N*,x n<|f〔x n〕|恒成立.即为nπ﹣φ<e a〔nπ﹣φ〕恒成立⇔<,①设g〔t〕=〔t>0〕,求出导数,求得最小值,由恒成立思想即可得证.解答:证明:〔Ⅰ〕f′〔x〕=e ax〔asinx+cosx〕=•e ax sin〔x+φ〕,tanφ=,0<φ<,令f′〔x〕=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,假设〔2k+1〕π<x+φ<〔2k+2〕π,即〔2k+1〕π﹣φ<x<〔2k+2〕π﹣φ,则f′〔x〕<0,因此在〔〔m﹣1〕π,mπ﹣φ〕和〔mπ﹣φ,mπ〕上f′〔x〕符号总相反.于是当x=nπ﹣φ,n∈N*,f〔x〕取得极值,所以x n=nπ﹣φ,n∈N*,此时f〔x n〕=e a〔nπ﹣φ〕sin〔nπ﹣φ〕=〔﹣1〕n+1e a〔nπ﹣φ〕sinφ,易知f〔x n〕≠0,而==﹣e aπ是常数,故数列{f〔x n〕}是首项为f〔x1〕=e a〔π﹣φ〕sinφ,公比为﹣e aπ的等比数列;〔Ⅱ〕由sinφ=,可得对一切n∈N*,x n<|f〔x n〕|恒成立.即为nπ﹣φ<e a〔nπ﹣φ〕恒成立⇔<,①设g〔t〕=〔t>0〕,g′〔t〕=,当0<t<1时,g′〔t〕<0,g〔t〕递减,当t>1时,g′〔t〕>0,g〔t〕递增.t=1时,g〔t〕取得最小值,且为e.因此要使①恒成立,只需<g〔1〕=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g〔ax n〕>g〔1〕=e=,故①亦恒成立.综上可得,假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.点评:此题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.2015年湖南省高考数学试卷〔理科〕一、选择题,共10小题,每题5分,共50分1.〔5分〕〔2015•湖南〕已知=1+i〔i为虚数单位〕,则复数z=〔〕A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.〔5分〕〔2015•湖南〕设A、B是两个集合,则“A∩B=A”是“A⊆B”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.〔5分〕〔2015•湖南〕执行如下列图的程序框图,如果输入n=3,则输出的S=〔〕A.B.C.D.4.〔5分〕〔2015•湖南〕假设变量x、y满足约束条件,则z=3x﹣y的最小值为〔〕A.﹣7 B.﹣1 C.1D.25.〔5分〕〔2015•湖南〕设函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,则f〔x〕是〔〕A.奇函数,且在〔0,1〕上是增函数 B.奇函数,且在〔0,1〕上是减函数C.偶函数,且在〔0,1〕上是增函数 D.偶函数,且在〔0,1〕上是减函数6.〔5分〕〔2015•湖南〕已知〔﹣〕5的展开式中含x的项的系数为30,则a=〔〕A.B.﹣C.6D.﹣67.〔5分〕〔2015•湖南〕在如下列图的正方形中随机投掷10000个点,则落入阴影部分〔曲线C为正态分布N〔0,1〕的密度曲线〕的点的个数的估计值为〔〕附“假设X﹣N=〔μ,a2〕,则P〔μ﹣σ<X≤μ+σ〕=0.6826.p〔μ﹣2σ<X≤μ+2σ〕=0.9544.A.2386 B.2718 C.3413 D.47728.〔5分〕〔2015•湖南〕已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,假设点P的坐标为〔2,0〕,则||的最大值为〔〕A.6B.7C.8D.99.〔5分〕〔2015•湖南〕将函数f〔x〕=sin2x的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的x1、x2,有|x1﹣x2|min=,则φ=〔〕A.B.C.D.10.〔5分〕〔2015•湖南〕某工件的三视图如下列图.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为〔材料利用率=〕〔〕A.B.C.D.二、填空题,共5小题,每题5分,共25分11.〔5分〕〔2015•湖南〕〔x﹣1〕dx=.12.〔5分〕〔2015•湖南〕在一次马拉松比赛中,35名运发动的成绩〔单位:分钟〕的茎叶图如下列图.假设将运发动成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运发动人数是.13.〔5分〕〔2015•湖南〕设F是双曲线C:﹣=1的一个焦点.假设C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.〔5分〕〔2015•湖南〕设S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,则a n=.15.〔5分〕〔2015•湖南〕已知函数f〔x〕=假设存在实数b,使函数g〔x〕=f 〔x〕﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.〔6分〕〔2015•湖南〕如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:〔1〕∠MEN+∠NOM=180°〔2〕FE•FN=FM•FO.选修4-4:坐标系与方程17.〔6分〕〔2015•湖南〕已知直线l:〔t为参数〕.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.〔1〕将曲线C的极坐标方程化为直坐标方程;〔2〕设点M的直角坐标为〔5,〕,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.〔2015•湖南〕设a>0,b>0,且a+b=+.证明:〔ⅰ〕a+b≥2;〔ⅱ〕a2+a<2与b2+b<2不可能同时成立.19.〔2015•湖南〕设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.〔Ⅰ〕证明:B﹣A=;〔Ⅱ〕求sinA+sinC的取值范围.20.〔2015•湖南〕某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,则获一等奖,假设只有1个红球,则获二等奖;假设没有红球,则不获奖.〔1〕求顾客抽奖1次能获奖的概率;〔2〕假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.〔2015•湖南〕如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.〔1〕假设P是DD1的中点,证明:AB1⊥PQ;〔2〕假设PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.〔13分〕〔2015•湖南〕已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1〔a>b>0〕的一个焦点.C1与C2的公共弦长为2.〔Ⅰ〕求C2的方程;〔Ⅱ〕过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.〔ⅰ〕假设|AC|=|BD|,求直线l的斜率;〔ⅱ〕设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.〔13分〕〔2015•湖南〕已知a>0,函数f〔x〕=e ax sinx〔x∈[0,+∞]〕.记x n为f〔x〕的从小到大的第n〔n∈N*〕个极值点.证明:〔Ⅰ〕数列{f〔x n〕}是等比数列;〔Ⅱ〕假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.。
2015年高考理数—导数(选择+填空+答案)

2015年高考理数—导数
1、(2015福建理数10)若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是 A.11f k k ⎛⎫< ⎪⎝⎭ B.111
f k k ⎛⎫> ⎪-⎝⎭ C.1111f k k ⎛⎫< ⎪--⎝⎭ D. 111
k f k k ⎛⎫> ⎪--⎝⎭ 2、(2015陕西理数12)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给
出下列结论,其中有且仅有一个结论是错误的,则错误的结论是
A .-1是()f x 的零点
B .1是()f x 的极值点
C .3是()f x 的极值 D.点(2,8)在曲线()y f x =上
3、(2015上海理数18)设(),n n n x y P 是直线21n x y n -=
+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1
n n n y x →∞-=-( ) A .1- B .12
-
C .1
D .2 4、(2015陕西理数15)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x
=>上点 p 处 的切线垂直,则p 的坐标为 5、(2015天津理数11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 .
参考答案:
1、C
2、A
3、 A
4、(1,1)
5、
16。
2015年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2} 2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.23.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.845.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.126.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.108.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1B.0C.1D.2【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】首先将坐标展开,然后利用复数相等解之.【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.【点评】本题考查了复数的运算以及复数相等的条件,熟记运算法则以及复数相等的条件是关键.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【考点】88:等比数列的通项公式.【专题】11:计算题;54:等差数列与等比数列.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B.【点评】本题主要考查了等比数列通项公式的应用,属于基础试题.5.(5分)设函数f(x)=,则f(﹣2)+f(log212)=()A.3B.6C.9D.12【考点】3T:函数的值.【专题】11:计算题;51:函数的性质及应用.【分析】先求f(﹣2)=1+log2(2+2)=1+2=3,再由对数恒等式,求得f(log212)=6,进而得到所求和.【解答】解:函数f(x)=,即有f(﹣2)=1+log2(2+2)=1+2=3,f(log212)==2×=12×=6,则有f(﹣2)+f(log212)=3+6=9.故选:C.【点评】本题考查分段函数的求值,主要考查对数的运算性质,属于基础题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)过三点A(1,3),B(4,2),C(1,﹣7)的圆交y轴于M,N两点,则|MN|=()A.2B.8C.4D.10【考点】IR:两点间的距离公式.【专题】11:计算题;5B:直线与圆.【分析】设圆的方程为x2+y2+Dx+Ey+F=0,代入点的坐标,求出D,E,F,令x=0,即可得出结论.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,∴D=﹣2,E=4,F=﹣20,∴x2+y2﹣2x+4y﹣20=0,令x=0,可得y2+4y﹣20=0,∴y=﹣2±2,∴|MN|=4.故选:C.【点评】本题考查圆的方程,考查学生的计算能力,确定圆的方程是关键.8.(5分)程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选:B.【点评】本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.9.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.10.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x 的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.11.(5分)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2C.D.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,运用任意角的三角函数的定义求得M的坐标是解题的关键.12.(5分)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x >0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】2:创新题型;51:函数的性质及应用;53:导数的综合应用.【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)设向量,不平行,向量λ+与+2平行,则实数λ=.【考点】96:平行向量(共线).【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用向量平行的条件直接求解.【解答】解:∵向量,不平行,向量λ+与+2平行,∴λ+=t(+2)=,∴,解得实数λ=.故答案为:.【点评】本题考查实数值的解法,考查平面向量平行的条件及应用,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z 最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.15.(5分)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a= 3.【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】给展开式中的x分别赋值1,﹣1,可得两个等式,两式相减,再除以2得到答案.【解答】解:设f(x)=(a+x)(1+x)4=a0+a1x+a2x2+…+a5x5,令x=1,则a0+a1+a2+…+a5=f(1)=16(a+1),①令x=﹣1,则a0﹣a1+a2﹣…﹣a5=f(﹣1)=0.②①﹣②得,2(a1+a3+a5)=16(a+1),所以2×32=16(a+1),所以a=3.故答案为:3.【点评】本题考查解决展开式的系数和问题时,一般先设出展开式,再用赋值法代入特殊值,相加或相减.16.(5分)设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【考点】8H:数列递推式.【专题】54:等差数列与等比数列.﹣S n=a n+1可知S n+1﹣S n=S n+1S n,两边同时除以S n+1S n可知﹣【分析】通过S n+1=1,进而可知数列{}是以首项、公差均为﹣1的等差数列,计算即得结论.=S n+1S n,【解答】解:∵a n+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.【点评】本题考查数列的通项,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.三、解答题(共5小题,满分60分)17.(12分)△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC 面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【考点】HP:正弦定理;HT:三角形中的几何计算.【专题】58:解三角形.【分析】(1)如图,过A作AE⊥BC于E,由已知及面积公式可得BD=2DC,由AD平分∠BAC及正弦定理可得sin∠B=,sin∠C=,从而得解.(2)由(1)可求BD=.过D作DM⊥AB于M,作DN⊥AC于N,由AD平分∠BAC,可求AB=2AC,令AC=x,则AB=2x,利用余弦定理即可解得BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理等知识的应用,属于基本知识的考查.18.(12分)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”,假设两地区用户的评价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.【考点】BA:茎叶图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(1)根据茎叶图的画法,以及有关茎叶图的知识,比较即可;(2)根据概率的互斥和对立,以及概率的运算公式,计算即可.【解答】解:(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散;(2)记C A1表示事件“A地区用户满意度等级为满意或非常满意”,记C A2表示事件“A地区用户满意度等级为非常满意”,记C B1表示事件“B地区用户满意度等级为不满意”,记C B2表示事件“B地区用户满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,则C=C A1C B1∪C A2C B2,P(C)=P(C A1C B1)+P(C A2C B2)=P(C A1)P(C B1)+P(C A2)P(C B2),由所给的数据C A1,C A2,C B1,C B2,发生的频率为,,,,所以P(C A1)=,P(C A2)=,P(C B1)=,P(C B2)=,所以P(C)=×+×=0.48.【点评】本题考查了茎叶图,概率的互斥与对立,用频率来估计概率,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】5G:空间角;5H:空间向量及应用.【分析】(1)容易知道所围成正方形的边长为10,再结合长方体各边的长度,即可找出正方形的位置,从而画出这个正方形;(2)分别以直线DA,DC,DD1为x,y,z轴,建立空间直角坐标系,考虑用空间向量解决本问,能够确定A,H,E,F几点的坐标.设平面EFGH的法向量为,根据即可求出法向量,坐标可以求出,可设直线AF与平面EFGH所成角为θ,由sinθ=即可求得直线AF 与平面α所成角的正弦值.【解答】解:(1)交线围成的正方形EFGH如图:(2)作EM⊥AB,垂足为M,则:EH=EF=BC=10,EM=AA1=8;∴,∴AH=10;以边DA,DC,DD1所在直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8);∴;设为平面EFGH的法向量,则:,取z=3,则;若设直线AF和平面EFGH所成的角为θ,则:sinθ==;∴直线AF与平面α所成角的正弦值为.【点评】考查直角三角形边的关系,通过建立空间直角坐标系,利用空间向量解决线面角问题的方法,弄清直线和平面所成角与直线的方向向量和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.20.(12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【考点】I3:直线的斜率;KH:直线与圆锥曲线的综合.【专题】2:创新题型;5E:圆锥曲线中的最值与范围问题.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.【点评】本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.21.(12分)设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】2:创新题型;52:导数的概念及应用.【分析】(1)利用f′(x)≥0说明函数为增函数,利用f′(x)≤0说明函数为减函数.注意参数m的讨论;(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,则恒成立问题转化为最大值和最小值问题.从而求得m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]【点评】本题主要考查导数在求单调函数中的应用和恒成立在求参数中的应用.属于难题,高考压轴题.四、选做题.选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC ﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2c osθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.选修4-5:不等式选讲24.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年全国各地高考数学试题及解答分类大全(导数及其应用)(2..

2015年全国各地高考数学试题及解答分类大全(导数及其应用)一、选择题:1.(2015安徽文)函数32f x ax bx cx d的图像如图所示,则下列结论成立的是()(A)a>0,b<0,c>0,d>0 (B)a>0,b<0,c<0,d>0(C)a<0,b<0,c<0,d>0 (D)a>0,b>0,c>0,d<02.(2015福建理)若定义在R上的函数f x满足01f,其导函数f x满足1f x k,则下列结论中一定错误的是()A.11fk kB.111fk kC.1111fk kD.111kfk k【答案】C考点:函数与导数.3.(2015福建文)“对任意(0,)2x,sin cos k x x x ”是“1k ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】 B考点:导数的应用.4.(2015全国新课标Ⅰ卷理)设函数()f x =(21)x e x ax a ,其中a 1,若存在唯一的整数x 0,使得0()f x 0,则a 的取值范围是()A.[-,1) B. [-,) C. [,)D. [,1)【答案】D 【解析】试题分析:设()g x =(21)x e x ,yax a ,由题知存在唯一的整数0x ,使得0()g x 在直线yaxa 的下方.因为()(21)xg x e x ,所以当12x时,()g x <0,当12x 时,()g x >0,所以当12x时,max [()]g x =12-2e ,当0x时,(0)g =-1,(1)30g e,直线y axa 恒过(1,0)斜率且a ,故(0)1ag ,且1(1)3g ea a ,解得32e≤a <1,故选D.考点:导数的综合应用5.(2015全国新课标Ⅱ卷理)设函数'()f x 是奇函数()()f x xR 的导函数,(1)0f ,当0x 时,'()()0xf x f x ,则使得()0f x 成立的x 的取值范围是()A .(,1)(0,1)B .(1,0)(1,)C .(,1)(1,0)D .(0,1)(1,)【答案】A 【解析】试题分析:记函数()()f xg x x,则''2()()()xf x f x g x x,因为当0x 时,'()()0xf x f x ,故当0x时,'()0g x ,所以()g x 在(0,)单调递减;又因为函数()()f x x R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)单调递减,且(1)(1)0g g .当01x 时,()0g x ,则()0f x ;当1x 时,()0g x ,则()0f x ,综上所述,使得()0f x 成立的x 的取值范围是(,1)(0,1),故选A .考点:导数的应用、函数的图象与性质.6.(2015陕西理)对二次函数2()f x axbx c (a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()A .-1是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()yf x 上【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值.二、填空题:1.(2015安徽理)设30x ax b,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①3,3a b ;②3,2ab;③3,2ab;④0,2ab;⑤1,2ab.与最值;函数零点问题考查时,要经常性使用零点存在性定理.2. (2015湖南理)20(1)x dx.【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.3、(2015全国新课标Ⅰ卷文)已知函数31f x axx 的图像在点1,1f 的处的切线过点2,7,则a .4. (2015全国新课标Ⅱ卷文)已知曲线ln y xx 在点1,1处的切线与曲线221y axa x 相切,则a= .【答案】8 【解析】试题分析:由11y x可得曲线ln y xx 在点1,1处的切线斜率为2,故切线方程为21y x ,与221y axa x 联立得220axax ,显然0a ,所以由2808aa a .考点:导数的几何意义.5、(2015陕西文)函数xy xe 在其极值点处的切线方程为____________.【答案】1ye考点:导数的几何意义.6.(2015陕西理)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.【答案】1.2【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是11010222162,设抛物线的方程为22xpy (0p ),因为该抛物线过点5,2,所以2225p ,解得254p ,所以2252x y ,即2225y x ,所以当前最大流量是5323535522224022255255257575753xdxxx,故原始的最大流量与当前最大流量的比值是16 1.2403,所以答案应填: 1.2.考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.7.(2015陕西理)设曲线xy e 在点(0,1)处的切线与曲线1(0)yx x上点p 处的切线垂直,则p的坐标为.【答案】1,1【解析】试题分析:因为xy e ,所以xye ,所以曲线xye 在点0,1处的切线的斜率011x k ye,设的坐标为00,x y (00x ),则01y x ,因为1yx,所以21yx,所以曲线1yx在点处的切线的斜率0221x x k yx,因为121k k ,所以2011x,即201x ,解得01x ,因为00x ,所以01x ,所以01y ,即的坐标是1,1,所以答案应填:1,1.考点:1、导数的几何意义;2、两条直线的位置关系.8、(2015四川文)已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x ,n =1212()()g x g x x x ,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n .其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为 f '(x)=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g'(x)=2x -8,当x 1,x 2<4时n <0,②错误对于③,令 f '(x)=g'(x),即2x ln2=2x +a 记h(x)=2x ln2-2x ,则h'(x)=2x (ln2)2-2【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题. 9. (2015天津文)已知函数ln ,0,f x ax x x,其中a 为实数,f x 为f x 的导函数,若13f ,则a 的值为.【答案】3 【解析】试题分析:因为1ln f xa x ,所以13f a .考点:导数的运算法则.10.(2015天津理)曲线2y x与直线y x 所围成的封闭图形的面积为.【答案】16【解析】试题分析:两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积11223111236Sx xdxxx.考点:定积分几何意义.三、解答题:1.(2015安徽文)已知函数)0,0()()(2ra r xax x f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性;(Ⅱ)若400ra ,求)(x f 在),0(内的极值.2.(2015安徽理)设函数2()f x xax b .(Ⅰ)讨论函数(sin )f x 在(,)22内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x xa xb ,求函数0(sin )(sin )f x f x 在[]22,上的最大值D ;(Ⅲ)在(Ⅱ)中,取0a b ,求24azb满足D 1时的最大值.3.(2015北京文)设函数2ln 2xf xk x ,0k .(Ⅰ)求f x 的单调区间和极值;(Ⅱ)证明:若f x 存在零点,则f x 在区间1,e 上仅有一个零点.【答案】(1)单调递减区间是(0,)k ,单调递增区间是(,)k ;极小值(1ln )()2k k f k ;(2)证明详见解析.所以,()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k ;()f x 在x k 处取得极小值(1ln )()2k k f k .(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)上的最小值为(1ln )()2k k f k .因为()f x 存在零点,所以(1ln )02k k ,从而ke .当k e 时,()f x 在区间(1,)e 上单调递减,且()0f e ,所以x e 是()f x 在区间(1,]e 上的唯一零点.当ke 时,()f x 在区间(0,)e 上单调递减,且1(1)02f ,()02e kf e ,所以()f x 在区间(1,]e 上仅有一个零点. 综上可知,若()f x 存在零点,则()f x 在区间(1,]e 上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.4.(2015北京理)已知函数1ln1xf x x.(Ⅰ)求曲线y f x 在点00f ,处的切线方程;(Ⅱ)求证:当01x,时,323xf xx;(Ⅲ)设实数k 使得33xf x k x对01x,恒成立,求k 的最大值.【答案】(Ⅰ)20x y ,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为 2. 试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011xf x x f x f f xx,曲线yf x 在点00f ,处的切线方程为20xy;(Ⅱ)当01x ,时,323xf xx,即不等式3()2()03x f x x,对(0,1)x 成立,设331()ln2()ln(1)ln(1)2()133xxxF x xx x xx,则422()1xF x x,当01x ,时,()0F x ,故()F x 在(0,1)上为增函数,则()(0)0F x F ,因此对(0,1)x ,3()2()3xf x x成立;(Ⅲ)使33xf x k x成立,01x ,,等价于31()ln()013xx F x k xx,01x,;422222()(1)11kxkF x k x xx ,当[0,2]k 时,()0F x ,函数在(0,1)上位增函数,()(0)0F x F ,符合题意;当2k时,令42()0,(0,1)k F x x k,x 0(0,)x 0x 0(,1)x ()F x -+()F x 极小值()(0)F x F ,显然不成立,综上所述可知:k 的最大值为 2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.5.(2015福建文)已知函数2(1)()ln 2x f x x.(Ⅰ)求函数f x 的单调递增区间;(Ⅱ)证明:当1x 时,1f xx ;(Ⅲ)确定实数k 的所有可能取值,使得存在1x ,当0(1,)xx 时,恒有1f xk x .【答案】(Ⅰ)150,2;(Ⅱ)详见解析;(Ⅲ),1.【解析】(Ⅰ)求导函数21xx f xx,解不等式'()0f x 并与定义域求交集,得函数f x 的单调递增区间;(Ⅱ)构造函数F 1x f x x ,1,x .欲证明1f x x ,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k 时,不存在01x 满足题意;当1k时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意;当1k 时,构造函数G1x f x k x ,0,x,利用导数研究函数()G x 的形状,只要存在1x ,当0(1,)xx 时()0G x 即可.试题解析:(I )2111xx f xx xx ,0,x.由0f x 得2010x xx 解得1502x.故f x的单调递增区间是150,2.(II )令F 1x f xx ,0,x .则有21F x xx.当1,x 时,F 0x,所以F x 在1,上单调递减,故当1x 时,F F 10x,即当1x 时,1f x x .(III )由(II )知,当1k时,不存在01x 满足题意.当1k 时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意.当1k时,令G 1xf x k x ,0,x,则有2111G 1xk x xx kxx.由G0x 得,2110xk x .解得2111402kk x ,2211412k k x .当21,xx 时,G 0x ,故G x 在21,x 内单调递增.从而当21,xx 时,G G 10x,即1f xk x ,综上,k 的取值范围是,1.考点:导数的综合应用.6.(2015福建理)已知函数f()ln(1)x x ,(),(k ),g x kx R(Ⅰ)证明:当0x x x 时,f();(Ⅱ)证明:当1k 时,存在00x ,使得对0(0),xx 任意,恒有f()()x g x ;(Ⅲ)确定k 的所以可能取值,使得存在0t ,对任意的(0),x,t 恒有2|f()()|x g x x .【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)=1k .【解析】试题分析:(Ⅰ)构造函数()f()ln(1),(0,),F x x x x x x只需求值域的右端点并和0比较即可;(Ⅱ)构造函数G()f()()ln(1),(0,),x x g x x kx x即()0G x ,求导得1()1+G x kx(1k)1+kx x,利用导数研究函数()G x 的形状和最值,证明当1k时,存在00x ,使得()0G x 即可;(Ⅲ)由(Ⅰ)知,当1k 时,对于(0,),x+()f()g x x x ,故()f()g x x ,则不等式2|f()()|x g x x 变形为2k ln(1)x x x ,构造函数2M()k ln(1),[0)x xx x x ,+,只需说明()0M x ,易发现函数()M x 在22(k 2)8(k 1)0)4k x (,递增,而(0)0M ,故不存在;当1k 时,由(Ⅱ)知,存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x ,此时不等式变形为2ln(1)k x xx ,构造2N()ln(1)k ,[0)x x x x x,+,易发现函数()N x 在2(+2(k +2)8(1k)0)4k x )(,递增,而(0)0N ,不满足题意;当=1k 时,代入证明即可.试题解析:解法一:(1)令()f()ln(1),(0,),F x x xx x x则有1()11+1+x F x xx当(0,),x ()0F x ,所以()F x 在(0,)上单调递减;故当0x 时,()(0)0,F x F 即当0x时,x x f().(2)令G()f()()ln(1),(0,),x x g x x kx x则有1(1k)()1+1+kx G x kx x当0kG ()0x ,所以G()x 在[0,)上单调递增, G()(0)0x G 故对任意正实数0x 均满足题意.当01k 时,令()0,x G 得11=10k x kk.取01=1x k,对任意0(0,),x x 恒有G ()0x ,所以G()x 在0[0,x )上单调递增, G()(0)0x G ,即f()()x g x .综上,当1k 时,总存在00x ,使得对任意的0(0),x x ,恒有f()()x g x .(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,故()f()g x x ,|f()()|()()k ln(1)x g x g x f x x x ,令2M()k ln(1),[0)x xx x x,+,则有21-2+(k-2)1M ()k2=,11x x k x x xx故当22(k 2)8(k 1)0)4k x (,时,M ()0x ,M()x 在22(k 2)8(k 1)[0)4k,上单调递增,故M()M(0)0x ,即2|f()()|x g x x ,所以满足题意的t 不存在.当1k 时,由(2)知存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x .此时|f()()|f()()ln(1)k x g x x g x x x ,令2N()ln(1)k ,[0)x x x x x ,+,则有2'1-2-(k+2)1()2=,11x x k N x k x xx故当2(+2(k +2)8(1k)0)4k x )(,时,N ()0x ,M()x 在2(2)(k 2)8(1k)[0)4k ,上单调递增,故N()(0)0x N ,即2f()()x g x x ,记0x 与2(2)(k 2)8(1k)4k 中较小的为1x ,则当21(0)|f()()|xx x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2H()ln(1),[0)x x x x x,+,则有21-2H ()12=,11xxx x xx当0x 时,H ()0x ,所以H()x 在[0+,)上单调递减,故H()(0)0x H ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意.综上,=1k .解法二:(1)(2)同解法一.(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,,故|f()()|()()k ln(1)k (k 1)x g x g x f x x x xxx ,令2(k 1),01x x xk 解得,从而得到当1k 时,(0,1)xk 对于恒有2|f()()|x g x x ,所以满足题意的t 不存在.当1k时,取11k+1=12k kk ,从而由(2)知存在00x ,使得0(0),xx 任意,恒有1f()()x k xkx g x .此时11|f()()|f()()(k)2k x g x x g x k xx ,令21k 1k ,022x x x解得,此时2f()()x g x x ,记0x 与1-k2中较小的为1x ,则当21(0)|f()()|x x x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2M()ln(1),[0)x x x x x ,+,则有212M ()12,11xxx xxx当0x 时,M ()0x ,所以M()x 在[0+,)上单调递减,故M()M(0)0x ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意综上,=1k .考点:导数的综合应用.7.(2015广东理)设1a ,函数a ex x f x)1()(2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数目录1.【2015高考,理10】.................................................. - 2 -2.【2015高考,理12】.................................................. - 2 -3.【2015高考新课标2,理12】.......................................... - 3 -4.【2015高考新课标1,理12】.......................................... - 4 -5.【2015高考,理16】.................................................. - 5 -6.【2015高考天津,理11】.............................................. - 5 -7.【2015高考新课标2,理21】(本题满分12分).......................... - 6 -8.【2015高考,19】(本小题满分16分).................................. - 8 -9.【2015高考,理20】................................................. - 10 -10.【2015高考,17】(本小题满分14分)................................ - 13 -11.【2015高考,理21】................................................ - 14 -12.【2015高考,理21】................................................ - 17 -13.【2015高考天津,理20(本小题满分14分)........................... - 19 -14.【2015高考,理20】................................................ - 21 -15.【2015高考,理21】................................................ - 22 -16.【2015高考,理22】................................................ - 24 -17.【2015高考新课标1,理21】........................................ - 26 -18.【2015高考北京,理18】............................................ - 27 -19.【2015高考,理19】................................................ - 29 -20【2015高考,理21】................................................. - 31 -1.【2015高考,理10】若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭D . 111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】由已知条件,构造函数()()g x f x kx =-,则''()()0g x f x k =->,故函数()g x 在R 上单调递增,且101k >-,故1()(0)1g g k >-,所以1()111k f k k ->---,11()11f k k >--,所以结论中一定错误的是C ,选项D 无法判断;构造函数()()h x f x x =-,则''()()10h x f x =->,所以函数()h x 在R 上单调递增,且10k >,所以1()(0)h h k>,即11()1f k k ->-,11()1f k k >-,选项A,B 无法判断,故选C . 【考点定位】函数与导数.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.2.【2015高考,理12】对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b '=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.3.【2015高考新课标2,理12】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【答案】A 【考点定位】导数的应用、函数的图象与性质.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.4.【2015高考新课标1,理12】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e,1) 【答案】D 【解析】设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题【名师点睛】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.5.【2015高考,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是16 1.2403=,所以答案应填:1.2. 【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()ba f x dx ⎰. 6.【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . O xy【答案】16【考点定位】定积分几何意义与定积分运算.【名师点睛】本题主要考查定积分几何意义与运算能力.定积分的几何意义体现数形结合的典型示,既考查微积分的基本思想又考查了学生的作图、识图能力以及运算能力.【2015高考,理11】20(1)x dx ⎰-= .【答案】0.【解析】试题分析:0)21()1(22200=-=-⎰x x dx x . 【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.7.【2015高考新课标2,理21】(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值围.【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-.【解析】(Ⅰ)'()(1)2mx f x m e x =-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1t g t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值围是[1,1]-.【考点定位】导数的综合应用.【名师点睛】(Ⅰ)先求导函数'()(1)2mx f x m e x =-+,根据m 的围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.8.【2015高考,19】(本小题满分16分)已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减; 当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2) 1.c =当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭U 时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<, 所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而304027a ab >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩. 又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<. 设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值围恰好是 ()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U U ,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥⎪⎝⎭,因此1c =. 此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根, 所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠,解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪⎪⎝⎭⎝⎭U U . 综上1c =.【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间的符号,根据符号判定函数在每个相应区间的单调性. 已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.9.【2015高考,理20】已知函数f()ln(1)x x =+,(),(k ),g x kx R =?(Ⅰ)证明:当0x x x ><时,f();(Ⅱ)证明:当1k <时,存在00x >,使得对0(0),x x Î任意,恒有f()()x g x >;(Ⅲ)确定k 的所以可能取值,使得存在0t >,对任意的(0),x Î,t 恒有2|f()()|x g x x -<.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ) =1k .【解析】解法一:(1)令()f()ln(1),(0,),F x x x x x x =-=+-??则有1()11+1+x F x x x¢=-=- 当(0,),x ?? ()0F x ¢<,所以()F x 在(0,)+?上单调递减;故当0x >时,()(0)0,F x F <=即当0x >时,x x f()<.(2)令G()f()()ln(1),(0,),x x g x x kx x =-=+-??则有1(1k)()1+1+kx G x k x x -+-¢=-= 当0k £ G ()0x ¢>,所以G()x 在[0,)+?上单调递增, G()(0)0x G >=(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x ,>>故()f()g x x >, |f()()|()()k ln(1)x g x g x f x x x -=-=-+,令2M()k ln(1),[0)x x x x x =-+-违,+,则有21-2+(k-2)1M ()k 2=,11x x k x x x x +-¢=--++故当0x Î(时,M ()0x ¢>,M()x 在[0上单调递增,故M()M(0)0x >=,即2|f()()|x g x x ->,所以满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意的0(0),x x ,Î恒有f()()x g x >. 此时|f()()|f()()ln(1)k x g x x g x x x -=-=+-, 令2N()ln(1)k ,[0)x x x x x =+--违,+,则有2'1-2-(k+2)1()2=,11x x k N x k x x x-+=--++故当0x Î(时,N ()0x ¢>,M()x 在[0上单调递增,故N()(0)0x N >=,即2f()()x g x x ->,记0x1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 违当+|f()()|()()ln(1)x g x g x f x x x -=-=-+,令2H()ln(1),[0)x x x x x =-+-违,+,则有21-2H ()12=,11x xx x x x-¢=--++ 当0x >时,H ()0x ¢<,所以H()x 在[0+¥,)上单调递减,故H()(0)0x H <=, 故当0x >时,恒有2|f()()|x g x x -<,此时,任意实数t 满足题意. 综上,=1k .解法二:(1)(2)同解法一.(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x >>,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x -=-=-+>-=-,令2(k 1),01x x x k -><<-解得,从而得到当1k >时,(0,1)x k ?对于恒有2|f()()|x g x x ->,所以满足题意的t 不存在. 当1k <时,取11k+1=12k k k <<,从而 由(2)知存在00x >,使得0(0),x x Î任意,恒有1f()()x k x kx g x >>=. 此时11|f()()|f()()(k)2kx g x x g x k x x --=->-=, 令21k 1k ,022x x x --><<解得,此时 2f()()x g x x ->, 记0x 与1-k 2中较小的为1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,【考点定位】导数的综合应用.【名师点睛】在解函数的综合应用问题时,我们常常借助导数,将题中千变万化的隐藏信息进行转化,探究这类问题的根本,从本质入手,进而求解,利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+ (其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t②当t 为何值时,公路l 的长度最短?求出最短长度.【答案】(1)1000,0;a b ==(2)①()f t =定义域为[5,20],②min ()t f t ==千米【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得1000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 2则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈.②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =,此时()min f t =答:当t =l 的长度最短,最短长度为千米. 【考点定位】利用导数求函数最值,导数几何意义【名师点晴】解决实际应用问题首先要弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型,然后将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;本题已直接给出模型,只需确定其待定参数即可.求解数学模型,得出数学结论,这一步骤在应用题中要求不高,难度中等偏下,本题是一个简单的利用导数求最值的问题.首先利用导数的几何意义是切点处切线的斜率,然后再利用导数求极值与最值.11.【2015高考,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若()0,0x f x ∀>≥成立,求a 的取值围.【答案】(I ):当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点;(II )a 的取值围是[]0,1.(2)当0a > 时, ()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤ ,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值; ②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增;当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点;当89a >时,函数()f x 在()1,-+∞上有两个极值点; (II )由(I )知, (1)当809a ≤≤时,函数()f x 在()0,+∞上单调递增, 因为()00f =所以,()0,x ∈+∞时,()0f x > ,符合题意; (2)当819a <≤ 时,由()00g ≥ ,得20x ≤ 所以,函数()f x 在()0,+∞上单调递增,又()00f =,所以,()0,x ∈+∞时,()0f x > ,符合题意; (3)当1a > 时,由()00g < ,可得20x > 所以()20,x x ∈ 时,函数()f x 单调递减; 又()00f =所以,当()20,x x ∈时,()0f x < 不符合题意; (4)当0a <时,设()()ln 1h x x x =-+ 因为()0,x ∈+∞时,()11011x h x x x '=-=>++当11x a>-时,()210ax a x +-< 此时,()0,f x < 不合题意. 综上所述,a 的取值围是[]0,1【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.【名师点睛】本题考查了导数在研究函数性质中的应用,着重考查了分类讨论、数形结合、转化的思想方法,意在考查学生结合所学知识分析问题、解决问题的能力,其中最后一问所构造的函数体现了学生对不同函数增长模型的深刻理解.12.【2015高考,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a z b =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.13.【2015高考天津,理20(本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥. (I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+- 【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)证明:设点P 的坐标为0(,0)x ,则110n x n-=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x '=-,即()00()()g x f x x x '=-,令()()()F x f x g x =-,即()00()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-由于1()n f x nxn -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 单调递增,在0(,)x +∞单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(III)证明:不妨设12x x ≤,由(II)知()()20()g x n n x x =--,设方程()g x a =的根为2x ',可得202.ax x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(II)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式. 【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.14.【2015高考,理20】设函数()()23xx axf x a R e+=∈ (1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在[)3,+∞上为减函数,求a 的取值围。