吸收塔的相关设计计算

吸收塔的相关设计计算
吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型

(2) 喷淋塔吸收区高度设计(二)

对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算

含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量

ζ=

h

C K V Q η

= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3

η为给定的二氧化硫吸收率,%;本设计方案为95%

h 为吸收塔内吸收区高度,m

K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t)

按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3

(标状态)

ζ的单位换算成kg/( m 2.s),可以写成

ζ=3600×

h y u t

/*273273

*4.22641η+ (7) 在喷淋塔操作温度

10050

752

C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

103mg/m 3

而原来烟气的流量(200C ?时)为标况20×103(m 3/h) (设为V a )换算成工况

25360m3/h 时

已经求得 V a =2×103 m 3/h=5.6 m 3/s

故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为 2SO m =5.6×650mg/m 3=3640mg=3.64g V 2SO =

3.6422.4 L/mol 64/g

g mol

?=1.3L/s=0.0013 m 3/s

则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=

0.0013

100%0.023%5.6

?= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ?==75,95.0η

总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )

代入(7)式可得 6=64273

(3600 3.50.000230.95)/22.427375

h ?

????+ 故吸收区高度h=6.17/6≈1.03m

(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)

吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速烟气水平布置),通常为二级除雾器。除雾器设置冲洗水,间歇冲洗冲洗除雾器。湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。

① 除雾器的选型

折流板除雾器 折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝聚并捕集的,气体通过曲折的挡板,流线多次偏转,液滴则由于惯性而撞击在挡板被捕集下来。通常,折流板除雾器中两板之间的距离为20-30mm ,对于垂直安置,气体平均流速为2-3m/s ;对于水平放置,气体流速一般为6-10m/s 。气体流速过高会引起二次夹带。

旋流板除雾器 气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内,达到除雾的目的,除雾率可达90%-99%。

喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层喷淋层(3-3.5)m ,距离最上层冲洗喷嘴(3.4-32)m 。

② 除雾器的主要设计指标

a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。冲洗覆盖率一般可以选在100 %~300 %之间。

冲洗覆盖率%=

%100*22A

tg h n α

π 式中 n 为喷嘴数量,20个;α为喷射扩散角,90

A 为除雾器有效通流面积 ,15 m 2

h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m

所以 冲洗覆盖率%=

%100*22A tg h n απ= 22200.051100%15

π???=203% b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。由于除雾器

冲洗期间会导致烟气带水量加大。所以冲洗不宜过于频繁,但也不能间隔太长,否则易产生结垢现象,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。 c.除雾效率。指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。

d.系统压力降。指烟气通过除雾器通道时所产生的压力损失 ,系统压力降越大 ,能耗就越高。除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。当除雾器叶片上结垢严重时系统压力降会明显提高 ,所以通过监测压力降的变化有助把握系统的状行状态 ,及时发现问题 ,并进行处理。

e.烟气流速。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行 ,烟气流速过高易造成烟气二次带水,从而降低除雾效率,同时流速高系统阻力大,能耗高。通过除雾器断面的流速过低,不利于气液分离,同样不利于提高除雾效率。设计烟气流速应接近于临界流速。根据不同除雾器叶片结构及布置形式,设计流速一般选定在3.5~5.5m/ s 之间。本方案的烟气设计流速为6.9m/s 。

f.除雾器叶片间距。除雾器叶片间距的选取对保证除雾效率 ,维持除雾系统稳定运行至关重要。叶片间距大 ,除雾效率低 ,烟气带水严重 ,易造成风机故障 ,导致整个系统非正常停运。叶片间距选取过小,除加大能耗外 ,冲洗的效果也有所

下降,叶片上易结垢、堵塞,最终也会造成系统停运。叶片间距一般设计在20~95mm。目前脱硫系统中最常用的除雾器叶片间距大多在30~50mm。

g.除雾器冲洗水压。除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器之间的距离等因素确定,喷嘴与除雾器之间距离一般小于1m ,冲洗水压低时,冲洗效果差,冲洗水压过高则易增加烟气带水,同时降低叶片使用寿命。

h.除雾器冲洗水量。选择除雾器冲水量除了需满足除雾器自身的要求外,还需考虑系统水平衡的要求,有些条件下需采用大水量短时间冲洗,有时则采用小水量长时间冲洗,具体冲水量需由工况条件确定,一般情况下除雾器断面上瞬时冲洗耗水量约为1-4m3/m2.h

③除雾器的最终设计参数

本设计中设定最下层冲洗喷嘴距最上层喷淋层3m。距离最上层冲洗喷嘴3.5m。

1)数量:1套×1units=套

2)类型:V型级数:2级

3)作用:除去吸收塔出口烟气中的水滴,以便减少烟囱出烟口灰尘量。

4)选材:外壳:碳钢内衬玻璃鳞片;除雾元件:阻燃聚丙烯材料(PP);冲洗管道:FRP;冲洗喷嘴:PP。

表4 除雾器进出口烟气条件基于锅炉100%BMCR工况进行设计

除雾器进口除雾器出口

烟气量-----------------------

温度℃50------------

烟气压力mmAq113(1.11kPaG)93(0.91kPaG)

雾滴含量mg/m3N(D)------------≤75

5)雾滴去除率:99.75% 为达到除雾器出口烟气雾滴含量小于75mg/Nm3(干态),除雾器的雾滴去除率需要达到99.75% 以上。

6)除雾器内烟气流速:6.9m/s

a.重散布速度

大直径的雾滴颗粒可以通过除雾器元件惯性作用产生颗粒间碰撞从而去除雾滴。(平均颗粒直径大小为100~200μm)。

因此,烟气流速越高,雾滴去除率越高。但是,被去除的雾滴会重新散布,而降低雾滴去除效率。这就是雾滴重散布速度的概念。

b.通过除雾器的烟气流速

为了使除雾器的雾滴去除率达到99.75% 以上,根据吸收塔出口端(即除雾器

入口端)雾滴颗粒直径的实际分布状况,直径大于17μm 的雾滴颗粒必须100%完全去除。

综上所述,除雾区的最终高度确定为3.5m ,即h 3=3.5m (5) 喷淋塔浆液池高度设计(设高度为h 2)

浆液池容量V 1按照液气比L/G 和浆液停留时间来确定,计算式子如下: 11N L

V V t G

=

?? 其中 L/G 为 液气比,12.2L/m 3

V N 为烟气标准状态湿态容积,V N =V g =39.40m 3/s T 1=2-6 min [8],取t 1=2.8min=168s 由上式可得喷淋塔浆液池体积

V !=(L/G) ×V N ×t !=12.20×39.40×168=80.02 m 3

选取浆液池内径等于吸收区内径,内径D 2= D i =3.8m

而V 1=0.25×3.14×D 2×D 2×h 2=0.25×3.14×3.8×3.8×h 2 所以 h 2=7.06m (6) 喷淋塔烟气进口高度设计(设高度为h 4)

根据工艺要求,进出口流速(一般为12m/s-30m/s )确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形,故高度尺寸取得较小,但宽度不宜过大,否则影响稳定性.

因此取进口烟气流速为20m/s ,而烟气流量为36.30 m 3/s ,

可得 s m s m m h /30.36/25322

4

=? 所以 h 4=1.20m

2×1.20=2.40m(包括进口烟气和净化烟气进出口烟道高度)

综上所述,喷淋塔的总高(设为H,单位m )等于喷淋塔的浆液池高度h 2 (单位

m)、喷淋塔吸收区高度h (单位m)和喷淋塔的除雾区高度h 3(单位m )相加起来的数值。此外,还要将喷淋塔烟气进口高度h 4(单位m )计算在内 因此喷淋塔最终的高度为

H= h+h 2+h 3+ h 4=18.47+7.06+3.50+2.40=31.43m 取圆整值32m 4.1.1.2 喷淋塔的直径设计

根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流

量增大。喷淋塔内径在烟气流速和平均实际总烟气量确定的情况下才能算出来,而以往的计算都只有考虑烟道气进入脱硫塔的流量,为了更加准确,本方案将浆液蒸发水分V 2 (m 3/s)和氧化风机鼓入空气氧化后剩余空气流量V 3 (m 3/s) 均计算在内,以上均表示换算成标准准状态时候的流量。

(1) 吸收塔进口烟气量V a (m 3/s)计算

该数值已经由设计任务书中给出,烟气进口量为:36.30(m 3/s)

然而,该计算数值实质上仅仅指烟气在喷淋塔进口处的体积流量,而在喷淋塔内延期温度会随着停留时间的增大而降低,根据PVT 气体状态方程,要算出瞬间数值是不可能的,因此只能算出在喷淋塔内平均温度下的烟气平均体积流量。

(2) 蒸发水分流量V 2 (m 3/s)的计算

烟气在喷淋塔内被浆液直接淋洗,温度降低,吸收液蒸发,烟气流速迅速达到饱和状态,烟气水分由6%增至13%,则增加水分的体积流量 V 2 (m 3/s)为:

V 2=0.07×36.30(m 3/s)=2.541(m 3/s)(标准状态下)

(3) 氧化空气剩余氮气量V 3 (m 3/s)

在喷淋塔内部浆液池中鼓入空气,使得亚硫酸钙氧化成硫酸钙,这部分空气对于喷淋塔内气体流速的影响是不能够忽略的,因此应该将这部分空气计算在内。 假设空气通过氧化风机进入喷淋塔后,当中的氧气完全用于氧化亚硫酸钙,即最终这部分空气仅仅剩下氮气、惰性气体组分和水汽。理论上氧化1摩尔亚硫酸钙需要0.5摩尔的氧气。(假设空气中每千克含有0.23千克的氧气 ) 又V SO2=0.15 m 3/s 质量流率G SO2=

s g /644

.221000

0.15??=0.42857kg/s ≈0.43 kg/s

根据物料守蘅,总共需要的氧气质量流量G O2=0.43×0.5kg/s=0.214Kg/s 该质量流量的氧气总共需要的空气流量为空气G = G O2/0.23=0.932 Kg/s 标准状态下的空气密度为1.293kg/ m 3 [2]

故V 空气=0.932/1.293(m 3/s)=0.72 (m 3/s)

V 3=(1-0.23) ×V 空气=0.77×0.72 m 3/s=0.56 m 3/s 综上所述,喷淋塔内实际运行条件下塔内气体流量 V g =V a +V 2+V 3=36.30+2.54+0.56(m 3/s)=39.40(m 3/s) (4) 喷淋塔直径的计算

假设喷淋塔截面为圆形,将上述的因素考虑进去以后,可以得到实际运行状态下烟气体积流量V g ,从而选取烟速u ,则塔径计算公式为: D i = 2 ×

u

V g

π

其中:V g为实际运行状态下烟气体积流量,39.40 m3/s u为烟气速度,3.5m/s

因此喷淋塔的内径为D

i = 2 ×

u

V

g

π

=2×

5.3

14

.3

40

.

39

?

=3.786m≈3.8m

4.1.2吸收塔喷淋系统的设计(喷嘴的选择配置)

在满足吸收二氧化硫所需表面积的同时,应该尽量把喷淋造成的压力损失降低到最小,喷嘴是净化装置的最关键部分,必须满足以下条件:

(1)能产生实心锥体形状,喷射区为圆形,喷射角度为60-120;

(2)喷嘴内液体流道大而畅通,具有防止堵塞的功能;

(3)采用特殊的合金材料制作,具有良好的防腐性能和耐磨性能;

(4)喷嘴体积小,安装清洗方便;

(5)喷雾液滴大小均匀,比表面积大而又不容易引起带水;

雾化喷嘴的功能是将大量的石灰石浆液转化为能够提供足够接触面积的雾化小液滴以有效脱除烟气中二氧化硫。湿法脱硫采用的喷嘴一般为离心压力雾化喷嘴,可粗略分为旋转型和离心型。常用的有空心锥切线型、实心锥切线型、双空心锥切线型、实心锥型、螺旋型等5种。

喷嘴布置分成2-6层,一般情况下为4层;层数的安排可以根据脱硫效率的具体要求来增减。底负荷时可以停止使用某一层,层间距0.8-2米,离心式喷嘴1.7米。实际上从浆液池液面到除雾器,整个高度都在进行吸收反应。因而实际吸收区高度要比h高6-8米。

本方案采用4层喷嘴,层间距为1.5米。每台吸收塔再循环泵均对应一个喷淋层,喷淋层上安装空心锥喷嘴,其作用是将石灰石/石膏浆液雾化。浆液由吸收塔再循环泵输送到喷嘴,喷入烟气中。喷淋系统能使浆液在吸收塔内均匀分布,流经每个喷淋层的流量相等。一个喷淋层由带连接支管的母管制浆液分布管道和喷嘴组成,喷淋组件及喷嘴的布置成均匀覆盖吸收塔的横截面,并达到要求的喷淋浆液覆盖率,使吸收浆液与烟气充分接触,从而保证在适当的液/气比(L/G)下可靠地实现至少95%的脱硫效率,且在吸收塔的内表面不产生结垢。喷嘴系统管道采用FRP玻璃钢,喷嘴采用SIC,是一种脆性材料,但是特别耐磨,而且抗化学腐蚀,可以长期运行而无腐蚀、无磨损、无石膏结垢以及堵塞等问题。

4.1.2.1喷嘴布置设计原理

(1) 喷管管数的确定

根据单层浆体总流量Q l和单个喷嘴流量Q s,可得单层喷嘴个数n

Q l = 480.68/4=120.17(L/s)

而单个喷嘴流量为Q s=0.75L/s

N=Q l /Q s

所以 N=120.17/0.75=160.22取整数值161个

单喷管最大流量

V D Q s max max,4

π

=

单喷淋层主喷管数

1int max,+???

?

??=s l Q Q N 式中 max D 为单喷淋管可选最大管径,0.04m ; V 为喷淋管内最大流速,6m/s 。 所以 V D Q s max max,4

π

=

=0.25×3.14×0.04×0.04×6=7.536L/S

1int max,+???

?

??=s l Q Q N =int(120.17/7.536)+1=16 (2) 各喷管间距的确定

根据脱硫塔直径、喷嘴个数等参数,各喷管之间间距:

sp

im

sp N D L =

式中 D im 为脱硫塔内径

N sp 为喷嘴间距

(3) 各支喷管直径的确定

根据布置在主管、各支管的喷嘴个数以及单喷嘴流量,可以确定主管各段、各支管喷管直径

V

Q D i

i π4=

式中Q i 为节点i 处浆体流量,m 3/s ;D i 为节点i 处喷管直径,m 。 (4) 喷淋层在塔内覆盖率的确定 喷淋层在脱硫塔内覆盖率为:

100?=

A

A EFF

α

则 100?=

A A EFF

α=

2

200.25 3.8π??=176% 式中 A EFF 为单层喷嘴在脱硫塔内的有效覆盖面积,20m 2

A 为脱硫塔面积,11.3m 2

计算主要包括喷淋层内主喷管数、各支喷管的管径及流速、喷嘴在塔内位置

等的计算及设计。根据上述设计方法、结合实际经验,确定喷淋层内各喷管直径、各个喷嘴位置等几何参数。

在确定喷嘴布置设计中,需要确定喷嘴在塔内的位置坐标在确定各支喷管直径时,要根据厂家提供的标准管径来选取。在确定各个支喷管直径后,还要根据厂家提供的喷嘴与各主、支喷管之间间距要求,对初步喷嘴位置进行调整,以避免喷出的液滴与喷管发生喷射碰撞。

在喷嘴布置完成后,需要确定喷淋层在塔内的履盖率以及多层覆盖状况,验证喷嘴布置的合理性。

4.1.2.2进行喷嘴在塔内布置设计中应该注意以下问题:

(1)选择合理的喷嘴覆盖高度,通常根据喷嘴特性及两层喷淋之间距离来确定。

(2)选择合理的单层喷嘴个数。一般来说,喷嘴个数根据工艺计算来确定。 (3)当喷嘴覆盖高度确定以后,就可以计算单个喷嘴的覆盖面积,

??

?

??=2220?πtg H A (?为喷雾角)

则??

?

??=2220?πtg H A =3.14×1×1=3.142m

(4)当在脱硫塔内布置喷嘴时,选择合适的喷嘴之间的距离。通常根据喷嘴个数和脱硫塔直径来选择喷嘴间距,并要与连接喷嘴的喷管布置方案整体考虑。 (5)选择合理的经济流速,并根据喷管产品的标准来确定石灰石浆液母管和支管直径。

(6)当检验喷淋层在脱硫塔覆盖率时,不仅要考虑喷嘴液流与母管、支管和支撑的碰撞对覆盖率的影响,还要考虑所有喷嘴在脱硫塔内覆盖均匀度。 4.1.3 吸收塔底部搅拌器及相关配置

在吸收塔底部,石灰石浆液经过脱硫过程之后,变成了CaSO 3和CaSO 3﹒1/2 H 2O ,此时为了使氧化风机鼓入的空气能够充分地和CaSO 3和CaSO 3﹒1/2 H 2O 接触,以便充分氧化,需要CaSO 3和CaSO 3﹒1/2 H 2O 的混合溶液内部颗粒分布均匀,在这种情况下,需要使用搅拌器来使溶液悬浮颗粒均匀混合,同时增大和空气接触的面积。

由于底部溶液是固体悬浮溶液,根据

不同搅拌过程的搅拌器型式推荐表2-5[1]

搅拌器型式适用条件表2-6[1] 搅拌器型式使用范围表2-7[1]

在吸收塔浆液池的下部,沿塔径向布置四台侧进式搅拌器,其作用是使浆液的固体维持在悬浮状态,同时分散氧化空气。搅拌器安装有轴承罩、主轴、搅拌叶片、机械密封。搅拌器叶片安装在吸收塔降池内,与水平线约为10度倾角、与中心线约为-7度倾角。搅拌桨型式为三叶螺旋桨,轴的密封形式为机械密封。 在吸收塔旁有人工冲洗设施,提供安装和检修所需要的吊耳、吊环及其他专用滑轮。采用低速搅拌器,有效防止浆液沉降。吸收塔搅拌器的搅拌叶片和主轴的材质为合金钢。在运行时严禁触摸传动部件及拆下保护罩。向吸收塔加注浆液时,搅拌器必须不停地运行。

叶片和叶轮的材料等级是ANSI/ASTMA176—80a ,搅拌器轴为固定结构,转速适当控制,不超过搅拌机的临界转速。所有接触被搅拌流体的搅拌器部件,必须选用适应被搅拌流体的特性的材料,包括具有耐磨损和腐蚀的性能。 4.1.4 吸收塔材料的选择

因为脱硫塔承受压力不大,而且16MnR 钢材综合力学性能、焊接性能以及低温韧性、冷冲压以及切削性能比较好,低温冲击韧性也比较优越,价格低廉,应用比较广泛。故塔壁面由16MnR 钢材制造,为了节约材料和防止腐蚀,内衬橡胶板防腐层,其烟气入口部分内衬玻璃鳞片加耐酸瓷砖。 4.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) 4.1.5.1吸收塔计算壁厚的计算

由于操作压力不大,假设计算壁厚小于16毫米,根据附表九[3]16MnR 钢板在操作温度下的许用应力为t ][σ=170Mpa 。

对于浆液池部分由于浆液会对塔壁产生压力,因此计算时还要这部分压力考虑在内,同时假设塔内的计算压力取0.202 MPa (2个标准大气压)

P C ’=0.202+gh ρ(ρ为浆液密度1257kg/m 3,g=9.81m/s 2,h 浆液池高度7.06m ) 所以P C ’=0.202+gh ρ=0.202610?+1257×9.81×7.06=0.292×106Pa=0.292MPa

又根据式4-5[3]可知:吸收塔(喷淋塔)的计算壁厚公式为:

S=

c

t

i

c P D P -Φ][2σ (mm) 其中: P c 计算压力,对于浆液池以上部分取二倍大气压,0.202 MPa

P C ’=0.292MPa

D i 圆筒或者球壳内径,为3800mm

Φ 焊接接头系数,取Φ=1; C 壁厚附加量,取C=1.00mm C 2 腐蚀裕量,mm ; C 1 钢板厚度负偏差,mm 对于喷淋塔顶部以下浆液池以上的部分(简称上部分)

S=

c t

i c P D P -Φ][2σ=mm 259.28

.3396

.767202.0117023800202.0==-??? 根据取腐蚀裕量C 2=1.00mm [3],根据表4-7[3]可得 C 1=0.25mm 则 C 1 + C 2=0.25+1=1.25mm

2.259+C=2.259+1.25=

3.509mm 圆整后取S n =

4.00mm

因此脱硫塔上部分应该选用的壁厚为4.00mm 的16MnR 钢材,与上面的假设相符4.0mm 〈16.00mm

对于喷淋塔浆液池部分(简称下部分)

S ’=

mm P D P c

t i c 31.37

.3398

.1124292.0117023800292.0][2'

'

==-???=

-Φσ

根据取腐蚀裕量C 2=1.00mm ]3[,根据表4-7[3[可得 C 1=0.5mm

则 C 1+ C 2=0.5+1=1.5mm

3.31+C=3.31+1.5=

4.81mm 圆整后取S n ’=5mm

4.1.

5.2吸收塔(喷淋塔)计算壁厚的液压试验校核 上部分:e

e i T T S S D P 2)

(+=

σ(设计试验温度为200度,则[σ]=170Mpa )

P T =1.25×P ×

Mpa Mpa

Mpa t

170170202.025.1]

[][??=σσ=0.253Mpa S e =S n -C=4-1.25=2.75mm D i =3800mm 故 e

e i T T S S D P 2)

(+=

σ=0.253×(3800+2.75)/2×2.75=174.93Mpa ≈175Mpa

而 0.9Φσ)(2.0σs =0.9×1×274=246.6Mp

因此e

e i T T S S D P 2)

(+=σ=175MPa 〈0.9Φσ)(2.0σs =246.6Mpa 所以液压试验强度符

合要求

下部分:e

e i T T

S S D P '

''1

2)(+=σ≤0.9Φσ)(2.0σs P 'T =1.25×P 'c ×

Mpa Mpa

Mpa t

170170292.015.1][][??=σσ=0.365Mpa

S 'e =S 'n -C=5-1.5=3.5mm D i =3800mm

故 e

e i T T

S S D P '''1

2)

(+=σ=0.365×(3800+3.5)/(2×3.5)=201Mpa

而 0.8Φσ)(2.0σs =0.8×1×274=219.2MPa 因此e

e i T T

S S D P '''1

2)(+=σ=201MPa 〈0.9Φσ)(2.0σs =219.2Mpa 所以液压试验强度

符合要求

综上所述,设计的材料选择,壁厚计算数值和试验强度均符合实际操作要求。 4.1.5.3吸收塔最小壁厚的计算

根据相关规定,塔壳圆筒不包括腐蚀裕度的最小厚度,对于碳钢和低合金钢制造的塔设备为0.2%的塔径[20],而且不小于4mm 。

而喷淋塔的内径为3800mm ,所以最小壁厚S m in =0.2%×3800=7.6mm

根据取腐蚀裕量C 2=1.00mm ]3[,根据表4-7[3[可得 C 1=0.8mm

则 C 1+C 2=0.8+1=1.8mm

7.6+C=7.6+1.8=9.4mm 圆整后取S n =10mm

综合以上计算壁厚和最小壁厚的结果,最终台喷淋塔的壁厚为10mm 4.1.6吸收塔封头选择计算

考虑到封头与筒体采用双面焊接的焊接方法进行焊接,根据力学有关 知识,为了不使应力集中破坏设备,决定两端封头采用浅碟形封头,根据相关知识,在浅碟形封头内部:

(1)球面部分半径R i 不得大于筒体内径R i ≤ D i ,故R i ≤ D i ,一般取R i =0.9D i (2)折边半径r 在任何情况下不得小于筒体内径D i 的10%即380mm ,而且不应该小于3倍的封头名义壁厚S n (封头)。

因此 r ≥3 S n 且r ≥10% D i =380mm

浅碟形封头的尺寸是:D i =3800 mm ;R i =0.9D i =3420mm ;r 取400mm

则 浅碟形封头的形状系数M=r R i +

3(*4

1

)=0.25×(3+

)400

3420

92.24003420

==r R i

取r

R i =3.00(根据表4-12]3[) Pc=0.292Mpa,材料选用16MnR 钢材,故t ][σ=170Mpa, Φ=1,取C 2=2.00mm 浅碟形封头的计算壁厚S=

c

t

i

c P R MP 5.0][2-Φσ(根据式4-23]3[) 所以S=

mm mm mm 41.48

.33996

.1497292.05.0117023420292.05.1==?-????

S+ C 2=6.41mm,根据表4-7[3],负偏差C 1=0.5mm,C= C 1+C 2=2+0.5=2.5mm S+ C 1+C 2=4.41+2.5=6.91mm 圆整后取S n =7.00mm

此时浅碟形封头的最大允许工作压力[P e

i e

t w S MR S 5.0][2]+=φσMpa(根据式4-25[3])

[P e i e t w S MR S 5.0][2]+=φσ=MPa MPa 202.0298.05.45.034205.15

.41702?=?+???

故脱硫塔的浅碟形封头设计强度不够。为了运行安全,应该增加壁厚,选择封头的壁厚和筒体壁厚一致,则封头壁厚为10mm.

此时浅碟形封头的最大允许工作压力[P ''

'

2[]]0.5t e

w i e

S MR S σφ=+Mpa(根据式4-25[3]) [P ''

'2[]]0.5t e w i e S MR S σφ=+=

21707.52550

0.4960.2021.534200.57.55130 3.75

MPa MPa ??==??+?+ 故强度符合要求,因此浅碟形封头的壁厚为10mm 。

下端碟形封头与塔体采用焊接的方式,上端碟形封头与塔体采用法兰盘的连接方式。

4.1.7吸收塔裙式支座选择计算

立式容器的支座主要有耳式支座、腿式支座、支承式支座和裙式支座四种。中小型直立容器采用前三种支座,高大的塔设备则采用裙式支座。

本设计中,吸收塔(喷淋塔)内径为3800mm ,而吸收塔(喷淋塔)的高度为32m,根据服表4-9[3]可知,选用的裙座规格为:

;5.15.;2.8mm S mm S r s ==基础环厚度裙座圈厚度 地脚螺栓个数20个,公称直径M27

裙座的材料选用Q238-AR 钢材,塔体与裙座采用对接焊接,塔体接头焊接系

1=φ,裙座的壁厚取12mm,裙座的壁厚附加量取C=2mm 。 4.1.8吸收塔配套结构的选择

(1) 吸收塔(喷淋塔)进料浆液管道和配套阀门的设计选择

设计时应该充分考虑到石灰石浆液对管道系统的腐蚀与磨损,一般应该选用衬胶管道或者玻璃钢管道。管道内介质流速的选择既要 考虑到应该避免浆液沉淀,同时又要考虑到管道的磨损和屹立损失减少到最小[9]。而且浆液管道上的阀门应该选用蝶阀,尽量少采用调节阀门。阀门的流通直径与管道一致[9]。 (2) 吸收塔(喷淋塔)配套结构的选择(人孔选择)

塔设备内径大于2500mm ,封头和筒体都应该开设人孔,室外露天设备,考虑清洗,检修方便,一般选用公称直径450mm 或者500mm 的人孔;常压大型设备,贮槽则选用公称直径为500mm 或者600mm 的人孔。

综上所述,本设计方案中的吸收塔应该选用公称直径为500mm 的人孔。 d w ×S

D

D 1

B

b

B 1

B 2

H 1

H 2

螺栓直径长度 530×6 620 585 300 14 10 12 160 90

M16×5

4.2吸收塔最终参数的确定

(1)吸收塔(喷淋塔)数量:1 套×1 units=1 套 (2)类型:管道内置型吸收塔(喷淋塔)

(3)作用:烟气中的二氧化硫气体由吸收塔(喷淋塔)的浆液吸收并去除,为了使得烟气和浆液充分接触,应该合理地设计吸收塔(喷淋塔)内的除雾器、喷嘴、搅拌器。 4.2.1设计条件

(1)烟气条件 吸收塔(喷淋塔)进出口烟气设计条件基于锅炉100%BMCR 工况。

进口 出口 备注

烟气量(m 3/s) 33.60(标况) 39.40(标况) 大气压:101325Pa 温度(℃) 100 50 SO 2浓度(mg/ m 3) 11800(标况)

590(标况)

设计工况压力

进口/出口平均值:0.202Mpa(2atm)

(2)二氧化硫脱硫效率:95%(最小值) (3)钙硫率:1.02(最大) (4)烟气流速:3.5m/s

(5)吸收塔(喷淋塔)液气比:12.20L/ m 3 (6)浆液池循环时间:≥4min ; (7)排浆时间:≥16.5h

以上数值为经验值,该时间可以确保浆液池内充分的石膏产品和晶体生长(参

考设计讲义)。 4.2.2吸收塔尺寸的确定

4.2.2.1喷淋区截面面积以及尺寸

根据吸收塔(喷淋塔)出口实际烟气流量和上升和下降段烟气流速,喷淋区域截面面积如下所示: 240.10/36001

/5.31(W)31,000m3/h 1m h

s s m =??

240.104

1

m D D =???π(此处没有将氧化空气和饱和蒸汽考虑在内)

根据该面积算出D=3.64m<3.8m,所以取内径为3.8m 符合设计要求

4.2.2.2吸收塔(喷淋塔)浆液循环量

根据吸收塔(喷淋塔)出口烟气量和液气比,浆液循环量计算如下所示: s L s m m L /68.480/40.39/20.1233=?

125L/s ×4=500L/s

4.2.2.3喷淋区域高度和喷淋层数: 喷淋层数目:4层;

喷淋区域高度:1.5 m ×4 层=6.0 m 4.2.2.4已确定的参数尺寸(mm )

吸收塔(喷淋塔) 3800Φ×32000 喷淋区 6000 出口烟道 1200 进口烟道 1200 反应池 7100

4.2.2.5选材及防腐

塔本体:碳钢16MnR 钢材

塔内部螺栓、螺母类:6%Mo 不锈钢材料

塔内壁:衬里施工前经表面预处理,喷砂除锈,内衬材料为丁基橡胶板 塔内件支撑:碳钢衬丁基橡胶

丁基橡胶是由异丁烯中混以 1.5%—4.5%的异戌二烯具有化学稳定性好、对臭氧、酸碱的耐腐蚀能力强、无吸水性等优良性能。丁基橡胶经改性后有卤化丁基橡胶,包括氯化丁基橡胶和溴化丁基橡胶,基本特性有:

(1)具有优良的耐水气渗透性能、耐浆液磨损性能、耐腐蚀性特别是耐F ˉ性、耐SO 2、耐CL -性及耐热性等。结合脱硫工程浆液介质条件,通常来说厚度为4mm 即可,在磨损严重的部位衬2层4mm 丁基橡胶。

(2)气体透过性小,气密性好回弹性小,在较宽温度范围内(30~50℃)均不大20% ,因而具有吸收振动和冲击能量的特性。

(3)耐热老化性优良,且有良好的耐臭氧老化、耐天候老化和对化学稳定性以及耐电晕性能与电绝缘性好。

(4)耐水性好、水渗透率极低,因而适于做绝缘材料。缺点是硫化速度慢、粘合性和自粘性差、与金属粘合性不好、与不饱和橡胶相容性差,不能并用。 4.2.3吸收塔的强度和稳定性校核 4.2.3.1强度和稳定性校核条件

(1)塔体内径D i =3800mm ,塔高度32000mm ,裙座高度3060 mm ,计算压力0.292MPa,设计温度200℃。

(2)设置地区:基本风压350N/m 2,地震防烈度8度,场地土地类:B 类。 (3)沿塔高开设3个人孔,相应在人孔处安装圆形平台3个 ,平台宽度B=900mm ,高度为1000 mm 。

(4)塔外设置保温层厚度为100 mm ,密度300kg/m 3. (5)塔体与封头选用16MnR 钢材,其MPa t 170][=σ

MPa E MPa MPa t S 5109.1,345,170][?===σσ

(6)裙座材料选用Q238-AR

(7)塔体与裙座对接焊接,塔体焊接系数1=φ

(8)塔体与封头壁厚附加量取C=2.00 mm ,裙座壁厚附加量取C=2.00 mm 。 4.2.3.2塔设备质量载荷计算

(1) 塔体圆筒、封头、裙座质量m 01

圆筒质量kg m 3.1873243.315961=?= 封头质量260021200m kg =?= 裙座质量3596 3.061823.76m kg =?=

0112321756m m m m kg =++=

其中 塔体高度为31.43米,查得DN3800 mm ,壁厚10 mm 的圆筒每米质量为596kg;;

查得DN3800 mm ,壁厚10 mm 的封头每米质量为600kg ;裙座高度3060 mm 。

(2) 塔内件质量,取max 01020304402276a W e m m m m m m m m kg =++++++=

02100m kg =

(3) 保温层质量22'

0302031[(22)(2)]24

i n i n m D S D S H m πδρ=++-++

22031

3.14[(380020.0120.1)(380020.01)]31.433002(1.54 1.18)300

4

m =?+?+?-+???+-? =11836.7kg

其中 '03m 封头保温层质量

(4) 平台扶梯质2204011

[(222)(22)]42

i n i n F F m D S B D S nq q H πδδ=+++-++++

220411

[(380020.0120.120.9)(380020.0120.1)]3.50403442

m π=+?+?+?-+?+???+?

=8659.5 kg

(5) 操作时物料质量2205102111

44

i W i f m D h D h V πρπρρ=++

2205111

3.14387.061257 3.14 3.8(31.437.06) 1.0144f m V ρ=????+???-?+

=100874 kg

其中 W h 为石灰质浆液高度,7.06m 0h 除浆液区外的塔高,31.43-7.06m 1ρ石灰石浆液密度,12573/kg m 2ρ空气在

10050

752

C ?+=时候的密度,1.013/kg m (6) 附件质量a m ,按照经验值取010.250.25215765439a m m kg =?=?=

(7) 充水质量201

24

W i f m D H V πρρ=+

21

3.14 3.831.4310002 1.1810004

W m =????+??=358631 kg

下面将塔分成六段,计算下列各质量载荷 表6 吸收塔各计算段的质量 塔段

0-1

1-2 2-3 3-4 4-5 5-塔顶 合计 人孔与平台数量 0 0

1

2

3

塔板数

0 0 0 0 0 0

01i m

621.6 1243 4351 6216 6216 3108 21576

02i m

0 0 10 40 40 12 100 03i m

338 676 2366 3380 3380 1690 11836 04i m

39 78 272 2822 5255 195 8659 05i m

——

12131

29688

21483

21483

16089

100874

i a m

160 300 1120 1620 1347 892 5439 i W m

—— 458702 76457 94939 94939 87708 358631 i e m

0 0 0 0 0 0 0 0i m

1158

19015 11435 130478

130478

109692 402276 各塔段最小质量 1158.6 2297

全塔操作质量 00102030405402276a e m m m m m m m m kg =++++++= 全塔最小质量

min 010203040.247710a e m m m m m m m kg =+++++=

水压试验最大质量

max 01020304402276a W e m m m m m m m m kg =++++++=

4.2.3.3风载荷计算 612010()i i i i ei P K K q f l D N =?

其中 1K 体型系数,对于圆筒取1K =0.7;2i K 塔设备各段风振系数,

当塔高≤20米时2i K =1.7;当塔高>20米时2i K =1i zi

i

f ζνφ+

计算

0q 为10米塔高处的基本风压值,3502/N m ,见表8-4[3]

i f 为风压高度变化系数,见表8-5[3];ζ为脉动增大系数,见表8-6[3]; i ν为第i 段脉动增大影响系数,见表8-7[3];

zi φ为第i 段振型系数,根据2/N m 与u 查表8-8[3];

it h 为塔器第i 段顶截面距离地面的高度,m ; i l 为同一直径两相邻计算截面间的距离,mm ;

ei D 为塔器各段有效直径,mm ;

当笼式扶梯与塔顶管线成180?时,3422ei oi si o ps D D K K d δδ=+++++ oi D 为塔各计算段的外径,mm ;si δ为塔器第i 段的保温层厚度,mm ; 3K =400mm ;4K =

2o

A l ∑(A 投影面积,o l 操作平台所在计算段长度)

表7 风载荷各项数值 计算段

i l

q

1

K i ν zi φ

i

ζ

2i

K f

i

h

平台数

1

1000 3

50

0.7 0.72

0.0

075

2.36

1.

70 0.

64 1

2

2000 3

50

0.7 0.72

0.0375 2.36

1.

70 0.72 3 0

3 7000 3

50

0.7 0.72

0.110 2.36

1.

70 1.00 10

4 10000 3

50

0.7 0.79

0.350 2.36

1.

70 1.25 20

1

5 10000 3

50

0.7 0.85

0.665 2.36

1.

94 1.42 30

2

6 5000

3

50

0.7

0.85

1.000

2.36

2.

38 1.45 35

4

K

ei

D i

P

5020 1338

0 5020 3010

0 5020

14640

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型 (2) 喷淋塔吸收区高度设计(二) 对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。 逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。 湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。 (3)喷淋塔吸收区高度的计算 含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。 首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量 ζ=h C K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3 η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,m K 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ; K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。二氧化硫质量浓度应该低于580mg/m 3 (标状态) ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600× h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752 C ?+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

化工原理课程设计-填料吸收塔的设计

化工原理课程设计-填料吸收塔的设计

课程设计 题目:填料吸收塔的设计 教学院:化学与材料工程学院 专业:化学工程与工艺(精细化工方向) 学号: 学生姓名: 指导教师: 2012 年 5 月31 日

《化工原理课程设计》任务书 2011~2012 学年第2学期 学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室 一、课程设计题目:填料吸收塔的设计 二、课程设计内容(含技术指标) 1. 工艺条件与数据 煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸 收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时 处理含苯煤气2000m3;冷却水进口温度<25℃,出口温度≤50℃。 2. 操作条件 吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充 新鲜吸收剂;过程中热效应忽略不计。 3. 设计内容 ①吸收塔、解吸塔填料层的高度计算和设计; ②塔径的计算; ③其他工艺尺寸的计算。 三、进度安排 1.5月14日:分配任务; 2.5月14日-5月20日:查询资料、初步设计; 3.5月21日-5月27日:设计计算,完成报告。 四、基本要求 1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。设计说明 书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程 和设备选型作出技术上和经济上的论证和评价。应按设计程序列出计算公式和计 算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。 设计说明书应附有带控制点的工艺流程图。 设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作 条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算; 设计结果概览;附录;参考文献等。 2. 图纸1套:包括工艺流程图(3号图纸)。 教研室主任签名: 年月日

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

洗涤塔设计说明

洗涤塔设计说明文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

洗涤塔设计明细 一、 设计说明 1、 技术依据:《通风经验设计》、《三废处理工程技术手册》、《风机手 册》等。 2、 风量依据:拫据业主提供风量。 3、 设备选择依据:以废气性质为前提,根据设计计算所得结果选择各种合理 有效的处理设备。 二、 基本公式 1)、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60A ν 式中:Q 风量(CMM); A 气体通过某一平面面积(m 2); ν 流速(m/s); 根据业主设计规范要求,塔内流速:≦2m/s ,结合我司多年洗涤塔设计经验, 塔内速度取,ν ≦s 填充层设计高度: 则填充层停留时间>6 .15.1= 洗涤塔直径>2*6 .1*1416.3*601333= 其中Q=80000CMH=1333CMM ν =s 2)、泵浦选择 ○1流量设定 润湿因子>hr 则:泵浦流量(填充物比表面积*填充段截面积)>hr ξ>60 1000*)22.4*1416.3*100*1.02??????(>2307 L/min ○2扬程设定:

直管长度: ++4= 等效长度: 900弯头 3个 * 3 = 球阀 2个 * 2 = 逆止阀 1个 * 1 = 总长:+ + + =,取24m 扬程损失: 24 * = 喷头采用所需压力为, 为6m水柱压力。 所需扬程为: + + 6= 查性能曲线: 益威科泵浦KD-100VK-155VF,当扬程为12m时,流量为1200L/min,两台15HP则满足要求。 选用泵浦:2台15HP浦, 总流量为2400L/min 最高扬程: 12m

洗涤塔设计

目录 (一) 设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目与要求 (2) 2.3 设计条件 (2) 2.4 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 5.1塔径的计算 (6) 5.2核算操作空塔气速u与泛点率 (7) 5.3液体喷淋密度的验算 (8) 5.4填料层高度的计算 (8) 5.5填料层的分段 (8) 5.6填料塔的附属高度 (9) 5.7液相进出塔管径的计算 (9) 5.8气相进出塔管径的计算 (9) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布简要设计 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13) (十)主要符号说明 (14) 参考文献 (17)

(二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ①:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:液体分布装置的布点密度,Walas推荐95-130点/m2,Glitsh公司建议65-150点/m2 ⑤:填料塔操作气速在70%的液泛速度附近; ⑥:由于风载荷和设备基础的原因,填料塔的极限高度约为50米 (2)设计题目与要求 常温常压下,用20℃的清水吸收空气中混有的氨,已知混合气中含氨10%(摩尔分数,下同),混合气流量为3000m3/h,吸收剂用量为最小用量的1.3倍,气体总体积吸收系数为200kmol/m3.h,氨的回收率为95%。请设计填料吸收塔。 要求:综合运用《化工原理》和相关先修课程的知识,联系化工生产实际,完成吸收操作过程及设备设计。要求有详细的工艺计算过程(包括计算机辅助计算程序)、工艺尺寸设计、辅助设备选型、设计结果概要及工艺设备条件图。同时应考虑: ①:技术的先进性和可靠性 ②:过程的经济性 ③:过程的安全性 ④:清洁生产 ⑤:过程的可操作性和可控制性 (3)设计条件 ①:设计温度:常温(25℃) ②:设计压力:常压 (101.325 kPa) ③:吸收剂温度:20℃ (4)工作原理 气体混合物的分离,总是根据混合物中各组分间某种物理性质和化学性质的差异而进行的。吸收作为其中一种,它根据混合物各组分在某种溶剂中溶解度的不同而达到分离的目的。在物理吸附中,溶质和溶剂的结合力较弱,解析比较方便。 填料塔是一种应用很广泛的气液传质设备,它具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,操作时液体与气体经过填料时被填料打散,增大气液接触面积,从而有利于气体与液体之间的传热与传质,使得吸收效率增加。 (三)设计方案 (1)填料塔简介 填料塔是提供气-液、液-液系统相接触的设备。填料塔外壳一般是圆筒形,也可采用方形。材质有木材、轻金属或强化塑料等。填料塔的基本组成单元有: ①:壳体(外壳可以是由金属(钢、合金或有色金属)、塑料、木材,或是以橡胶、塑料、砖为内层或衬里的复合材料制成。虽然通入内层的管口、支承和砖的机械安装尺寸并不是决定设备尺寸的主要因素,但仍需要足够重视; ②:填料(一节或多节,分布器和填料是填料塔性能的核心部分。为了正确选择合适的填料,要了解填料的操作性能,同时还要研究各种形式填料的形状差异对操作性能的影响); ③:填料支承(填料支承可以由留有一定空隙的栅条组成,其作用是防止填料坠落;也

洗涤塔设计说明.doc

洗涤塔设计明细 一、设计说明 1、技术依据: 《通风经验设计》、《三废处理工程技术手册》、《风机手册》等。 2、风量依据: 拫据业主提供风量。 3、设备选择依据: 以废气性质为前提, 根据设计计算所得结果选择各种合理有 效的处理设备。 二、基本公式 1) 、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60Aν 式中:Q 风量(CMM); A 气体通过某一平面面积(m 2); ν流速(m/s); 根据业主设计规范要求,塔内流速:≦2m/s,结合我司多年洗涤塔设计经验,塔内速度取,ν≦1.6m/s 填充层设计高度: 1.5m 则填充层停留时间>1=0.9S .5 1.6 洗涤塔直径>2* 60* 1333 3.1416* 1.6 =4.2m 其中Q=80000CMH=1333CMM ν=1.6m/s 2) 、泵浦选择 ○1 流量设定 2/hr 润湿因子>0.1m 则: 泵浦流量( 填充物比表面积* 填充段截面积)>0.1m 2/hr ξ>0.1* 100 * 3.1416 * ( 60 4.2 2 ) 2 * 1000 >2307 L/min ○2 扬程设定: 直管长度: 0.8+4.1+4=8.9m 等效长度: 90 0 弯头 3 个 2.1 * 3 = 6.3 球阀 2 个0.39 * 2 = 0.8

逆止阀 1 个8.5 * 1 = 8.5 1

总长:8.9+ 6.3 + 0.8 + 8.5 =24.5m ,取24m 扬程损失: 24 * 0.1 = 2.4m 喷头采用所需压力为0.6bar, 为6m水柱压力。 所需扬程为: 4.1 +2.4 + 6=12.5m 查性能曲线: 益威科泵浦KD-100VK-155VF,当扬程为12m时, 流量为 1200L/min, 两台15HP则满足要求。 选用泵浦:2 台15HP 浦, 总流量为2400L/min 最高扬程: 12m 2

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的SO2。 入塔的炉气流量为2250m3/h,其中进塔SO2的摩尔分数为0.05,要求SO2的吸收率为96%。 吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。 吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 摘要 (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (2) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 2.2.2吸收工艺流程图及工艺过程说明 (6) 2.3操作参数的选择 (6) 2.3.1操作温度的选择 (6) 2.3.2操作压力的选择 (6) 2.3.3吸收因子的选择 (7) 2.4吸收塔设备及填料的选择 (8) 2.4.1吸收塔的设备选择 (8) 2.4.2填料的选择 (8) 3吸收塔的工艺计算 (9) 3.1基础物性数据 (9) 3.1.1液相物性数据 (9) 3.1.2气相物性数据 (9) 3.1.3气液平衡数据 (9) 3.2物料衡算 (10) 3.3塔径的计算 (10) 3.3.1塔径的计算 (10) 3.3.2泛点率校核 (11) 3.3.3填料规格校核: (11) 3.3.4液体喷淋密度校核 (11) 3.4填料层高度计算 (11) 3.4.1传质单元高度 H计算 (11) OG

洗涤塔设计计算书

洗涤塔设计计算书公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

鹿岛建设SCRUBBER(For NO X)设计计算书设计依据: 1、源排气量:150m3/min 2、源废气最高温度:130℃ 3、平均浓度:100mg/m3(根据生产设备数据推测) 4、源排放总量:hr (根据推测平时浓度计算) 5、国家标准: ①排放浓度≤240mg/ m3 ②排放速率≤ hr @15m 设计计算: 1、去除率 第一段SCRUBBER去除率:50% 第二段SCRUBBER去除率:30% 总去除率:65% 2、风量 风量=150m3/min (1套Scrubber) 3、空塔流速:1m/s 4、塔截面:× 5、填料长度:+(第一段+第二段) 6、作用时间:+=(第一段+第二段) 7、液气比L/G=:1 8、水泵参数:50m3/ hr×18m Aq×2

9、加药系统参数计算: ①投药量计算: M(HNO3)=63g/mol M(NaOH)=40g/mol : kg/hr/2/63g/mol =hr HNO 3 NaOH: mol/hr×40g/mol≈hr 折合10%浓度的NaOH: kg/hr÷10%= kg/hr ②加药泵参数选择:hr, @ ③药槽(第一段和第二段合用) 10、排放数据估算: ①排放速率 hr×35%≈0. 315kg/hr (< hr @15m),合格。 ②排放浓度 hr÷60min/hr÷150 m3/ min≈35mg/ m3 (≤240mg/ m3),合格。 11、排气温度的控制 空气比热容以1kJ/kg.℃计 进气温度:130℃;冷却器出口温度:60℃,温差=70℃; 冷却器需要移去的热量=150(kg/min) ×60(min/hr)×1(kJ/kg.℃)/(kJ/kCal)×70℃=150718 kcal/hr=175kw; 水的比热容=kg.℃,假设水在冷却气体过程中的温升为8℃,则移去上述热量所需要的循环水量=150718 (kcal/hr)/8(℃)/ kg.℃/1000(kg/m3)=hr。本系统配置1台30m3/ hr的冷却塔,是留有余量的。 苏州乔尼设备工程有限公司

脱硫装置吸收塔的设计计算

(一)设计方案的确定 用水吸收S02,为提高传质效率,选用逆流吸收过程。因用水作为吸收剂,且S02不作为产品,故采用纯溶剂。 (二)填料的选择 该系统不属于难分离的系统,操作温度及压力较低,可采用散装填料,系统中有S02,有一定的腐蚀性,故考虑选用塑料鲍尔环,由于系统压降无特殊要求,考虑到不同尺寸鲍尔环的传质性能选用D g38塑料鲍尔填料。 (三)设计步骤 本课程设计从以下几个方面的内容来进行设计 (1)吸收塔的物料衡算; (2)填料塔的工艺尺寸计算;主要包括:塔径,填料层高度,填料层压降; (3)设计液体分布器及辅助设备的选型; (4)绘制有关吸收操作图纸。 (四)基础数据 1、液相的物性数据 对于低浓度的吸收过程,溶液的物性数据可以近似取水的物性数据,由手册查得,20℃时水的有关物性数据如下: 密度 ρ=998.2 kg/m3 L 粘度 μ=0.001 Pa·s=3.6 kg/(m·h) L

表面张力 L σ=73 dyn/cm=940 896 kg/h 2 S02在水中的扩散系数 L D =1.47×10-5 cm 2 /s=5.29×10-6 m 2 /h 2、 气相的物性数据 混合气体的平衡摩尔质量 M =0.04×64.06+0.96×29=30.40 g/mol 混合气体的平均密度 G ρ=101.330.408.31427330??+() =1.222 kg/m 3 混合气体的粘度可以近似取空气的粘度,查手册20℃时空气的粘度为 G μ=1.81×10-5 Pa ·s=0.065 kg/(m ·h) 查手册得S02在空气中的扩散系数为 G D =0.108 cm 2 /s =0.039 m 2 /h 3、 气液相平衡数据 查手册,常压下20℃时: S02在水中的亨利系数 E=3.55×1O 3 kPa 相平衡常数为 m E P = =3.55×1O 3 /101.3=35.04 溶解度系数 L L H EM ρ= =998.2/3.55×1O 3 /18.02=0.0156 kmol/h 4、填料的填料因子及比表面积数据 泛点填料因子 F φ=184 /m

精馏塔计算方法

目录 1 设计任务书 (1) 1.1 设计题目……………………………………………………………………………………………………………………………………………………………………… 1.2 已知条件……………………………………………………………………………………………………………………………………………………………………… 1.3设计要求………………………………………………………………………………………………………………………………………………………………………… 2 精馏设计方案选定 (1) 2.1 精馏方式选择………………………………………………………………………………………………………………………………………………………………… 2.2 操作压力的选择………………………………………………………………………………………………………………………………………………………………… 2.4 加料方式和加热状态的选择…………………………………………………………………………………………………………………………………………………… 2.3 塔板形式的选择………………………………………………………………………………………………………………………………………………………………… 2.5 再沸器、冷凝器等附属设备的安排…………………………………………………………………………………………………………………………………………… 2.6 精馏流程示意图………………………………………………………………………………………………………………………………………………………………… 3 精馏塔工艺计算 (2) 3.1 物料衡算………………………………………………………………………………………………………………………………………………………………………… 3.2 精馏工艺条件计算……………………………………………………………………………………………………………………………………………………………… 3.3热量衡算………………………………………………………………………………………………………………………………………………………………………… 4 塔板工艺尺寸设计 (4) 4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………

洗涤塔设计资料

洗涤塔设计资料 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

目录 (一) 设计任务 (1) (二) 设计简要 (2) 2.1 填料塔设计的一般原则 (2) 2.2 设计题目与要求 (2) 2.3 设计条件 (2) 2.4 工作原理 (2) (三) 设计方案 (2) 3.1 填料塔简介 (2) 3.2填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3) .工艺流程 (3) (四)填料的类型 (4) 4.1概述 (4) 4.2填料的性能参数 (4) 4.3填料的使用范围 (4) 4.4填料的应用 (5) 4.5填料的选择 (5)

(五)填料吸收塔工艺尺寸的计算 (6) 5.1塔径的计算 (6) 5.2核算操作空塔气速u与泛点率 (7) 5.3液体喷淋密度的验算 (8) 5.4填料层高度的计算 (8) 5.5填料层的分段 (8) 5.6填料塔的附属高度 (9) 5.7液相进出塔管径的计算 (9) 5.8气相进出塔管径的计算 (9) (六)填料层压降的计算……………………………………………………………… 10 (七)填料吸收塔内件的类型与设计………………………………………………… 10 7.1 填料吸收塔内件的类型 (10) 7.2 液体分布简要设计 (12) (八)设计一览表……………………………………………………………………… 13 (九)对设计过程的评述……………………………………………………………… 13 (十)主要符号说明…………………………………………………………………… 14

吸收塔的设计1

大庆师范学院 《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 第一节前言 (6) 1.1 填料塔的主体结构与特点 (6) 1.2 填料塔的设计任务及步骤 (6) 1.3 填料塔设计条件及操作条件 (6) 第二节填料塔主体设计方案的确定 (7) 2.1 装置流程的确定 (7) 2.2 吸收剂的选择 (7) 2.3填料的类型与选择 (7) 2.3.1 填料种类的选择 (7) 2.3.2 填料规格的选择 (7) 2.3.3 填料材质的选择 (8) 2.4 基础物性数据 (8) 2.4.1 液相物性数据 (8) 2.4.2 气相物性数据 (8) 2.4.3 气液相平衡数据 (9) 2.4.4 物料横算 (9) 第三节填料塔工艺尺寸的计算 (10) 3.1 塔径的计算 (10) 3.2 填料层高度的计算及分段 (11) 3.2.1 传质单元数的计算 (11) 3.2.3 填料层的分段 (13) 3.3 填料层压降的计算 (13) 第四节填料塔内件的类型及设计 (14) 4.1 塔内件类型 (14) 4.2 塔内件的设计 (14) 4.2.1 液体分布器设计的基本要求: (14) 4.2.2 液体分布器布液能力的计算 (14) 注:15

1填料塔设计结果一览表 (15) 2 填料塔设计数据一览 (15) 3 参考文献 (17) 4 后记及其他 (17) 附件一:塔设备流程图 (17) 附件二:塔设备设计图 (18)

大庆师范学院本科学生 化工原理课程设计任务书 设计题目苯和氯苯的精馏塔塔设计 系(院)、专业、年级化学化工学院、化学工程与工艺专业、08级化工四班学生姓名学号 指导教师姓名下发日期 任务起止日期:2010 年日6 月21 日至2010 年7 月20

洗涤塔设计计算手册

洗涤塔设计计算手册 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

鹿岛建设SCRUBBER(ForNO X)设计计算书设计依据: 1、源排气量:150m3/min 2、源废气最高温度:130℃ 3、平均浓度:100mg/m3(根据生产设备数据推测) 4、源排放总量:0.9kg/hr(根据推测平时浓度计算) 5、国家标准: ①排放浓度≤240mg/m3 ②排放速率≤0.77kg/hr@15m 设计计算: 1、去除率 第一段SCRUBBER去除率:50% 第二段SCRUBBER去除率:30% 总去除率:65% 2、风量 风量=150m3/min(1套Scrubber) 3、空塔流速:1m/s 4、塔截面:1.6m×1.6m 5、填料长度:1.8m+1.8m(第一段+第二段) 6、作用时间:1.8S+1.8S=3.6S(第一段+第二段) 7、液气比L/G=6.0:1 8、水泵参数:50m3/hr×18mAq×2

9、加药系统参数计算: ①投药量计算: M(HNO3)=63g/mol M(NaOH)=40g/mol :0.9kg/hr/2/63g/mol=7.15mol/hr HNO 3 NaOH:7.15mol/hr×40g/mol≈0.286kg/hr 折合10%浓度的NaOH:0.286kg/hr÷10%=2.86kg/hr ②加药泵参数选择:3.9L/hr,@0.7Mpa ③药槽(第一段和第二段合用) 10、排放数据估算: ①排放速率0.9kg/hr×35%≈0.315kg/hr(<0.77kg/hr@15m),合格。 ②排放浓度0.315kg/hr÷60min/hr÷150m3/min≈35mg/m3 (≤240mg/m3),合格。 11、排气温度的控制 空气比热容以1kJ/kg.℃计 进气温度:130℃;冷却器出口温度:60℃,温差=70℃; 冷却器需要移去的热量=150(kg/min)×60(min/hr)×1(kJ/kg.℃)/4.18(kJ/kCal)×70℃=150718kcal/hr=175kw; 水的比热容=1.0kCal/kg.℃,假设水在冷却气体过程中的温升为8℃,则移去上述热量所需要的循环水量=150718(kcal/hr)/8(℃)/1.0kCal/kg.℃/1000(kg/m3)=18.5m3/hr。本系统配置1台30m3/hr的冷却塔,是留有余量的。 苏州乔尼设备工程有限公司 2006-02-16

精馏塔的设计详解-共21页

目录 一.前言 (3) 二.塔设备任务书 (4) 三.塔设备已知条件 (5) 四.塔设备设计计算 (6) 1、选择塔体和裙座的材料 (6) 2、塔体和封头壁厚的计算 (6) 3、设备质量载荷计算 (7) 4、风载荷与风弯距计算 (9) 5、地震载荷与地震弯距计算 (12) 6、偏心载荷与偏心弯距计算 (13) 7、最大弯距计算 (14) 8、塔体危险截面强度和稳定性校核 (14) 9、裙座强度和稳定性校核 (16) 10、塔设备压力试验时的应力校核 (18) 11、基础环设计 (18) 12、地脚螺栓设计 (19) 五.塔设备结构设计 (20) 六.参考文献 (21) 七.结束语 (21)

前言 苯(C6H6)在常温下为一种无色、有甜味的透明液体,并具有强烈的芳香气味。苯可燃,有毒,也是一种致癌物质。它难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。苯具有的环系叫苯环,是最简单的芳环。苯分子去掉一个氢以后的结构叫苯基,用Ph表示。因此苯也可表示为PhH。苯是一种石油化工基本原料。苯的产量和生产的技术水平是一个国家石油化工发展水平的标志之一。 甲苯是有机化合物,属芳香烃,分子式为C6H5CH3。在常温下呈液体状,无色、易燃。它的沸点为110.8℃,凝固点为-95℃,密度为0.866克/厘米3。甲苯不溶于水,但溶于乙醇和苯的溶剂中。甲苯容易发生氯化,生成苯—氯甲烷或苯三氯甲烷,它们都是工业上很好的溶剂;它还容易硝化,生成对硝基甲苯或邻硝基甲苯,它们都是染料的原料;它还容易磺化,生成邻甲苯磺酸或对甲苯磺酸,它们是做染料或制糖精的原料。甲苯的蒸汽与空气混合形成爆炸性物质,因此它可以制造梯思梯炸药。甲苯与苯的性质很相似,是工业上应用很广的原料。但其蒸汽有毒,可以通过呼吸道对人体造成危害,使用和生产时要防止它进入呼吸器官。 苯和甲苯都是重要的基本有机化工原料。工业上常用精馏方法将他们分离。精馏是分离液体混合物最早实现工业化的典型单元操作,广泛应用于化工,石油,医药,冶金及环境保护等领域。它是通过加热造成汽液两相体系,利用混合物中各组分挥发度的差别实现组分的分离与提纯的目的。 实现精馏操作的主要设备是精馏塔。精馏塔主要有板式塔和填料塔。板式塔的核心部件为塔板,其功能是使气液两相保持密切而又充分的接触。塔板的结构主要由气体通道、溢流堰和降液管。本设计主要是对板式塔的设计。

洗涤塔设计说明

洗涤塔设计明细 、设计说明 1、技术依据:《通风经验设计》、《三废处理工程技术手册》、《风机手册》等。 2、风量依据:拫据业主提供风量。 3、设备选择依据:以废气性质为前提,根据设计计算所得结果选择各种合理有效 的处理设备。 二、基本公式 1)、洗涤塔选择: 风量、风速、及管经计算公式 Q = 60A v 式中:Q——风量(CMM); A 气体通过某一平面面积(m2); v——流速(m/s); 根据业主设计规范要求,塔内流速:三2m/s,结合我司多年洗涤塔设计经验, 塔内速度取,vW 1.6m/s 填充层设计高度:1.5m 则填充层停留时间〉15 =0.9S 1.6 1333-=4.2m 洗涤塔直径〉--------- V 60* 3.1416*1.6 其中Q=80000CMH=1333CMM v=1.6m/s 2)、泵浦选择 ①流量设定 润湿因子〉0.1m2/hr 则:泵浦流量(填充物比表面积*填充段截面积)> 0.1m2/hr 0.1* 100*3.1416*(丝)2*1000 E > - > 2307 L/min 60 ②扬程设定:

直管长度:0.8+4.1+4=8.9m 等效长度:90 0弯头3 个 2.1 * 3 = 6.3 球阀 2 个0.39 * 2 =0.8 逆止阀 1 个8.5 * 1 = :8.5 总长:8.9+ 6.3 + 0.8 + 8.5 =24.5m ,取24m 扬程损失:24 * 0.1 = 2.4m 喷头采用所需压力为0.6bar,为6m水柱压力。 所需扬程为:4.1 +2.4 + 6=12.5m 查性能曲线:益威科泵浦KD-100VK-155V F,当扬程为12m时,流量为1200L/min,两台15HP则满足要求。 选用泵浦:2台15HP浦,总流量为2400L/min 最高扬程:12m

吸收塔的设计汇编

吸收塔的设计

课程设计任务书 1.设计题目:水吸收二氧化硫过程填料吸收塔的设计 矿石焙烧炉送出的气体冷却到25℃后送入填料塔中,用20℃清水洗涤除去其中的 SO 2。入塔的炉气流量为2250m3/h,其中进塔SO 2 的摩尔分数为0.05,要求SO 2 的吸收率为 96%。吸收塔为常压操作,因该过程液气比很大,吸收温度基本不变,可近似取为清水的温度。吸收剂的用量为最小量的1.4倍。 2.工艺操作条件: (1) 操作平均压力常压101.325kpa (2) 操作温度t=20℃ (4) 所用填料为D N38聚丙烯阶梯环形填料。 3.设计任务 完成填料吸收塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统工艺流程图和吸收塔工艺条件图,编写设计说明书。

目录 课程设计任务书 ........................................................................................................................................................... I 摘要 . (1) 1绪论 (2) 1.1吸收技术概况 (2) 1.2吸收过程对设备的要求及设备的发展概况 (2) 1.3吸收在工业生产中的应用 (3) 1.3.1吸收的应用概况 (3) 1.3.2典型吸收过程 (3) 2设计方案 (4) 2.1吸收方法及吸收剂的选择 (4) 2.1.1吸收方法 (4) 2.1.2吸收剂的选择: (4) 2.2吸收工艺的流程 (5) 2.2.1吸收工艺流程的确定 (5) 3吸收塔的工艺计算 (7) 3.3塔径的计算 (9) 3.3.1塔径的计算 (9) 3.3.2泛点率校核 (9) 3.3.3填料规格校核: (9) 3.3.4液体喷淋密度校核 (9) 3.4填料层高度计算 (10) H计算 (10) 3.4.1传质单元高度OG 3.4.2填料层高度Z的计算: (11) 3.6填料塔附属高度及最终高度计算 (12) 结论 (14) 主要符号说明 (16)

精馏塔1

1.工艺流程与设计思路(选型) 前期的工作中我们对于整个流程进行了模拟和优化,得到了较高质量的产品物流。在这一部分中,我们将对本流程中分离的核心部分——分离精馏塔进行相关的设备设计。 所要设计的精馏塔结构如上图所示。L012为在第20块板进料,L009为在第30块板进料,L018出料为质量分数0.995的丙烯产品,L009主要为丙烷,进入循环。 通过前期的比选,考虑到泡罩塔的塔板结构复杂,造价高,产生的压降大;常用的筛板塔操作弹性小,筛孔小易堵塞,不适合处理易结焦、黏度大的物料;而浮阀塔生产能力大,比泡罩塔高20~40%,与筛板塔相近,操作弹性大,比泡罩塔和筛板塔的操作范围都要宽,塔板效率高,比泡罩塔高10%,持液量相对较大,因而是最佳的反应精馏塔塔板选型。 以下的设计中,我们首先将对设计将要采用的物性数据进行求解,其次对精馏塔进行设备设计,继而进行相关的附件设计并在最后简单概述精馏塔的自动控制系统组成。 2. 精馏塔的工艺条件、物性数据的计算与物流模拟计算结果 2.1 精馏塔的工艺条件 反应精馏塔的工艺条件主要参考了相关文献,主要的工艺条件包括塔顶温度、进料板温度、塔底温度及塔顶压力、塔釜压力和塔板压降。经过软件模拟与前期对于回流比及其他操作条件的优化,得到了结果如下所示。 精馏塔不同位置温度 塔顶上部进料板下部进料板塔底 因而可以认为精馏段平均温度为 反应段的平均温度 提馏段的平均温度 精馏塔不同位置的压强 我们设定全塔压力

2.2物性数据计算 丙烷的摩尔分子质量 丙烯的摩尔分子质量 我们采用线性加和的方法计算混合物的平均摩尔分子质量即 以下求算各物流的密度 对气相物流,根据理想气体状态方程求得其密度即 此处并不求得其具体数值,在接下来的计算气相负荷时会进一步简化。 对液相物流,由 通过计算294K(精馏段平均温度)下,气相丙烷的密度为18.92kg/m3,丙烯的密度为18.06 kg/m3,通过查手册液相丙烷的密度为500kg/m3,丙烯的密度为517 kg/m3 可知对塔顶物流,液相的平均密度为 在299K(提馏段的平均温度)下,且塔底产出几乎纯的丙烷,故物流的密度查手册可知 为 2.3反应精馏塔的工艺计算结果 Aspen计算结果如下

洗涤塔设计

洗涤塔设计 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

目录 (一) 设计任务 (1) (二) 设计简要 (2) 填料塔设计的一般原则 (2) 设计题目与要求 (2) 设计条件 (2) 工作原理 (2) (三) 设计方案 (2) 填料塔简介 (2) 填料吸收塔的设计方案 (3) .设计方案的思考 (3) .设计方案的确定 (3) .设计方案的特点 (3)

.工艺流程 (3) (四)填料的类型 (4) 概述 (4) 填料的性能参数 (4) 填料的使用范围 (4) 填料的应用 (5) 填料的选择 (5) (五)填料吸收塔工艺尺寸的计算 (6) 塔径的计算 (6) 核算操作空塔气速u与泛点率 (7) 液体喷淋密度的验算 (8)

填料层高度的计算 (8) 填料层的分段 (8) 填料塔的附属高度 (9) 液相进出塔管径的计算 (9) 气相进出塔管径的计算 (9) (六)填料层压降的计算 (10) (七)填料吸收塔内件的类型与设计 (10) 填料吸收塔内件的类型 (10) 液体分布简要设计 (12) (八)设计一览表 (13) (九)对设计过程的评述 (13)

(十)主要符号说明 (14) 参考文献 (17) (二)设计简要 (1)填料塔设计的一般原则 填料塔设计一般遵循以下原则: ①:塔径与填料直径之比一般应大于15:1,至少大于8:1; ②:填料层的分段高度为:金属:,塑料:; ③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m; ④:液体分布装置的布点密度,Walas推荐95-130点/m2,Glitsh公司建议65-150点/m2 ⑤:填料塔操作气速在70%的液泛速度附近; ⑥:由于风载荷和设备基础的原因,填料塔的极限高度约为50米 (2)设计题目与要求

相关文档
最新文档