天津市河西区2011-2012学年九年级上学期期中质量调查试卷(数学)

合集下载

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

福建省福州市屏东、延安、十六中联考2024-2025学年上学期九年级期中考数学试卷(含答案)

2024-2025学年第一学期期中考试九年级数学试题(满分150分,完卷时间120分钟)班级______姓名______成绩______一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.2.用配方法解一元二次方程的过程中,配方正确的是( )A. B. C. D.3.如图,在中,,则等于( )A. B. C. D.4.抛物线与轴的交点是( )A. B. C. D.5.正多边形的中心角为,则正多边形的边数是( )A.4B.6C.8D.126.如图,将绕点逆时针旋转,得到.若点在线段的延长线上,则的度数为( )A. B. C. D.7.在平面直角坐标系中,三个顶点的坐标分别为,,,以原点为位似中心,把这个三角形缩小为原来的,可以得到,则点的坐标为( )A. B.或C.或 D.2450x x --=()221x +=()221x -=()229x +=()229x -=O e 60ABC ∠=︒AOC ∠30︒60︒120︒150︒223y x =+y ()0,5()0,3()0,2()2,145︒ABC △A 100︒ADE △D BC B ∠30︒40︒50︒60︒ABC △()4,2A ()2,0B ()0,0C O 12A B C '''△A '()2,1()1,2()1,2--()2,1()2,1--()1,2--8.如图,在中,为上一点,连接、,且、交于点,,则为( )A. B. C. D.9.已知抛物线,与的部分对应值如表所示,下列说法错误是( )01230343A.开口向下 B.顶点坐标为C.当时,随的增大而减小D.10.如图,在矩形中,,,以点为圆心作与直线相切,点是上一个动点,连接交于点,则的最小值是( ).A. B.1D.二、填空题(本大题共6小题,每小题4分,共24分)11.在直角坐标系中,若点,点关于原点中心对称,则______.12.已知关于的一元二次方程有一个根为,则______.13.如图,在中,分别交、于点、;若,,,则的长为______.14.如图,四边形为的内接四边形,,则的度数为______.ABCD □E CD AE BD AE BD F :4:25DEF ABF S S =△△:DF BF 2:52:33:53:22y ax bx c =++y x x1-y m()1,41x <y x 0m =ABCD 8AB =6AD =C C e BD P C e AP BD T AT PT3512()1,A a (),2B b -a b +=x 20x x m -+=2-m =ABC △MN BC ∥AB AC M N 1AM =2MB =9BC =MN ABCD O e 100A ∠=︒DCE ∠15.若圆锥的高为,母线长为,则这个圆锥的侧面展开图的弧长是______.(结果保留)16.关于的一元二次方程有两个整数根且乘积为正,关于的一元二次方程同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②③;④,其中正确结论的结论是______.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题8分)用适当的方法解下列方程:(1)(2)18.(本小题8分)已知是关于的一元二次方程,求证:方程总有两个不相等的实数根.19.(本小题8分)为了测量水平地面上一棵直立大树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在与树底端相距8米的点处,然后沿着直线后退到点,这时恰好在镜子里看到树梢顶点,再用皮尺量得米,观察者目高米,求树的高度.20.(本小题8分)如图1、图2,,均是等腰直角三角形,,(1)在图1中,求证:;(2)若绕点顺时针旋转一定角度后如图2所示,请问与还相等吗?为什么?图1 图221.(本小题8分)如图,是的直径,过点作的切线,点是射线上的一点,连接,过点作,交于点,连接.8cm 10cm cm πx 2220x mx n ++=y 2220y ny m ++=22m n <()()22112m n -+-≥1221m n -≤-≤2240x x +-=()3284x x x -=-()2310x a x a ++++=x B E BE D A 1.6DE = 1.5CD =AB AOB △COD △90AOB COD ︒∠=∠=AC BD =COD △O AC BD AB O e A O e AC P AC OP B BD OP ∥O e D PD(1)请补全图形;(要求:尺规作图,不写作法,保留作图痕迹)(2)证明:是的切线.22.(本小题10分)如图,四边形内接于,为的直径,平分,,点在的延长线上,连接.(1)求直径的长;(2)若.23.(本小题10分)施工队要修建一个横断面为抛物线的公路隧道,其最高点距离地面高度为8米,宽度为16米.现以点为原点,所在直线为轴建立直角坐标系(如图所示).(1)求出这条抛物线的函数解析式,并写出自变量的取值范围;(2)隧道下的公路是单向双车道,车辆并行时,安全平行间距为2米,该双车道能否同时并行两辆宽2.5米、高5米的特种车辆?请通过计算说明;24.(本小题12分)问题背景:如图1,已知,求证:;尝试运用:如图2,在中,点是边上一动点,,且,,,与相交于点,在点运动的过程中,连接,当时,求的长度;拓展创新:如图3,是内一点,,,,,求的长.PD O e ABCD O e BD O e AC BAD ∠CD =E BC DE BD BE =P OM O OM x x ABC ADE ∽△△ABD ACE ∽△△ABC △D BC 90BAC DAE ︒∠=∠=ABC ADE ∠=∠4AB =3AC =AC DE F D CE 12CE CD =DE D ABC △BAD CBD ∠=∠12CD BD =90BDC ∠=︒3AB =AC =AD图1 图2图325.(本小题14分)已知抛物线过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并直接写出点的坐标;(2)如图1,为线段上方的抛物线上一点,,垂足为,轴,垂足为,交于点.当时,求的面积;(3)如图2,与的延长线交于点,在轴上方的抛物线上是否存在点,使若存在,求出点的坐标;若不存在,请说明理由.图1 图22024-2025学年第一学期期中考试九年级数学参考答案及评分标准一、选择题(共10小题,每小题4分,满分40分)题号12345678910答案A D C B C B C A CD二、填空题(本大题共24分,每小题4分)11.112.13.314.15.16.①③④三、解答题(共8小题,满分86分)17.(1)解:.,,,22y ax ax c =-+()1,0A -()0,3C x B D D E BC EF BC ⊥F EM x ⊥M BC G BG CF =EFG △AC BD H x P OPB AHB ∠=∠P 6-100︒12π2240x x --=1a = 2b =-4c =-.,即,(2)解:或,.18.证明:,故方程总有两个不相等的实数根;19.解:根据题意,易得,则,则,即,解得:,答:树的高度为.20.解:(1)证明:,均是等腰直角三角形,,,,,;(2)答:相等.在图2中,,,,在和中,,,.21.解:(1)答:补全图形如图所示:()()2242414200b ac ∴∆=-=--⨯⨯-=>1x ∴===11x =+21x =()()3242x x x -=--()()32420x x x -+-=()()3420x x +-=340x +=20x -=12x ∴=243x =-()()()22223411694425140a a a a a a a a ∆=+-⨯⨯+=++--=++=++>90CDE ABE ∠=∠=︒CED AEB∠=∠ABE CDE ∽△△BE AB DE CD =81.6 1.5AB =7.5AB =AB 7.5m AOB △COD △90AOB COD ︒∠=∠=OA OB ∴=OC OD =OA OC OB OD ∴-=-AC BD ∴=90AOB COD ︒∠=∠=DOB COD COB ∠=∠-∠ COA AOB COB ∠=∠-∠DOB COA∴∠=∠DOB △COA △OD OC DOB COA OB OA =⎧⎪∠=∠⎨⎪=⎩()SAS DOB COA ∴≌△△BD AC ∴=(2)解:证明:连接,切于,,即,,,,,,在和中,,,,,即,是的半径,是的切线.22.(1)解:如图所示,连接,为的直径,平分,OD PA O e A PA AB ∴⊥90PAO ∠=︒OP BD ∥DBO AOP ∴∠=∠BDO DOP∠=∠OD OB = BDO DBO ∴∠=∠DOP AOP ∴∠=∠AOP △DOP △,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩()SAS AOP DOP ∴≌△△PDO PAO ∴∠=∠90PAO ︒∠= 90PDO ︒∴∠=OD PD ⊥OD O e PD ∴O e OC BD O e AC BAD ∠,,..,,,即...(2)解:如图所示,设其中小阴影面积为,大阴影面积为,弦与劣弧所形成的面积为,由(1)已知,,,,.,弦弦,劣弧劣弧..为的直径,,,,...23.(1)解:依题意:抛物线形的公路隧道,其高度为8米,宽度为16米,现在点为原点,点,顶点,设抛物线的解析式为,把点,点代入得:,90BAD ︒∴∠=11904522BAC DAC BAD ∠=∠=∠=⨯︒=︒OB OD=90COD ︒∴∠=CD = OC OD =222OD CD ∴=228OD =2OD ∴=224BD OD OB ∴=+=+=1S 3S CD CD 2S 90COD ∠=︒45DAC ∠=︒OC OD =4BD =()11180904522BDC COD ︒︒︒∴∠=-∠=⨯=DAC BDC ∠=∠ ∴BC =CD BC =CD 12S S ∴=BD O e CD =90BCD ECD ∴∠=∠=︒BC CD ==BE = CE BE BC ∴=-=-=11622ECD S CE CD ∴=⋅=⨯=△13236ECD S S S S S S ∴=+=+==阴影部分△OM O ∴()16,0M ()8,8P 2y ax bx =+()16,0M ()8,8P 6488256160a b a b +=⎧⎨+=⎩解得抛物线的解析式为,,自变量的取值范围为:.(2)解:当时,,故能同时并行两辆宽2.5米、高5米的特种车辆.24.证明:问题背景:,,,,,,.尝试应用:如图(2),连接,,,,,,,,,,,,,,,182a b ⎧=-⎪⎨⎪=⎩∴2128y x x =-+16OM = ()16,0M ∴x 016x ≤≤98 2.512x =--=21992072582232y ⎛⎫=-⨯+⨯=> ⎪⎝⎭ABC ADE ∽△△AB AC AD AE∴=BAC DAE ∠=∠BAD DAC DAC CAE ∴∠+∠=∠+∠BAD CAE ∴∠=∠AB AD AC AE=ABD ACE ∴∽△△CE 4AB = 3AC =90BAC ∠=︒5BC ∴===90BAC DAE ∠=∠=︒ ABC ADE ∠=∠ABC ADE ∴∽△△AB AC AD AE∴=43AB AD AC AE ∴==90BAC DAE ︒∠=∠= 90BAD CAE DAC ∴∠=∠=︒-∠BAD CAE ∴∽△△B ACE ∴∠=∠43AB BD AC CE ==设,,,,,,,,,,拓展创新:过点作的垂线,过点作的垂线,两垂线交于点,连接,图3,,,又,,,又,,即,,,,,,∴4BD x =3CE x =54CDx ∴=-90B ACB ︒∠+∠= 90ACE ACB ︒∴∠+∠=90DCE ︒∴∠=12EC DC = 31542x x ∴=-12x ∴=32EC ∴=3CD =DE ∴===A AB D AD M BM 90BAM ADM BDC ︒∴∠=∠=∠=BAD DBC ∠=∠ DAM BCD ∴∠=∠90ADM BDC ︒∠=∠= BDC MDA ∴∽△△BD DC MD DA∴=BDC ADM ∠=∠BDC CDM ADM CDM ∴∠+∠=∠+∠BDM CDA ∠=∠BDM CDA ∴∽△△BM DM BD AC AD DC∴==12CD BD = 2BD CD ∴=2BM AC ∴==2DM AD =,,,(舍去).25.解:(1)把点,代入中,,解得,,顶点;(2)方法一:如图1,抛物线,令,,或,.设的解析式为,将点,代入,得,解得,..设直线的解析式为,设点的坐标为,将点坐标代入中,得,,联立得.AM ∴===222AD DM AM += 22423AD AD ∴+=AD ∴=()1,0A -()0,3C 22y ax ax c =-+203a a c c ++=⎧⎨=⎩13a c =-⎧⎨=⎩223y x x ∴=-++∴()1,4D 223y x x =-++0y =1x ∴=-3x =()3,0B ∴BC ()0y kx b k =+≠()0,3C ()3,0B 330b k b =⎧⎨+=⎩13k b =-⎧⎨=⎩3y x ∴=-+EF CB ⊥ EF y x b =+E ()2,23m m m -++E y x b =+23b m m =-++23y x m m ∴=-++233y x y x m m =-+⎧⎨=-++⎩.把代入,得,..,即.解得或.点是上方抛物线上的点,(舍去).点,,,,,;方法二:图1如图所示,过点作、分别垂直,轴,分别交于,点设,由可知,则,则代入二次函数解析式化简的解得,(舍去)则22262m m x m m y ⎧-=⎪⎪∴⎨-++⎪=⎪⎩226,22m m m m F ⎛⎫--++∴ ⎪⎝⎭x m =3y x =-+3y m =-+(),3G m m ∴-+BG CF = 22BG CF ∴=()()2222223322m m m m m m ⎛⎫⎛⎫---+-=+ ⎪ ⎪⎝⎭⎝⎭2m =3m =- E BC 3,m ∴=-∴()2,3E ()1,2F ()2,1G EF ==FG ==112EFG S ∴==△F FR FH y x R H RF m =CF BG =CRF GMB ≌△△RF MB m ==32HM m ∴=-()232EG m =-()23263EM m m m ∴=-+=-()3,63E m m --2760m m -+=11m =26m =1121122EFG S EG FK ∴=⨯⨯=⨯⨯=△(3)如图2,过点作于,点,,.点,点,,联立得,.设,把代入,得,,联立得,,,..设点.过点作轴于点,在轴上作点使得,且点的坐标为.若在和中,,,.A AN HB ⊥N ()1,4D ()3,0B 26BD y x ∴=-+ ()1,0A -()0,3C 33AC y x ∴=+326y x y x =+⎧⎨=-+⎩35245x y ⎧=⎪⎪∴⎨⎪=⎪⎩324,55H ⎛⎫∴ ⎪⎝⎭12AN y x b =+()1,0-12b =1122y x ∴=+112226y x y x ⎧=+⎪⎨⎪=-+⎩11585x y ⎧=⎪⎪∴⎨⎪=⎪⎩118,55N ⎛⎫∴ ⎪⎝⎭2222211816815555AN ⎛⎫⎛⎫⎛⎫⎛⎫∴=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22281655HN ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭AN HN ∴=45H ∴∠=︒()2,23P n n n -++P PR x ⊥R x S RS PR =45RSP ︒∴∠=S ()233,0n n -++45OPB AHB ︒∠=∠=OPS △OPB △POS POB ∠=∠OSP OPB ∠=∠OPS OBP ∴∽△△...或或(舍去).,,.OP OS OB OP∴=2OP OB OS ∴=⋅()()()222213333n n n n n ∴++-=⋅-++0n ∴=n =3n =()10,3P∴2P3P。

2011--2012学年度郯城县九年级上学期期末数学试卷(1)

2011--2012学年度郯城县九年级上学期期末数学试卷(1)

2011—2012学年度郯城县九年级上学期期末考试数学试题(文中虽然有几个乱码,但是下载后正常)一、选择题(每题3分,共36分,只有一个正确答案)1、下列图形中,中心对称图形是A、B、C、D、2、下列根式中属最简二次根式的是A B、C D3、两圆半径分别为3和5,圆心距为7,则两圆的位置关系是A、内切B、相交C、外切D、外离4、下列事件中,必然事件是A、掷一枚硬币,正面朝上B、从车间刚生产的产品中任意抽取一个,是次品C、某运动员跳高的最好成绩是20.1米D、a是实数,|a|≥05、若3是关于x的方程x2+cx+6=0的一个根,则c的值是A、3B、6C、-5D、-66、方程(x+1)(x-2)=x+1的解是A、2B、3C、-1,2D、-1,37、下列二次函数中,图像以直线x=2为对称轴,且经过点(0,1)的是A、y=(x-2)2+1B、y=(x+2)2+1C、y=(x-2)2-3D、y=(x+2)2-38、如图所示,在△ABC中,∠B=40o,将△ABC绕点A逆时针旋转至在△ADE处,使点B落在BC 的延长线上的D点处,则∠BDE=A、90oB、85oC、80oD、大小不确定9、如图,已知直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB 均相切,切点分别是D、C、E。

若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是A 、14B 、12C 、10D 、910、如图,点F 是ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误..的是 A 、E D E A=D F A BB 、D E B C=E F F BC 、B C D E=B F B ED 、B F B E=B C A E11、如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=A 、7B 、7.5C 、8D 、8.512、如图所示的二次函数c bx ax y ++=2的图像中,小明同学观察得出了下面四条信息:①240b ac ->;②1c >;③20a b -<;④a-b+c <0,你认为错误的有A 、1个B 、2个C 、3个D 、4个二、填空题(每小题3分,共21分)13、化简= .14、已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,则落在地球上的概率是.15、圆锥的底面半径为4cm,母线长为12 cm,则该圆锥的侧面积为cm2.16、如果关于x一元二次方程x2+px+q=0的两根分别为x1=2, x2=1,那么p+q的值是.17、如图,在△ABC中,DE//BC,DE分别交边AB、AC于D、E两点,若AD:BD=1:2,则△ADE与△ABC的面积比为.18、如图,已知二次函数y=x2+bx+c的图像经过点(-1,0),(2,0),当y随x的增大而减小时,的取值范围是 .19、如图为抛物线c+=2的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,y+bxax则a、b之间满足的关系式是 .三、解答题(共63分)20、(本题7分)已知关于x一元二次方程a x2-a x-1=0(a≠0)有两个相等的实数根,求a的值.21、(本题8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.答案卡姓名:一、选择题:二、填空题:13、14、15、16、17、18、19、三、解答题:20、解:21、解:22、(本题12分)如图所示,E是正方形ABCD的边AB上的一点,EF⊥DE交BC于点F,(1)求证:△AD E∽△BEF(2)若AE:EB=1:2,求DE:EF的比值.23、(本题11分)如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D(1)求证:AC=CD(2)若AC=2,AO=求OD的长度.24、(本题12分)已知抛物线y=-x2+2x+3与轴交于A、B两点(A点在B点左侧),顶点为P.(1)求A、B、P三点坐标.(2)在直角坐标系中,用列表描点法画出抛物线,并根据图像写出取何值时,函数值大于零:(3)将此抛物线的图像向下平移4个单位,请写出平移后图像的函数表达式.25、(本题13分)某超市销售一种进价为15元/个的暖手宝,经调查发现,该暖手宝每天的销售量W(个)与销售单价x(元)满足W=-2x+70,设销售这种暖手宝每天的利润为y(元).(1)求y与x之间的函数关系式:(2)当销售单价定为多少元时,每天的利润最大?最大是多少?(3)在保证销售量尽可能大的前提下,该超市每天还想获得150元的利润,应将销售单价定为多少元?。

天津市河西区2023-2024学年八年级下学期期中数学试题(原卷版)

天津市河西区2023-2024学年八年级下学期期中数学试题(原卷版)

八年级数学(一)本试卷分为第I 卷(选择题)、第II 卷(非选择题)两部分.第I 卷为第1页至第4页,第II 卷为第4页至第8页.试卷满分100分.考试时间90分钟.答卷前,请务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.祝你考试顺利!第I 卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.2.本卷共10题,共30分.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 在实数范围内有意义,则的取值范围是( )A B. C. D. 2.( )A. B. C. D. 3. 由下列长度组成的各组线段中,不能组成直角三角形的是( )A. 3,4,5 B. 1C. 5,12,13D. 4,5,64. 如图,在中,分别是中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是( )A. B. C. D. 5. 如图,池塘边有两点A 、B ,点是与方向成直角的方向上一点,测得,,则A ,B 两点间的距离是( )..的x 3x >3x <3x ≥-3x ≤-+=ABC ∆,D E ,AB BC F DE ADFC B F ∠=∠B BCF ∠=∠AC CF =AD CF=C BA AC 50m CB =20m AC =mA. B. C. 30 D. 706. 菱形的周长为20,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )A. B. C. 5 D. 107. 下列命题中,是真命题的是( )A. 两条对角线互相垂直且相等的四边形是正方形B. 两条对角线相等的四边形是矩形C. 两条对角线互相垂直平行四边形是菱形D. 两条对角线互相垂直的四边形是平行四边形8. 顺次连接矩形各边中点所得的四边形是( )A. 平行四边形B. 矩形C. 菱形D. 等腰梯形9. 利用勾股定理,可以作出长为无理数的线段.如图,在数轴上找到点A ,使,过点A 作直线垂直于,在上取点B ,使,以原点O 为圆心,以长为半径作弧,弧与数轴的交点为C ,那么点C 表示的无理数是( )A. B. 6 C. D. 10. 如图,在直角三角形中,,,,点是边上一点(不与,重合),作于点,于点,若点是的中点,则的最小值是( )A. 1B.C.D. 2第II 卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上.2.本卷共13题,共70分.的5OA =l OA l 2AB =OB5.5ABC 90ACB ∠=︒3AC =4BC =M AB A B ME AC ⊥E MF BC ⊥F P EF CP 1.2 1.5二、填空题:(本大题共6小题,每小题3分,共18分.)11.__.12. 计算:______.13. 边长为4的正方形的对角线的长度为__________.14. 如图,菱形ABCD 的周长为48cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于___.15. 如图,有一四边形空地,,,,,,则四边形的面积为__________.16. 如图,正方形的边长为8,对角线相交于点O ,点E 、F 分别在的延长线上,且,G 为的中点,连接,交于点H ,连接.则的长为_______.三、解答题:(本大题共7小题,共52分.解答应写出文字说明、演算步骤或证明过程.)17 计算:(1).(2).18. 已知x =2(7-2+(2的值..)11+=ABCD AB AD ⊥6AB =8AD =24BC =26CD =ABCD ABCD AC BD 、BC CD 、4,2CE DF ==EF OE CD GH GH --+⎝2+19. 如图,在▱ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形.20. 我国古代数学著作《九章算术》中有这样一个问题.有一个水池,水面是一个边长为10尺(尺)的正方形,在水池正中央有一根芦苇(点P 是的中点),它高出水面1尺(尺).如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面(),求水的深度PN .21. 如图,菱形的对角线、相交于点O ,,,与交于点F .(1)求证:四边形的为矩形;(2)若,,求菱形的面积.22. 如图,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G .(1)求证:AE=CF ;(2)若∠ABE=55°,求∠EGC大小.的10AB =AB 1MP =MN BN =ABCD AC BD BE AC ∥AE BD OE AB AEBO 10OE =16AC =ABCD23. 将一个矩形纸片放置在平面直角坐标系内,边、分别在轴、轴上,点坐标是且、,点是线段上的动点,将沿翻折得到.(1)求点和的坐标.(2)如图①,当点落在线段上时,求点的坐标.(3)如图②,当点为线段中点时,求线段的长度.OABC xOy OA OC x y B (),a b a b ()2100a b ++-=P BC OCP △OP OC P '△A C C 'AP P P BC BC '。

【一元一次方程核心题型50题(完善版)

【一元一次方程核心题型50题(完善版)

4、 方程的解 4. 【中】(人大附中 2012-2013 学年度第一学期期中初一年级数学练习)若关于 x 的方 程 3x 2 k 与方程 2 x k 1 的解相同,则 k ________. 【中】(广东模拟)若 x A.0 三、 一元一次方程的定义 1、 判断方程是否为一元一次方程 6.
25. 【易】(2009 年西安高新一中初一分班数学真卷)小明以 8 折优惠买了一双鞋,省了 20 元,那么他买鞋实际付了________元.
26. 【易】(山东淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业 生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得 到销售价格 13%的补贴资金.今年 5 月 1 日,甲商场向农民销售某种家电下乡手机 20 部.已知从甲商场售出的这 20 部手机,国家共发放了 2340 元的补贴,若设该手机的 销售价格为 x 元,以下方程正确的是 A. 20x 13% 2340 B. 20x 2340 13% C. 20 x(1 13%) 2340 D. 13% x 2340
23. 【易】(河南郑州市初一上期末)商场推出全场打八折的优惠活动,持贵宾卡可在八 折基础上继续打折.小明妈妈持贵宾卡买了标价为 10000 元的商品,共节省 2800 元, 则她用贵宾卡在八折基础上继续享受________优惠.
24. 【易】(太原市七年级第二次测评)元旦时,某服装店将一件衣服按成本价提高 40% 后标价,又打 8 折卖出,结果这件衣服获利 24 元,这件衣服的成本价是________元
1 x ;④ t 2 3t 2 0 ;⑤ 3x y 3x 5 ; x ⑥ 2 4 6 ;⑦ x 1 2 中,方程有________个,一元一次方程有________(填序号). 1 是方程 mx 3m 2 0 的根,则 x m 的值为( m B.1 C. 1 D.2

2020-2021学年天津市河北区九年级(上)期中数学试卷

2020-2021学年天津市河北区九年级(上)期中数学试卷

2020-2021学年天津市河北区九年级(上)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.2.(3分)平面直角坐标系内,与点P(﹣3,2)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣2)3.(3分)抛物线y=(x﹣2)2+2的顶点坐标为()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)4.(3分)将抛物线y=2x2向左平移4个单位长度,再向上平移1个单位长度得到的抛物线的解析式为()A.y=2(x﹣4)2﹣1B.y=2(x+4)2+1C.y=2(x﹣4)2+1D.y=2(x+4)2﹣15.(3分)参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,设共有x个队参加比赛,则下列方程符合题意的是()A.x(x+1)=90B.x(x+1)=90C.x(x﹣1)=90D.x(x﹣1)=906.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.7.(3分)如图,EM经过圆心O,EM⊥CD于M,若CD=4,EM=6,则弧CED所在圆的半径为()A.B.C.3D.48.(3分)如图,P A、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交P A、PB 于C、D两点,若∠APB=60°,则∠COD的度数()A.50°B.60°C.70°D.75°9.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG =3,CG=2,则CE的长为()A.B.C.4D.10.(3分)抛物线y=ax2+bx+c的对称轴直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个二、填空题:本大题共8个小题,每小题3分,共24分.11.(3分)若函数是二次函数,则m的值为.12.(3分)已知函数y=x2﹣2x﹣3,当函数值y随x的增大而减小时,x的取值范围是.13.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为.14.(3分)如图,将△ABC绕点A逆时针旋转得到△AB′C′,若B′落到BC边上,∠B=50°,则∠CB′C′的度数为.15.(3分)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.16.(3分)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.17.(3分)以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P.若点P的读数为135°,则∠CBD的度数是.18.(3分)如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F.则四边形PEDF面积的最小值为.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤. 19.(5分)解方程:x2+10x+16=0.20.(6分)如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围.21.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若CD=4,AD=8,试求⊙O的半径.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?23.(10分)在平面直角坐标系中,已知O为坐标原点,点A(2,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.(Ⅰ)如图①,当旋转后满足DC∥x轴时,求点C的坐标.(Ⅱ)如图②,当旋转后点C恰好落在x轴正半轴上时,求点D的坐标.(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P′,当DP+AP′取得最小值时,求点P的坐标(直接写出结果即可)24.(10分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c 经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.2020-2021学年天津市河北区九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原来的图形重合.2.(3分)平面直角坐标系内,与点P(﹣3,2)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣2)【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:与点P(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故选:A.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)抛物线y=(x﹣2)2+2的顶点坐标为()A.(﹣2,2)B.(2,﹣2)C.(2,2)D.(﹣2,﹣2)【分析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.【解答】解:∵抛物线y=(x﹣2)2+2,∴抛物线y=(x﹣2)2+2的顶点坐标为:(2,2),故选:C.【点评】此题主要考查了二次函数的性质,根据顶点式得出顶点坐标是考查重点同学们应熟练掌握.4.(3分)将抛物线y=2x2向左平移4个单位长度,再向上平移1个单位长度得到的抛物线的解析式为()A.y=2(x﹣4)2﹣1B.y=2(x+4)2+1C.y=2(x﹣4)2+1D.y=2(x+4)2﹣1【分析】把抛物线y=2x2的顶点(0,0)先向左平移4个单位长度,再向上平移1个单位长度后得到点的坐标为(﹣4,1),即得到平移后抛物线的顶点坐标,然后根据顶点式写出解析式即可.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)先向左平移4个单位长度,再向上平移1个单位长度得到(﹣4,1)所以平移后所得的抛物线的解析式y=2(x+4)2+1,故选:B.【点评】本题考查了二次函数图象与几何变换,关键是掌握二次函数的顶点式y=a(x ﹣h)2+k.5.(3分)参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,设共有x个队参加比赛,则下列方程符合题意的是()A.x(x+1)=90B.x(x+1)=90C.x(x﹣1)=90D.x(x﹣1)=90【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程.【解答】解:设有x个队参赛,则x(x﹣1)=90.故选:D.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.6.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;D、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的对称轴x=﹣<0,故选项错误.故选:C.【点评】应该熟记一次函数y=ax+a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.(3分)如图,EM经过圆心O,EM⊥CD于M,若CD=4,EM=6,则弧CED所在圆的半径为()A.B.C.3D.4【分析】连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6﹣R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.【解答】解:连接OC,设弧CED所在圆的半径为R,则OC=R,OM=6﹣R,∵EM经过圆心O,EM⊥CD于M,CD=4,∴CM=DM=2,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,R2=(6﹣R)2+22,R=,故选:A.【点评】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.8.(3分)如图,P A、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交P A、PB 于C、D两点,若∠APB=60°,则∠COD的度数()A.50°B.60°C.70°D.75°【分析】连接AO,BO,OE由切线的性质可得∠P AO=∠PBO=90°,结合已知条件和四边形的内角和为360°可求出∠AOB的度数,再由切线长定理即可求出∠COD的度数.【解答】解:连接AO,BO,OE,∵P A、PB是⊙O的切线,∴∠P AO=∠PBO=90°,∵∠APB=60°,∴∠AOB=360°﹣2×90°﹣60°=120°,∵P A、PB、CD是⊙O的切线,∴∠ACO=∠ECO,∠DBO=∠DEO,∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠COE+∠EOD=∠AOB=60°.故选:B.【点评】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.9.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG =3,CG=2,则CE的长为()A.B.C.4D.【分析】连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5﹣x =BF,FG=EG=8﹣x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.【点评】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.(3分)抛物线y=ax2+bx+c的对称轴直线x=﹣2.抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论中正确的个数有()①4a﹣b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b>4ac.A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性以及由x=﹣1时y>0可判断②,由抛物线与x轴有两个交点,且顶点为(﹣2,3),即可判断③;利用抛物线的顶点的纵坐标为3得到=3,即可判断④.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,∴c>3a,所以②错误;∵抛物线与x轴有两个交点,且顶点为(﹣2,3),∴抛物线与直线y=2有两个交点,∴关于x的方程ax2+bx+c=2有两个不相等实数根,所以③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,∵a<0,∴b=4a<0,∴b2+2b>4ac,所以④正确;故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:本大题共8个小题,每小题3分,共24分.11.(3分)若函数是二次函数,则m的值为﹣3.【分析】根据二次函数的定义得出m2﹣7=2,再利用m﹣3≠0,求出m的值即可.【解答】解:若y=(m﹣3)x m2﹣7是二次函数,则m2﹣7=2,且m﹣3≠0,故(m﹣3)(m+3)=0,m≠3,解得:m1=3(不合题意舍去),m2=﹣3,∴m=﹣3.故答案为:﹣3.【点评】此题主要考查了二次函数的定义,根据已知得出m2﹣7=2,注意二次项系数不为0是解题关键.12.(3分)已知函数y=x2﹣2x﹣3,当函数值y随x的增大而减小时,x的取值范围是x <1.【分析】根据二次函数的性质和题目中的函数解析式,可以写出当x为何值时,y随x的增大而减小.【解答】解:∵函数y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该函数图象开口向上,当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大,故答案为:x<1.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.13.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为y1>y2>y3.【分析】根据题意画出函数图象解直观解答.【解答】解:如图:y1>y2>y3.故答案为y1>y2>y3.【点评】本题考查了二次函数图象上点的坐标特征,画出函数图象是解题的关键.14.(3分)如图,将△ABC绕点A逆时针旋转得到△AB′C′,若B′落到BC边上,∠B=50°,则∠CB′C′的度数为80°.【分析】依据旋转的性质可求得AB=AB′,∠AB′C′的度数,依据等边对等角的性质可得到∠B=∠BB′A,于是可得到∠CB′C′的度数.【解答】解:由旋转的性质可知:AB=AB′,∠B=∠AB′C′=50°,∵AB=AB′,∴∠B=∠BB′A=50°.∴∠BB′C′=50°+50°=100°,∴∠CB′C′=180°﹣100°=80°,故答案为:80°.【点评】本题主要考查的是旋转的性质,等腰三角形的性质,求得∠AB′C′和∠BB′A 的度数是解题的关键.15.(3分)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.【点评】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.(3分)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB 之间的距离是3.【分析】过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.17.(3分)以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P.若点P的读数为135°,则∠CBD的度数是45°.【分析】根据切线的性质得到∠OPB=90°,证出OP∥BC,根据平行线的性质得到∠POB=∠CBD,于是得到结果.【解答】解:如图,∵点P的读数为135°,∴∠POB=180°﹣135°=45°.∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP∥BC,∴∠CBD=∠POB=45°,故答案是:45°.【点评】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.18.(3分)如图,直线y=x+1与x轴、y轴分别相交于A、B两点,P是该直线上的任一点,过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F.则四边形PEDF面积的最小值为.【分析】连接DP,根据直线y=x+1与x轴、y轴分别相交于A、B两点,求得AB的长,即可得出⊙P的半径,证△PED≌△PFD,可得四边形PEDF面积=2S△PED=2×PE×DE,当DP⊥AP时,四边形PEDF面积的最小,利用锐角三角函数求出DP的长,即可得出四边形PEDF面积的最小值.【解答】解:如图,连接DP,∵直线y=x+1与x轴、y轴分别相交于A、B两点,当x=0时,y=1,当y=0时,x=﹣2,∴A(﹣2,0),B(0,1),∴AB===,∵过点D(3,0)向以P为圆心,AB为半径的⊙P作两条切线,切点分别为E、F,∴DE=DF,PE⊥DE,∵PE=PF,PD=PD,∴△PED≌△PFD(SSS),∵⊙P的半径为,∴DE=,当DP⊥AP时,DP最小,此时DP=AD•sin∠BAO=5×,∵四边形PEDF面积=2S△PED=2×PE×DE=DE,∴四边形PEDF面积的最小值为=.故答案为:.【点评】本题考查圆的切线的性质,勾股定理,全等三角形的判定与性质,直线与坐标轴的交点.解题的关键是掌握圆的切线的性质.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤. 19.(5分)解方程:x2+10x+16=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2+10x+16=0,(x+2)(x+8)=0,x+2=0,x+8=0,x1=﹣2,x2=﹣8.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.20.(6分)如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围.【分析】(1)把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标;(2)由解析式可求得其对称轴,再结合函数的增减性分0<x<1和1<x<3分别求y的最大值和最小值即可求得y的取值范围.【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4);(2)∵y=(x﹣1)2﹣4,∴抛物线开口向上,对称轴为x=1,∴当x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大,∴当0<x<1时,当x=0时,y有最大值为﹣3,当x=1时,y有最小值为﹣4,当1<x<3时,当x=3时,y有最大值为0,当x=1时,y有最小值为﹣4,∴当0<x<3时,﹣4≤y<0.【点评】本题考查了待定系数法、二次函数的性质、综合性较强,难度适中.21.(7分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若CD=4,AD=8,试求⊙O的半径.【分析】(1)连接OC,根据切线的性质,判断出AD∥OC,再应用平行线的性质,即可推得AC平分∠DAB.(2)作OE⊥AD于点E,判断出四边形OEDC是矩形,并应用勾股定理,求出⊙O的半径是多少即可.【解答】(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,∴AC平分∠DAB.(2)解:如图2,作OE⊥AD于点E,,设⊙O的半径为x,∵AD⊥CD,OE⊥AD,∴OE∥CD;由(1),可得AD∥OC,∴四边形OEDC是矩形,∴OE=CD=4,AE=AD﹣DE=8﹣x,∴42+(8﹣x)2=x2,∴80﹣16x+x2=x2,解得x=5,∴⊙O的半径是5.【点评】此题主要考查了切线的性质和应用,以及平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.22.(8分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量,则每箱牛奶的定价应是多少钱?【分析】(1)根据每降价1元,则每月的销意将增加10箱;每箱降价x元,则多卖10x 箱,据此可列出函数关系式;根据36﹣x≥24,及x为正整数,可得自变量x的取值范围;(2)设每月销售牛奶的利润为w,则根据每箱的利润乘以销售量等于利润,可得关于x 的二次函数,令w=800,解方程,再根据问题的实际意义对方程的解作出取舍,则定价也可求得.【解答】解:(1)由题意得:y=60+10x∵36﹣x≥24∴x≤12∵x为正整数∴1≤x≤12,且x为正整数;(2)设每月销售牛奶的利润为w,则w=(36﹣x﹣24)(10x+60)=﹣10x2+60x+720=﹣10(x﹣3)2+810令w=800得:﹣10(x﹣3)2+810=800解得:x1=2,x2=4∵要使每月销售牛奶的利润不低于800元,且获得尽可能大的销售量∴x=4∴36﹣4=32>24(元)∴每箱牛奶的定价应是32元钱.【点评】本题考查了二次函数在销售问题中的应用,理清题中的数量关系正确列式,是解题的关键.23.(10分)在平面直角坐标系中,已知O为坐标原点,点A(2,0),B(0,4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.(Ⅰ)如图①,当旋转后满足DC∥x轴时,求点C的坐标.(Ⅱ)如图②,当旋转后点C恰好落在x轴正半轴上时,求点D的坐标.(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P′,当DP+AP′取得最小值时,求点P的坐标(直接写出结果即可)【分析】(1)如图1中,作CH⊥x轴于H.只要证明四边形ADCH是矩形,利用矩形的性质即可解决问题;(2)如图2中,作DK⊥AC于K.在Rt△ADC中,求出DK、AK即可解决问题;(3)如图3中,连接P A、AP′,作点A关于y轴的对称点A′,连接DA′交y轴于P′,连接AP′.由题意P A=AP′,推出AP′+PD=P A+PD,根据两点之间线段最短,可知当点P与点P′重合时,P A+PD的值最小.只要求出直线A′D的解析式即可解决问题;【解答】解:(1)如图1中,作CH⊥x轴于H.∵CD∥AH,∠D=∠AHC=90°,∴∠DAH=90°,∴四边形ADCH是矩形,∴AD=OA=CH=2,CD=OB=AH=4,∴OH=6,∴C(6,2).(2)如图2中,作DK⊥AC于K.在Rt△ADC中,∵AD=2,CD=4,∴AC=2,∵•AD•DC=•AC•DK,∴DK=,AK=,∴OK=2+,∴D(2+,).(3)如图3中,连接P A、AP′,作点A关于y轴的对称点A′,连接DA′交y轴于P′,连接AP′.由题意P A=AP′,∴AP′+PD=P A+PD,根据两点之间线段最短,可知当点P与点P′重合时,P A+PD的值最小.∵A′(﹣2,0),D(2+,),∴直线A′D的解析式为y=x+,∴点P坐标(0,).【点评】本题考查了几何变换综合题、解直角三角形,两点之间线段最短等知识,解题的关键是会利用两点之间线段最短解决最短路径问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.(10分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c 经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.【分析】(1)令x=0,由y=﹣x+2,得A点坐标,令y=0,由y=﹣x+2,得C点坐标,将A、C的坐标代入抛物线的解析式便可求得抛物线的解析式,进而由二次函数解析式令y=0,便可求得B点坐标;(2)过M点作MN⊥x轴,与AC交于点N,设M(a,),则N(a,),由三角形的面积公式表示出四边形的面积关于a的函数关系式,再根据二次函数的性质求得最大值,并求得a的值,便可得M点的坐标;(3)根据旋转性质,求得O′点和A′点的坐标,令O′点和A′点在抛物线上时,求出m的最大和最小值便可.【解答】解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);方法二:连接OM,如图2,设M(a,),S四边形ABCM=S△ABO+S△AOM+S△OCM==,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图3∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点.【点评】本题是一个二次函数的综合题,主要考查了二次函数的图象与性质,旋转的性质,待定系数法,求函数图象与坐标轴的交点,求函数的最大值,三角形的面积公式,第(2)题关键在求函数的解析式,第(3)关键是确定O′,A′点的坐标与位置.。

2023-2024学年天津市河西区七年级(下)期末数学试卷及答案解析.

2023-2024学年天津市河西区七年级(下)期末数学试卷及答案解析.

2023-2024学年天津市河西区七年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)在平面直角坐标系中,点(﹣3,2)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)下列调查中,最适合采用全面调查的是()A .了解某批次新能源汽车的续航能力B .了解某款手机电池的使用寿命C .了解某市初中生阅读课外书的情况D .了解某班同学的视力情况3.(3分)估计的值应在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间4.(3分)能满足a +4>10的a 取值范围为()A .a <6B .a >6C .a >﹣6D .a <﹣65.(3分)如图AB ,CD 相交于点O ,OB 平分∠DOE ,若∠DOE =100°,则∠AOE 的度数为()A .100°B .110°C .120°D .130°6.(3分)空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A .扇形图B .折线图C .直方图D .条形图7.(3分)本学期进行了6次数学测验,甲、乙、丙、丁四名学生成绩的平均分相同,都是90分,但每位同学6次成绩的方差不同,分别是,,S 丙2=20,S 丁2=21,那么这四名学生中成绩最稳定的是()A .甲B .乙C .丙D .丁8.(3分)在平面直角坐标系中,把点P (﹣2,5)向左平移1个单位长度,再向上平移个单位长度,所得到的对应点P ′的坐标为()A .B .C .D .9.(3分)已知实数a,b,且a<b,则下列结论不一定成立的为()A.a﹣3<b﹣3B.a<b+8C.﹣4a>﹣4b D.a2<b210.(3分)如图,若AB∥CD,CD∥EF,AD∥BC,BD为∠ADC的平分线,则与∠DOF相等的角的个数为()A.3B.4C.5D.6二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上。

人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)

2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。

1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。

2024-2025学年阶段性学业水平测评卷(吉林省九年级上学期期中考试A卷)数学试题

2024-2025学年阶段性学业水平测评卷(吉林省九年级上学期期中考试A 卷)数学试题一、单选题1.抛物线224y x =-的顶点坐标是()A .()2,4B .()0,4-C .()0,4D .()2,4-2.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .3.平面内,已知O 的半径是5cm ,线段6cm OP =,则点P 在()A .O 外B .O 上C .O 内D .无法确定4.如图,在O 中,OC ⊥弦A 于点C ,4AB =,1OC =,则OB 的长为()A .17B .15CD .35.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是()214312y x =--+,则他将铅球推出的距离为()A .3mB .4mC .7mD .10m6.《九章算术》是我国传统数学的重要著作之一,奠定了我国传统数学的基本框架.《九章算术》中记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,问它的高与宽各是多少?利用方程思想,设矩形门高为x 尺,则依题意所列方程为(1丈10=尺,1尺10=寸)()A .()2226.810x x ++=B .()2226.810x x +-=C .()226.810x x +=D .()226.810x x -=二、填空题7.点()3,2M -关于原点对称的点的坐标是.8.如图,以点O 为旋转中心,将AOB ∠按顺时针方向旋转110︒得到COD ∠,若40AOB ∠=︒,则AOD ∠=°.9.已知函数2=32y x x a ++-的图象过原点,则a 的值为10.将一元二次方程()()252x x x +=-化为一般形式2100x ax ++=则a 的值为.11.如图,BC 为O 的直径,弦CD OA ∥.若50C ∠=︒,则A ∠=°.12.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的度数是°.13.当=时,代数式2421x x +-的值与代数式232x -的值相等.14.若一个两位数的十位,个位上的数字分别为a ,b ,则通常记作这个两位数为ab ,于是10ab a b =+.如:()()101010910a a a a a -=+-=+,当()9910x x ⨯-的值最大时,x 的值为.三、解答题15.用适当的方法解方程:2230x x --=.16.若二次函数2y ax =的图象经过点()2,4P -,求该函数的解析式并写出对称轴.17.如图,在Rt ABC △中,90ACB ∠=︒,2AC CB ==,将ABC V 绕点A 按逆时针方向旋转90°得到ADE V .(1)线段DE 的长是______,EAC ∠的度数是______°;(2)连接CD ,求证:四边形ACDE 是平行四边形.18.在平面直角坐标系中,抛物线21y ax bx =++经过点()1,0和()1,4-.(1)求此抛物线的解析式;(2)若点()12,A y ,()23,B y 都在该抛物线上,则1y _______2y .(填“>”“<”或“=”)19.如图,在5×5的正方形网格纸中,已知格点M 和格点线段AC ,请按要求画出AC 为对角线的格点四边形(顶点均在格点上).(1)在图①中画出四边形ABCD ,使得四边形ABCD 是中心对称图形,且点M 在四边形ABCD 的内部(不包括边界上).(2)在图②中画出四边形AECF ,使得四边形AECF 既是轴对称图形,又是中心对称图形,且点M 在四边形ABCD 的边界上(不包括顶点上).20.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC 是等边三角形;(2)求圆心O 到BC 的距离OD .21.如图,在平面直角坐标系中,OAB △的三个顶点的坐标分别为()6,3A ,()0,5B ,0,0.(1)将OAB △向左平移5个单位长度得到111O A B △,请画出111O A B △;(2)画出OAB △绕原点O 顺时针方向旋转90︒后得到的22OA B △;(3)OAB ∠的度数为_______︒.22.如图,二次函数2y x bx c =-++的图象经过点()1,0A -,其对称轴为直线1x =,与x 轴的另一个交点为C ,与y 轴交于点B .(1)点C 的坐标为______;(2)将二次函数的图象向下平移3个单位长度,求平移后的二次函数的解析式.23.如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C 距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取5=)24.已知△ABC 是等腰三角形,AB=AC .(1)特殊情形:如图1,当DE ∥BC 时,有DB EC .(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P 是等腰直角三角形ABC 内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.25.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2cm BC =.点P 从点A 出发,以2/s cm 的速度沿A B C →→向终点C 运动,过点P 作直线AC 的垂线交AC 于点D ,当点P 与A 、C 不重合时,作点A 关于点D 的对称点Q ,设点P 的运动时间为()s 03x x <<,APQ △与ABC V 重叠部分图形的面积是2cm y .(1)AB 的长为______;(2)当点Q 与点C 重合,求x 的值;(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.26.如图,在平面直角坐标系中,点A ,B 分别在x 轴,y 轴的正半轴上,3OA OB ==.经过点O ,A 的抛物线L :2y ax bx =+交AB 于点C ,点C 的横坐标为1.点P 在线段AB 上,当点P 与点C 不重合时,过点P 作PQ y ∥轴,与抛物线交于点Q .以PQ 为边向右侧作矩形PQMN ,且1PN =.设点P 的横坐标为m 时,解答下列问题.(1)求此抛物线L 的解析式;(2)当抛物线的顶点落在边PN 上时,求m 的值;(3)矩形PQMN 为正方形时,直接写出m 的值.。

北京市海淀区北京大学附属中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

2024~2025学年度第一学期期中练习九年级数学学科试卷2024年11月考生须知:1.本试卷共8页,共三道大题,28道小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写班级、姓名.3.答案一律填涂或书写在答题卡相应位置上,用黑色字迹签字笔作答.4.考试结束,只交答题卡,并妥善保管试卷.一、选择题(共16分,每题2分)第1~8题均有四个选项,符合题意的选项只有一个.1.下列图形中,既是中心对称图形也是轴对称图形的是( ).A .B .C .D .2.在平面直角坐标系内,点关于原点的对称点Q 的坐标为( ).A .B .C .D .3.一元二次方程的解是( ).A .,B .C .,D .,4.抛物线的顶点坐标是( ).A .B .C .D .5.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是( ).A .B .C .D .6.北京市2021年人均可支配收入为7.5万元,2023年达到8.18万元,若2021年至2023年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( ).A .B.()3,2P -()3,2-()3,2()2,3-()3,2--20x x +=10x =21x =121x x ==11x =-21x =10x =21x =-()212y x =-+()1,2()1,2-()1,2-()1,2--144︒90︒72︒60︒()28.1817.5x +=()27.518.18x +=C .D .7.如图所示,在4×4的正方形网格中,绕某点旋转一定的角度,得到,则其旋转中心是( ).A .点AB .点BC .点CD .点D8.如图,是边长为4的等边三角形,D 是BC 的中点,E 是直线上的一个动点,连接,将线段绕点C 逆时针旋转得到,连接.下列说法中正确的个数是( ).①;②;③;④点E 的运动过程中,的最小值是1.A .1个B .2个C .3个D .4个二、填空题(共16分,每题2分)9.请写出一个图象开口向上,且与y 轴交于点)的二次函数的解析式__________.10.关于x 的一元二次方程有一个根是,则__________.11.若关于x 的方程有两个相等的实数根,则实数a 的值是__________.12.如图,为的直径,点C 是上的一点,,则__________°.13.点,在抛物线上,则__________(填“>”“<”或“=”).14.如图,在平面直角坐标系中,点,,以点B 为旋转中心,把线段顺时针旋转得到线段,则点C 的坐标为__________.()27.518.18x -=+()28.1817.5x -=MNP △111M N P △ABC △AD EC EC 60︒FC DF 2DC =FCD ECA ∠=∠CE CF =DF ()0,1230x x m -+=1x =m =20x x a -+=AB O e O e 70ABC ∠=︒BAC ∠=()13,A y -()22,B y 22y x =1y 2y xOy ()0,2A ()1,0B BA 90︒BC15.如图,将绕顶点C 逆时针旋转得到,且点B 刚好落在上,若,,则等于__________°.16.已知函数,下列结论:①若该函数图象与x 轴只有一个交点,则;②方程至少有一个整数根;③若,则的函数值都是负数;④不存在实数a ,使得对任意实数x 都成立.所有正确结论的序号是__________.三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程:(1);(2).18.如图,在平面直角坐标系中,抛物线的部分图象经过点,.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,x 的取值范围.19.已知m 是方程的一个根,求代数式的值.20.已知:如图,为锐角三角形,.求作:一点P ,使得.ABC △A B C ''△A B ''25A ∠=︒45BCA =∠'︒A BA '∠()211y ax a x =-++1a =()2110ax a x -++=11x a<<()211y ax a x =-++()2110ax a x -++≤24250x -=2280x x +-=xOy 22y ax x c =++()0,3A -()1,0B 0y <2220x x --=()()()22111m m m -+-+ABC △AB AC =APC BAC ∠=∠作法:①以点A 为圆心,长为半径画圆;②以点B 为圆心,长为半径画弧,交于点C ,D 两点;③连接并延长交于点P .点P 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明:证明:连接,.∵,∴点C 在上.∵,∴∠______=∠______.∴.∵点D ,P 在上,∴.(__________)(填推理的依据)∴.21.如图,是等边三角形,点D 在边上,以为边作等边,连接,.求证:.22.已知关于x 的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程两个根差为1,求此时m 的值.23.学校计划利用一片空地建一个长方形自行车车棚,其中一面靠墙,墙的长度为8米.在与墙平行的一面开一个2米宽的门,已知现有的木板材料可修建的总长为26米,且全部用于除墙外其余三面外墙的修建.(1)长方形车棚与墙垂直的一面至少为__________米;(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路(如图中阴影),若车棚与墙AB BC A e DA A e PC BD AB AC =A e BC BD =12BAC CAD ∠=∠A e 12CPD CAD ∠=∠APC BAC ∠=∠ABC △AC CD CDE △BD AE BD AE =()2320m x x m -+++=垂直的一面长按(1)中的最小长度,则停放电动车的区域面积能否达到54平方米,若能,此时小路的宽度是多少米?若不能,请说明理由.24.如图,是直径,是的一条弦,且于点E ,连接、和.(1)求证:;(2)若,,求的半径.25.有机肥作为一种富含有机质及多样营养元素的优质肥料,对于土壤改良及肥力提升具有显著效果.将其应用于小树施肥,不仅能有效供给必要的养分,还能优化土壤结构,进而促进小树的茁壮成长.在针对金叶女贞和连翘这两种植物的培育过程中,我们统一施用了A 种有机肥,并确保了它们在浇水、松土、除草等抚育管理措施上的一致性.以下表格详细记录了A 种有机肥对这两种植物增长高度的影响:天数t /天1530456090金叶女贞增长的高度 3.3 6.39.612.615.919.3连翘增长的高度 1.14.09.115.636.2(1)通过分析数据,发现与t 之间近似满足正比例函数关系.请在给出的平面直角坐标系中,画出关于t 的函数的图象;(2)观察图象,补全表格(结果保留小数点后一位);(3)实验前,测量金叶女贞的高度为,连翘的高度为,大概在第__________天时,连翘和金叶女贞一样高(结果保留到整数).26.已知关于x 的二次函数上两个不同的点,.(1)求顶点坐标;(2)若且时,总有,求m 的取值范围.27.已知,点D 是直线上一动点(不含B 点),连接,将线段绕点A 逆时针旋转得到线段,连接线段,过点E 作交直线于点F .AB O e CD O e CD AB ⊥AC BD OC ACO D ∠=∠2BE =CD =O e 1cm h 2cmh 1h 2h 43.6cm 31.2cm 221y mx mx m =-+-()11,A x y ()22,B x y 145x <<221x m =-12y y <60ABC ∠=︒BC AD AD 60︒AE ED EF AB ⊥AB图1备用图(1)如图1,点D 在点B 右侧时,①依题意补全图形;②用等式表示与的数量关系,并证明;③用等式表示线段,,之间的数量关系,并证明;(2)当点D 在直线上运动时,请直接写出线段,,之间的数量关系.28.在平面直角坐标系中,点,点为定点,对于点P 作如下变换,将点P 绕点M 逆时针旋转得到点,再将点绕点N 逆时针旋转后得到点Q ,则称点Q 为点P 的“双逆转点”.备用图1 备用图2(1)若点P 为线段上的一点,则在点,,中,点P 的“双逆转点”可能为__________;(2)若点P 的“双逆转点”在x 轴上,请写出一个满足条件的点P 的坐标__________;(3)若点P 坐标为,点Q 为点P 的“双逆转点”,①当长度最短时,求m 的值;②已知半径为2,若存在过点Q 的直线被所截得的弦长为2,则m 的取值范围为__________.EAB ∠EDB ∠BF BD AB BC BF BD AB xOy ()0,2M ()1,0N 90︒1P 1P 90︒MN ()1,1A --()1,0B -()2,1C -(),4m m +PQ N e N e初三第一学期期中练习答案和评分标准数学2024.11一、选择题(本题共6分,每小题2分)题号12345678答案CADACBBD二、填空题(本题共16分,每小题2分)9.(答案不唯一) 10.2 11.12.2013.>14.15.40 16.②④(答对一个给1分,多选或错选不得分)三、解答题(共68分,第17题8分,18~25题每题5分,第26题6分,第27、28题每题7分)17.(1)(一个答案2分,如果只会移项给1分)(2),,.(不限方法,不全对的酌情给分)18.(1)由题意知,(2分)解得,解析式为.(3分)(2).(5分)19.解.原式.(3分)∵,∴,(4分)∴原式.(5分)20.(1)如图所示.(2分)(2),,一条弧所对的圆周角等于它所对圆心角的一半.(5分)21.证明:∵,均为等边三角形,∴,,.21y x =+14()3,152x =±2280x x +-=14x =-22x =3230c a =-⎧⎨+-=⎩31c a =-⎧⎨=⎩223y x x =+-31x -<<()()222212123m m m m m =--++=--2220m m --=222m m -=231=-=-BAC BAD ABC △CDE △AC BC =CD CE =60ACB ACE ∠=∠=︒在与中,,∴≌(SAS ),(4分)∴.(5分)22.(1)∵,∴方程总有两个实数根.(2分)(2)解:∵,∴,∴,.∵方程两个根的差为1,∴或0.∴或.(5分)23.解:(1).(2分)(2)设小路的宽为a 米,根据题意得,.(4分)整理得;,解得:(舍去),.(5分)答:小路的宽为1米.24.(1)证明;∵,∴,∵,∴.(2分)(2)解,设的半轻为r ,则.∵,∴(3分)在中,,解得.( 5分)25.(1)(2分)(2)23~30之间均可.(4分)(3)78~86之间均可.(5分)26.(1)由题意可知:,∵,∴顶点坐标为.(2分)BCD △ACE △60AC BC ACB ACE CD CE =⎧⎪∠=∠=︒⎨⎪=⎩BCD △ACE △BD AE =()()()234210m m m ∆=+-+=+≥()2320x m x m -+++=()()210x m x ---=12x m =+21x =22m +=0m =2-10x ≥()()821054a a --=214130a a -+=13a =1a =OA OC =ACO A ∠=∠A D ∠=∠ACO D ∠=∠O e 2OE r =-CD AB ⊥1122CE DE CD ===⨯=Rt OCE △(()2222r r +-=3r =0m ≠()()2222121111y mx mx m m x x m x =-+-=-+-=--()1,1-法2:对称轴,当时,,∴顶点坐标为.(2分)(2)当时,对称轴是直线,当时,y 随x 的增大而增大;当时,y 随x 的增大而减小.∵,∴点始终在对称轴右侧,若A 、B 在对称轴右侧,,即时,∵,∴,∴,若A 、B 在对称轴异侧,,即时,关于对称轴的对称点是.∵,∴,即,∴(舍) .综上所述:.(4分)当时,对称轴是直线,当时,y 随x 的增大而减小;当时,y 随x 的增大而增大.∵,,∴,,关于对称轴的对称点是 .∵,∴,即,2122b m x a m-=-=-=1x =211y m m m =-+-=-()1,1-0m >1x =1x ≥1x <145x <<()11,A x y 2211x m =->1m >12y y <215m -≥3m ≥2211x m =-<1m <()22,B x y ()222,B x y '-12y y <225x -≥()2215m --≥1m ≤-3m ≥0m <1x =1x ≥1x <221x m =-145x <<2211x m =-<1145x <<<()22,B x y ()222,B x y '-12y y <224x -≤()2214m --≤∴,∴.(6分)综上所述:或.27.(1)①补全图形,如图所示(1分)②,(2分)理由如下:∵线段绕点A 逆时针旋转得到线段,∴,,∴是等边三角形,∴.∵,∴.∵在四边形中,,∴,∴.(3分)③,理由如下:(4分)延长线段至点G 使得,连结,.∵,,∴.∵是等边三角形,∴.在和中,,∴≌(SAS ),(5分),∴.∵,∴.∵,,,∴.(6分)(2)当点D 在点B 右侧时,,当点D 在点B 左侧时,.(7分)12m ≥-102m -≤<102m -≤<3m ≥180EAB BDE ∠+∠=︒AD 60︒AE AE AD =60EAD ∠=︒AED △60AED ∠=︒60ABC ∠=︒180120ABD ABC ∠=︒-∠=︒ABDE 360EAB ABD BDE DEA ∠+∠+∠+∠=︒12060360EAB BDE ∠+︒+∠+︒=︒180EAB BDE ∠+∠=︒2BF AB BD =+BA AG BD =EG EB 180EAG EAB ∠+∠=︒180EAB EDB ∠+∠=︒EAG EDB ∠=∠AED △EA ED =EGA △EBD △EA EDEAG EDB GA BD =⎧⎪∠=∠⎨⎪=⎩EGA △EBD △EG EB =EF BF ⊥GF FB =BG BA GA =+GA BD =2BG BF =2BF BA BD =+2BF AB BD =+2BF AB BD =-28.(1)A ,C .(2分)(2)答案不唯一,纵坐标为1即可.(3分)(3)①(5分)②或(7分)2m =-m≥m ≤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河西区2011-2012学年度第一学期九年级期中质量调查
数学
一、 选择题:

⑴下列数是方程2x-x-6=0的根是( )
(A)4 (B)3 (C) 3 (D)2
⑵下列图形中,可以看作是中心对称图形的有( )

(A)0个 (B)1个 (C)2个 (D)3个
⑶有一边长为23的正三角形,则它的外接圆的面积为()

(A)23 (B)43 (C)4 (D)12
⑷一天,妈妈问儿子今天打球时间有多长。儿子淘气地说:“我打球时钟表的时针转动了
60
。”那么,据此你判断儿子打球所用的时间应是()
(A)30分钟 (B)60分钟 (C)90分钟 (D)120分钟
⑸如图,OABC,AOB50,则ADC的度数为( )
(A)25 (B)30 (C)50 (D)60

⑹已知三角形ABC,若过点A、点B作圆,那么下面说法正确的是( )
(A)这样的圆只能作出一个
(B)这样的圆只能作出两个
(C)点C不在该圆的外部,就在该圆的内部
(D)圆心分布在AB的中垂线上
⑺若关于x的一元二次方程2kx2x10有两个不相等的实数根,则k的取值范围是()
(A)k1 (B)k1且k0
(C)k1 (D)k1且k0
⑻为了美化环境,某市加大对绿化的投资。2008年用于绿化投资20万元,2010年用于绿化
投资25万元,求这两年绿化投资的年平均增长率。设这两年绿化投资的年平均增长率为x,
根据题意所列方程为

(A)220x25 (B)20(1x)25

(C)220(1x)25 (D)220(1x)20(1x)25
⑼一直平面上四点A(0,0),B(8,0),C(10,6),D(2,6),有一直线ymx3m2将四边形
ABCD

分成面积相等的两部分,则m的值( )

(A)12 (B)13 (C)14 (D)16
⑽如图,两正方形彼此相邻内接于半圆,若小正方形的面积为216cm,则该半圆的半径为()
(A)(45)cm (B)45cm (C)9cm (D)62cm

二、 填空题:
⑾方程29x1的根是
⑿一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其他都相同,搅匀后随
机的从中摸出一个球是绿球的概率是

⒀已知⊙1O与⊙2O的半径分别为3cm和4cm,若12OO7cm,则⊙1O与⊙2O的位置关系

⒁填空:2x10x (x 2)
⒂一个长方形,长比宽多2cm,面积是2100cm,则这个长方形的周长为
⒃已知圆锥的侧面积为215cm,地面半径为3cm,则圆锥的高是

⒄直线5yx53与x轴,y轴分别交予A、B两点,把PAB绕点A顺时针旋转90后
得到O'A'B',则点B'的坐标是

⒅已知MON内有一定点P,在角的两边OM、ON上能否分别找到两点A、B,使
APB

为等腰直角三角形? (填“能”或“不能”)。如果你认为能,在图中画出一个示
意图,并说明画法;如果你认为不能,说明理由。
三、 解答题:
⒆解方程:x(x-2)x-20

⒇已知:关于x的方程22xkx10.
(I)求证:方程有两个不相等的实数根;
(II)当k10时,方程的两根之和为 ,两根之积为
(III)若方程的一个根是1,求k的值;

(21)如图,在平面直角坐标系xoy中,点7A(1,)2,点B(3,1),将OAB绕着点O旋转
180
后得到OA'B'.
(I)在图中画出OA'B';
(II)点A,点B的对应点A’和B’的坐标分别是A’ 和B’ ;
(III)请直接写出AB和A’B’的数量关系和位置关系。
(22)张慧同学给大家出了下面这样的问题,请你解答。
我的袋子里有3枚1角和1枚5角的硬币,如果我任意拿出两枚硬币,你知道前述之和大于
5角的概率吗?
(要求:借助化树状图或列表的方法,列举所有等可能的结果,再进行计算。)

(23)已知AB与⊙O相切于点C,OA=OB,OA,OB与⊙O分别交予点D,E
(I)如图①,若⊙O的直径为8,AB=10,求OA得长(结果保留根号);

(II)如图②,连接CD,CE,若四边形ODCE为菱形,求ODOA的值。
(24)如图所示,要设计一座1m高的抽象人物雕塑,使雕塑的上部(腰以上)AC与下部
(腰以下)BC的高度比,等于下部与全部(全身)AB的高度比,雕塑的下部应设计为多高?

(25)如图,ABC中,C90,⊙O为它的内切圆,切点分别是D、E、F。
(I)若AC4,BC3,求:ABC的内切圆的半径;

(II)若ABC的内切圆半径r,ABC的周长为l,则ABCS的值为
(III)若ADx,BDy,求ABCS。
(26)已知:如图①,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不
含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM。
(I)求证:AMBENB

(II)①当M点在何处时,AMCM的值最小;
②当M点在何处时,AMBMCM的值最小,并说明理由;

(III)当AMBMCM的最小值为31时,求正方形的边长。
天津市河西区2011-2012学年度上学期初三期中数学试题答案
一、 选择
1—5:CCCDA 6—10:DBCAB
二、 填空

11:13x;12:13;13:外切;14: 25 5 15:4101cm;16:4cm

17:(8,3);18:过P作OM的垂线,垂足H1交ON于点F,过P作ON的垂线,垂足H
2

交OM于点E。以点F为圆心,PE为半径作圆交ON于A1、A2,以点E为圆心,PF为半
径作圆交OM于B1、B2。原理:全等三角形,11EBPFPA△≌△,22EBPFPA△≌△

三、 解答题
19:122,1xx

20:(1)证明△>0;(2)-5,12;(3)1
21(1)略(2)
''
7
(1,),(3,1)2AB
(3)平行

22:12
23:(1)41(2)12

24:512m
25:(1)1(2)
2

rl
(3)xy

26:(1)略(2)当M在BD中点时,AMCM值最小(3)2

相关文档
最新文档