基于BP算法的函数逼近步骤
LabVIEW中BP神经网络的实现及应用

LabVIEW中BP神经网络的实现及应用
0 引言LabVIEW 是美国NI 公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。
BP 神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数
据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。
1 BP 神经网络学习算法BP 模型是一种应用最广泛的多层前向拓扑结构,以三层BP 神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。
设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N 个(x,Y,)向量,表示为:输入向量
X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为
T{tl,t2,…,tK}。
(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j 个神经元的输入:
其中:Wji 是隐层第J 个神经元到输入层第i 个神经元的连接权值。
(2)隐层第J 个神经元的输出:
(3)神经网络输出层,第k 个神经元的输入为:
其中:Vkj 是输出层第k 个神经元到隐层第j 个神经元的连接权值。
(4)神经网络输出层,第志个神经元的输出为:
(5)设定网络误差函数E:
(6)输出层到隐层的连接权值调整量△Vkj:
(7)隐层到输入层的连接权值调整量wji:。
异或运算的BP算法解决

《智能优化方法》技术报告题目:基于BP算法的异或运算的解决班级:信科13-01班学号:*********名:***任课教师:**目录一、摘要------------------------------------------------------3二、技术路线及实现方法2.1输入层和输出层神经元数目的选择----------------------32.2隐层层数和神经元数目选择--------------------------------32.3 BP算法学习的四个阶段-------------------------------------4三、实验结果及分析--------------------------------------------5四、总结------------------------------------------------------5五、参考文献------------------------------------------------------5六、附录附录1:代码---------------------------------------------------6 附录2:个人工作---------------------------------------------------8《摘要》 利用BP 函数训练计算机使其可以输出满足精度的逻辑异或运算结果。
结合本课题的特点和网络训练的思想,通过深入分析选择合适的参数;接着构建BP 网络,产生训练样本;选取最优结果作为本文的最终结果,并对输出结果和仿真结果进行分析。
一、问题描述异或问题本质上是分类问题,要求将输入的样本组分为两类,一类样本经异或运算后结果为1,另一类经异或运算后结果为0。
研究表明,BP 网络特别是具有单隐层的BP 网络具有较强的分类能力,能够解异或问题。
二、技术路线及实现方法2.1输入层和输出层神经元数目的选择输入层神经元个数与输入样本维数相同,本实验输入样本为2维向量,所以输入层包含2个神经元。
bp神经网络算法的基本流程

bp神经网络算法的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!BP 神经网络算法的基本流程如下:1. 数据准备:收集和整理用于训练和测试神经网络的数据。
BP算法

成像场景网格划分
以条带SAR为例,网格划分示意图如下:
方 位 向 测绘带宽度 网格点
距离向
将成像区域场景划分为网格状,获得网格点坐标值。 网格大小选取原则:与距离向和方位向分辨率相当或略小
获取网格点回波数据
基本思路:
根据雷达与网格点距离获得相对于参考点的时延长度,在时域回波数据中找到 对应回波数据。 难点:雷达与网格点距离所对应的回波数据与实际回波采样点的数据几乎不会 重合,无法直接从实际回波数据中获得其对应网格点的值。
从方位向起始点开始
计算当前方位向上,雷达与所有网格 点的距离并计算所有网格点相对于最 近距离参考点的延迟时间t 利用每一网格点的延迟时间t ,通 过插值计算所对应的回波值,与上 一方位向该网格点的回波值叠加
下一网格点
下一方位向
否
每个网格点是否全部遍历 是 所有方位向是否全部遍历 是 得到成像场景区域图像 否
m m m 1
m 0.5
通过插值方法获取网格点回波数据
sinc插值:插值精度高,插值精度随着插值核点数的增多而增高 sinc插值公式:
s( m m ) s( m i )sin c[( m m ) ( m i )]
i
例:8点sinc插值
m m
src ( ) A exp{ j 4 f 0 R ( ) / c}
式中,A表示幅度,f0为载频,R(η)为雷达与点目 标之间的距离,c为电磁波波速。 BP算法处理流程在此基础上执行。
BP算法主要步骤: 以条带SAR为例
以最近距离为参考点进行 距离向压缩后的回波数据
对成像场景划分网格 获得所有网格点坐标
方 位 向 测绘带宽度 方 位 向
采样点 雷达位置 R(t)
BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。
BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。
关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。
人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。
人工神经网络最有吸引力的特点就是它的学习能力。
因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。
最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。
因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。
人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。
现在分别介绍人工神经元模型及人工神经网络模型。
1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。
人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。
bp算法公式

bp算法公式
BP算法是一种常用的人工神经网络训练算法。
其全称为“反向传播算法”,其基本思想是利用链式求导法则,通过计算输出误差对每个权重的偏导数来更新网络中各层之间的连接权重,从而不断调整网络参数直到达到预定的训练目标。
BP算法的公式如下:
1. 前向传播
对于输入样本x,在神经网络中进行前向传播,计算出每个神经元的输出值,并将这些值作为输入传递到下一层神经元中,直至输出层。
2. 计算误差项
对于输出层每个神经元j,计算其误差项δj = yj - tj,其中yj为神经元j的输出值,tj为样本对应的真实标签值。
3. 反向传播
从输出层开始,计算每个神经元的误差项,然后根据误差项计算每个权重的偏导数,最后根据偏导数调整权重。
对于隐藏层每个神经元h,其误差项δh可由以下公式计算:
δh = f"(netH) * Σ(δj * wjh)
其中f"为h的激活函数的导数,netH表示神经元h的净输入,wjh为从神经元h到神经元j的权重,Σ表示对输出层每个神经元j 求和。
对于连接h->j的权重wjh,其偏导数可以使用以下公式计算: E/wjh = δj * ah
其中ah为连接h->j的输入值。
4. 更新权重
根据计算出来的各个权重的偏导数,利用梯度下降法更新权重。
具体地,对于权重wjh,更新方式为:
wjh = wjh - η * E/wjh
其中η为学习率,即权重的调整步长。
BP神经网络算法
1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
基于BP神经网络的自校正PID控制研究
基于BP 神经网络的自校正PID 控制研究摘 要: 基于反向传播BP 算法的神经网络具有很强的学习能力,适应能力.本文详细叙述了BP 算法的原理,并将改进的BP 神经网络应用在传统的PID 控制中,克服了PID 控制在参数的调整过程中对于系统模型过分依赖的缺点.利用MATLAB 仿真的结果表明基于BP 神经网络的自校正控制能够使传统PID 控制的参数逼近最优达到很好的控制效果. 关键词: BP 算法,神经网络,PID 控制1引言随着科学技术的发展,人们需要加以控制的过程和系统越来越复杂,许多系统具有大型,复杂和强烈非线性的特点.对这些系统进行有效准确的控制就非常的困难.传统的PID 控制是通过对偏差的比例(P),积分(I),微分(D)的线性组合构成控制向量对被控对象进行控制.它算法结构简单,但是,当被控对象具有非线性,时变不确定性和难以建立精确的数学模型时,PID 控制器参数整定不良,性能欠佳,不能达到理想的控制效果.随着人们对神经网络的研究,基于BP 算法的神经网络以其自学习,自适应及逼近任意函数的能力在控制领域得到应用,将BP 神经网络和传统的PID 控制相结合构成的比例,积分,微分神经元控制器,不仅克服了PID 控制的缺陷,而且具有快速的学习能力,快速的适应性,良好的性能和鲁棒性.因此,可以通过神经网络对系统性能的学习来达到最佳的比例,积分,微分组合,实现最佳的PID 控制效果.2 神经网络的BP 算法2.1 神经网络的结构BP 神经网络是控制领域中应用最多的神经网络,它是多层神经元彼此以前馈方式连接组成的网络,网络中没有信号反馈,只有相邻层神经元,每个神经元首先完成输入信号与连接权值的内积计算,然后通过一个非线性函数作用产生输出.BP 神经网络通常由输入层,输出层和若干隐层构成每层由若干个结点组成, 每一个结点表示一个神经元,上层结点与下层结点之间通过权值联接, 同一层结点之间没有联系。
bp算法链式法则
BP算法链式法则1. 引言BP算法(Backpropagation algorithm)是一种常用的神经网络训练算法,用于调整神经网络中的权值,以使得网络输出与期望输出之间的误差最小化。
BP算法的核心思想是通过使用链式法则,将误差逐层反向传播,从而计算每个神经元的权值更新量。
在本文中,我们将详细介绍BP算法的链式法则,并解释其原理和应用。
我们将首先介绍BP算法的基本思想,然后详细讨论链式法则的推导过程,最后给出一个具体的示例来帮助理解。
2. BP算法的基本思想BP算法是一种监督学习算法,其目标是通过调整神经网络的权值,使得网络的输出尽可能接近期望输出。
BP算法的基本思想是通过反向传播误差信号,逐层调整权值。
BP算法的训练过程可以分为两个阶段:前向传播和反向传播。
在前向传播阶段,输入样本经过网络的每一层计算,直到得到输出层的输出。
在反向传播阶段,根据输出层的误差,逐层计算每个神经元的权值更新量。
3. 链式法则的推导过程链式法则是BP算法中的关键步骤,它允许我们计算每个神经元的权值更新量。
下面我们将详细推导链式法则的数学公式。
设神经网络的输出为y,期望输出为d,则输出层的误差可以表示为:E=12(y−d)2我们的目标是最小化误差E,因此需要计算误差对权值的偏导数。
根据链式法则,我们可以将误差的偏导数表示为:∂E ∂w ij =∂E∂y⋅∂y∂net j⋅∂net j∂w ij其中,w ij表示连接第i个神经元和第j个神经元的权值,net j表示第j个神经元的输入。
我们可以将上述式子展开,得到:∂E ∂w ij=(y −d )⋅f′(net j )⋅x i 其中,f′(net j )表示第j 个神经元的激活函数的导数,x i 表示连接输入层和第i 个神经元的输入。
通过上述公式,我们可以计算出输出层每个神经元的权值更新量。
然后,我们可以利用类似的方法计算隐藏层和输入层的权值更新量。
假设神经网络有L 个隐藏层,n l 表示第l 个隐藏层的神经元数目,w ij (l )表示连接第l 个隐藏层的第i 个神经元和第l +1个隐藏层的第j 个神经元的权值。
函数逼近的几种算法及其应用汇总
函数逼近的几种算法及其应用汇总
一、函数逼近的几种算法
1、最小二乘法
最小二乘法是一种基于线性模型的函数逼近算法,它的基本假设是拟合函数的形状可以用线性模型表示,且被拟合数据存在一定的噪声存在,最小二乘法的核心思想就是最小化残差(拟合数据与模型之间的偏差)的平方和来寻找最佳拟合参数。
2、Kriging
Kriging(克里金插值)是一种基于空间相关数据的空间插值算法,它会根据空间相关性分析,通过构建模型,拟合、估计和预测空间数据之间的关系,从而实现函数逼近。
3、K近邻算法
K近邻(K Nearest Neighbors Algorithm)是一种基于实例学习的分类算法,它通过计算测试实例与训练实例之间的距离,来决定其所属的类别。
K近邻算法也可以用于函数逼近,这种方法无需训练阶段,可以快速的拟合不同的函数,而且拟合函数的过程中也不需要优化参数。
4、神经网络
神经网络是一类用于函数逼近的算法,它通过模拟人脑神经网络的连接模式,在一系列训练数据的基础上,得到一些函数的参数,从而实现函数的拟合和预测。
二、函数逼近算法的应用
1、多元线性回归
多元线性回归利用最小二乘法,可以对多元关系进行拟合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TAIYUAN UNIVERSITY OF SCIENCE & TECHNOLOGY 基于BP算法函数逼近步骤
** : **
学号 : S*********
班级 : 研1507
基于BP算法函数逼近步骤
一、BP神经网络算法:
BP(Back Propagation)网络是是一种按误差逆向传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层、隐含层和输出层。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐含层或者多隐含层结构;最后一个隐含层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐含层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
二、BP学习算法的计算步骤概述
BP算法的基本原理是梯度最速下降法,它的中心思想是调整权值使网络总误差最小。
运行BP学习算法时,包含正向和反向传播两个阶
段。
(1)正向传播
输入信息从输入层经隐含层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态。
(2)反向传播
将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使误差信号最小。
学习过程是一种误差边向后传播边修正权系数的过程。
隐层的反传误差信号为jk M
k k j i w I f ∑=⋅=1
'
)(δδ由此可得,隐层权值的修
正公式为:
i M
k jk k j ij O w I f w ⋅⋅=∆∑=)()(1
'
δη或i
M
k jk k j j ij O w O O w ⋅⋅-=∆∑=)()1(1
δη
四、程序代码
w10=[0.1 0.2;0.3 0.15;0.2 0.4]; w11=[0.2 0.1;0.25 0.2;0.3 0.35]; w20=[0.2;0.25;0.3]; w21=[0.15;0.2;0.4];
q0=[0.1 0.2 0.3]; q1=[0.2 0.15 0.25]; p0=0.2;p1=0.1; xj=[0.5;0.9]; k1=5;k2=1200; e0=0;e1=0;e2=0; for s=1:72
yp1=cos(2*3.14*k1*s/360); for k=1:k2 for i=1:3
x=w11(i,1)*xj(1,:)+w11(i,2)*xj(2,:); z=x+q1(:,i); o=[1-exp(-z)]/[1+exp(-z)]; m=1/[1+exp(-z)]; m1(i,:)=m; o1(i,:)=o; end for i=1:3 yb=0;
yb=yb+w21(i,:)*o1(i,:); end
yi=yb+p1; n=1/[1+exp(-yi)];
y=[1-exp(-yi)]/[1+exp(-yi)]; e0=e1; e1=e2; e2=[(yp1-y).^2]/2; xj1=e2-e1; xj2=e2-2*e1+e0; xj=[xj1;xj2];
d2=n*(1-y)*(yp1-y);
bk=d2; for i=1:3
u=w21(i,:)*bk;
d1=[1-o1(i,:)]*u;
d0=m1(i,:)*d1;
qw=q1(:,i)-q0(:,i);
q2=q1(:,i)+0.8*d0+0.4*qw;
q3(:,i)=q2;
for j=1:2
dw=w11(i,j)-w10(i,j);
w12=w11(i,j)+0.8*d0*xj(j,:)+0.6*dw; w13(i,j)=w12;
end
end
w10=w11;
w11=w13;
q0=q1;
q1=q3;
for i=1:3
h=w21(i,:)-w20(i,:);
w22=w21(i,:)+0.4*d2*o1(i,:)+0.75*h;
w23(i,:)=w22;
end
w20=w21;
w21=w23;
ph=p1-p0;
p2=p1+0.9*d2+0.6*ph;
p0=p1;
p1=p2;
if e2<0.0001,break;
else k=k+1;
end
end
e(s)=e2;
ya(s)=yp1;
yo(s)=y;
s=s+1;
end
s1=s-1;
s=1:s1;
plot(s,ya,s,yo,'g.',s,e,'rx');
title('BP');
五、运行结果
1.此次逼近的函数为y=cosx,蓝色为真实的余弦曲线,绿色为逼近的余弦曲线,红色代表误差曲线,从图像上可以得出逼近结果与原曲线契合程度高,效果良好。
2.为了测试程序广泛适用性,对函数进行修改反复测试,效果良好,误差十分小。
3.BP算法能很有效的完成数据训练,是一个训练数据的好方法。