正弦函数和余弦函数的图像与性质
正弦函数余弦函数正切函数的图像和性质

正弦函数余弦函数正切函数的图像和性质
:
正弦函数、余弦函数和正切函数是三个重要的三角函数,它们的图形都是周期性函数,具
有十分重要的地位。
正弦函数是由坐标系中给定角度对应的正切函数的导数而直接定义的弧度函数。
它表达为
y = sinx,其曲线图形显示出其周期性质。
它在y轴上出现单位正弦曲线,并且每当x值
增加一个周期时,曲线会回到原来的点。
它的性质是,曲线走势为振幅从正到负,不管x
的值怎么变化,y的值都在-1和1之间浮动。
余弦函数是正弦函数导数的一种,可以表示为y = cosx,它是由坐标原点开始,沿着x轴负半轴正移动一段距离后,再围绕坐标原点旋转而得到的。
它的曲线图形显示出了它的周
期性,并且每当x值增加一个周期,曲线会回到原来的点。
它的特点是,曲线的走势由正
负中点水平移动,每当x的值变大,y的值从正到负或从负到正都会以同样的振幅波动。
正切函数的表达式为y=cotx。
它的曲线图形也可以看出它的周期性,每当x值增加一个周期时,曲线会回到原来的点。
它的曲线走势也分为正负两种,但它的急转点不在水平线上,而是两个平行线。
每次x的值变大,y值从正到负或从负到正都会以不同的振幅波动,其
走向也有别于正弦函数和余弦函数。
正弦函数、余弦函数和正切函数是三个重要的三角函数,它们的图形、性质及走向都不尽
相同,具有十分重要的地位。
正弦函数和余弦函数的图像与性质

例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
正弦函数和余弦函数的图像与性质

3. 求最小正周期: (1) f ( x) 3sin x 4cos x (2) f ( x) sin 2 x (3) f ( x) sin 2 x cos 2 x
y cos x , x R 的值域是 [1,1],最大值是 1,最小值是 1.
当 cos x 1时,x 2k (k Z). 当 cos x 1 时,x (2k 1) (k Z).
(2)周期性
一般地,对于函数 f ( x),如果存在一个常数 T (T 0), 使得当 x 取定义域 D 内的任意值时,都有 f ( x T ) f ( x) 成立,那么函数 f ( x) 叫做周期函数,常数 T 叫做函数 f ( x) 的周期。对于一个周期函数 f ( x) 来说,如果在所有的周期中 存在一个最小正数,那么这个最小正数叫做函数 f ( x) 的 最小正周期。
解: 偶函数; (1)
(2) f ( x) cos 2 x,偶函数;
2 (k Z)
(3)sin x 1 x 2k
x
,但 x 可以取 ,即 f ( x)的定义域不关于原点对称, 2 2
f ( x) 是非奇非偶函数。
(4) f ( x)
1 sin 2 x sin x 1 1 sin 2 x sin x 1
5 3 增:k , k (k Z), 减:k , k (k Z) 8 8 8 8
(4) y log 1 2cos x 3
2
3 解: x cos x 2 k , 2 k 2 6 6
6.1_正弦函数和余弦函数的图像与性质

6.1 正弦函数和余弦函数的图像与性质1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx , x ∈[0,2π]的图像中,五个关键点是(0,1) (2π,0) (π,-1) (23π,0) (2π,1)3.定义域:正弦函数、余弦函数的定义域都是实数集R[或(-∞,+∞)],分别记作: y =sin x ,x ∈R y =cos x ,x ∈R4.值域正弦函数、余弦函数的值域都是[-1,1].其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1. ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1. 而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1.②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-1.5.周期性一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界; 2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0))3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期)正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π.6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称7.单调性 正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1. 余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1.例1 求下列函数的周期:(1)y =3cos x ,x ∈R ;(2)y =sin2x ,x ∈R ;(3)y =2sin(21x -6π),x ∈R .一般地,函数y =A sin(ωx +ϕ),x ∈R 及函数y =A cos(ωx +ϕ),x ∈R (其中A 、ω、ϕ为常数,且A ≠0,ω>0)的周期T =ωπ2.根据这个结论,我们可以由这类函数的解析式直接写出函数的周期,如对于上述例子:(1)T =2π,(2)T =22π=π,(3)T =2π÷21=4π 例2不通过求值,指出下列各式大于0还是小于0.(1)sin(-18π)-sin(-10π); (2)cos(-523π)-cos(-417π).例3 求函数y =2cos 1cos 3++x x 的值域.例4.f (x )=sin x 图象的对称轴是 .例5.(1)函数y =sin(x +4π)在什么区间上是增函数?(2)函数y =3sin(3π-2x )在什么区间是减函数?【当堂训练】1.函数y =cos 2(x -12π)+sin 2(x +12π)-1是( )A.奇函数而不是偶函数B.偶函数而不是奇函数C.奇函数且是偶函数D.非奇非偶函数2.函数y =sin (2x +25π)图象的一条对称轴方程是( )A.x =-2πB.x =-4πC.x =8πD.x =45π3.设条件甲为“y =A sin(ωx +φ)是偶函数”,条件乙为“φ=23π”,则甲是乙的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件4.函数y =sin 4x +cos 4x 的最小正周期为 .5.函数y =sin2x tan x 的值域为 .6.函数y =x -sin x ,x ∈[0,π]的最大值为( ) A.0 B. 2π-1 C.π D. 2243-π7.求函数y =2sin 22x +4sin2x cos2x +3cos 22x 的最小正周期.8.求函数f (x )=sin 6x +cos 6x 的最小正周期,并求f (x )的最大值和最小值.9.已知f (x )=xx x x cos sin 1cos sin 1+-,问x 在[0,π]上取什么值时,f (x )取到最大值和最小值.10.给出下列命题:①y =sin x 在第一象限是增函数; ②α是锐角,则y =sin(α+4π)的值域是[-1,1]; ③y =sin |x |的周期是2π; ④y =sin2x -cos2x 的最小值是-1;其中正确的命题的序号是 .11.求下列函数的单调递增区间:①y =cos(2x +6π); ②y =3sin(3π-2π)12.求函数y =-|sin(x +4π)|的单调区间.13.函数y =sin(2x +25π)的图象的一条对称轴方程是( ) A.x =-2π B.x =-4π C.x =8π D.x =45π【家庭作业】1.在下列区间中函数y =sin(x +4π)的单调增区间是( ) A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π] 2.若函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,试求a 的值. .]4,3[sin 2)( .3的取值范围上递增,求在是正数,函数已知例ωππωω-=x x f4.求下列函数的定义域、值域:(1); (2) ; (3) .5.求下列函数的最大值,并求出最大值时 的集合:(1) , ; (2) , ; (3)(4) .6.要使下列各式有意义应满足什么条件?(1); (2) .37.函数,的简图是()8.函数的最大值和最小值分别为()A.2,-2 B.4,0 C.2,0 D.4,-4 9.函数的最小值是()A.B.-2 C. D.10.如果与同时有意义,则的取值范围应为()A. B. C.D.或11.与都是增函数的区间是()A., B.,C., D.,12.函数的定义域________,值域________,时的集合为_________.13.求证:(1)的周期为;(2)的周期为;(3)的周期为.参考答案:例1解:(1)∵y =cos x 的周期是2π∴只有x 增到x +2π时,函数值才重复出现.∴y =3cos x ,x ∈R 的周期是2π.(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且函数y =sin Z ,Z ∈R 的周期是2π.即Z +2π=2x +2π=2(x +π).只有当x 至少增加到x +π,函数值才能重复出现.∴y =sin2x 的周期是π.(3)令Z =21x -6π,那么x ∈R 必须并且只需Z ∈R ,且函数y =2sin Z ,Z ∈R 的周期是2π,由于Z +2π=(21x -6π)+2π=21 (x +4π)-6π,所以只有自变量x 至少要增加到x +4π,函数值才能重复取得,即T =4π是能使等式2sin [21 (x +T)-6π]=2sin(21x -6π)成立的最小正数.从而y =2sin(21x -6π),x ∈R 的周期是4π. 从上述可看出,这些函数的周期仅与自变量x 的系数有关.例2解:(1)∵-2π<-10π<-18π<2π. 且函数y =sin x ,x ∈[-2π,2π]是增函数. ∴sin(-10π)<sin(-18π) 即sin(-18π)-sin(-10π)>0 (2)cos(-523π)=cos 523π=cos 53π cos(-417π)=cos 417π=cos 4π ∵0<4π<53π<π 且函数y =cos x ,x ∈[0,π]是减函数∴cos53π<cos 4π 即cos 53π-cos 4π<0 ∴cos(-523π)-cos(-417π)<0 例3解:由已知:cos x =⇒--y y 312|y y --312|=|cos x |≤1⇒(yy --312)2≤1⇒3y 2+2y -8≤0 ∴-2≤y ≤34∴y max =34,y min =-2 例4解:由图象可知:对称轴方程是:x =k π+2π(k ∈Z ) 例5解:(1)函数y =sin x 在下列区间上是增函数:2k π-2π<x <2k π+2π (k ∈Z ) ∴函数y =sin(x +4π)为增函数,当且仅当2k π-2π<x +4π<2k π+2π 即2k π-3π<x <2k π+4π(k ∈Z )为所求. (2)∵y =3sin(3π-2x )=-3sin(2x -3π) 由2k π-2π≤2x -3π≤2k π+2π 得k π-12π≤x ≤k π+125π (k ∈Z )为所求. 或:令u =3π-2x ,则u 是x 的减函数 又∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上为增函数, ∴原函数y =3sin(3π-2x )在区间[2k π-2π,2k π+2π]上递减. 设2k π-2π≤3π-2x ≤2k π+2π 解得k π-12π≤x ≤k π+125π(k ∈Z ) ∴原函数y =3sin(3π-2x )在[k π-12π,k π+125π](k ∈Z )上单调递减. 【当堂训练】 1.A 2.A 3.B 4.2π 5.[0,2) 6.C 7. 2π 8.T=2π 函数最大值为1 函数最小值为41. 9.x =4π时,f (x )取到最小值31; x =43π时,f (x )取到最大值3. 10.分析:①y =sin x 是周期函数,自变量x 的取值可周期性出现,如反例:令x 1=4π,x 2=6π+2π,此时x 1<x 2 而sin 3π>sin(6π+2π)∴①错误;②当α为锐角时,4π<α+4π<2π+4π 由图象可知22<sin(α+4π)≤1 ∴②错误;③∵y =sin |x |(x ∈R )是偶函数.其图象是关于y 轴对称,可看出它不是周期函数.∴③错误;④y =sin 2x -cos 2x =-cos2x ,最小值为-1∴④正确.答案:④11. 解:①设u=2x +6π,则y =cos u当2k π-π≤u≤2k π时y =cos u 随u 的增大而增大 又∵u=2x +6π随x ∈R 增大而增大 ∴y =cos(2x +6π)当2k π-π≤2x +6π≤2k π(k ∈Ζ) 即k π-127π≤x ≤k π-12π时,y 随x 增大而增大 ∴y =cos(2x +6π)的单调递增区间为: [k π-127π,k π-12π](k ∈Z ) ②设u=3π-2π,则y =3sin u 当2k π+2π≤u≤2k π+23π时,y =3sin u随x 增大在减小, 又∵u=3π-2x 随x ∈R 增大在减小 ∴y =3sin(3π-2x )当2k π+2π≤3π-2x ≤2k π+23π 即-4k π-37π≤x ≤-4k π-3π时,y 随x 增大而增大 ∴y =3sin(3π-2x )的单调递增区间为 [4k π-37π,4k π-3π](k ∈Z )12. 解:利用“五点法”可得该函数的图象为:显然,该函数的周期为π在[k π-4π,k π+4π](k ∈Z )上为单调递减函数;在[k π+4π,k π+43π](k ∈Z )上为单调递增函数. 13. 方法一:运用性质1′,y =sin(2x +25π)的所有对称轴方程为x k =2πk -π(k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应. 故选A.方法二:运用性质2′,y =sin(2x +25π)=cos2x ,它的对称轴方程为x k =2πk (k ∈Z ),令k =-1,得x -1=-2π,对于B 、C 、D 都无整数k 对应,故选A. 【家庭作业】 1.分析:函数y =sin(x +4π)是一个复合函数即y =sin [ϕ(x )],ϕ (x )=x +4π,欲求y =sin(x +4π)的单调增区间,因ϕ (x )=x +4π在实数集上恒递增,故应求使y 随ϕ (x )递增而递增的区间.方法一:∵ϕ (x )=x +4π在实数集上恒递增,又y =sin x 在[2k π-2π,2k π+2π](k ∈Z )上是递增的,故令2k π-2π≤x +4π≤2k π+2π ∴2k π-43π≤x ≤2k π+4π ∴y =sin(x +4π)的递增区间是[2k π-43π,2k π+4π] 取k =-1、0、1,分别得[-411π,47π]、[-43π,4π]、[45π,49π], 对照选择支,可知应选B像这类题型,上述解法属常规解法,而运用y =A sin(ωx +ϕ)的单调增区间的一般结论,由一般到特殊求解,既快又准确,如本题倘若运用对称轴方程求单调区间,则是一种颇具新意的简明而又准确、可靠的方法.方法二:函数y =sin(x +4π)的对称轴方程是: x k =k π+2π-4π=k π+4π (k ∈Z ),对照选择支,分别取k =-1、0、1,得一个递增或递减区间分别是[-43π,4π]或[4π,45π],对照选择支思考即知应选B. 注:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得.2. 解:显然a ≠0,如若不然,x =-8π就是函数y =sin2x 的一条对称轴,这是不可能的. 当a ≠0时,y =sin2x +a cos2x =)2cos(1)2sin 112cos 1(12222θ-+=++++x a x a x a aa其中cos θ=2211sin ,1aaa +=+θ即tan θ=a1cos sin =θθ 函数y =21a +cos(2x -θ)的图象的对称轴方程的通式为2x k =k π+θ(k ∈Z )∴x k =22πθk +,令x k =-⇒8π22πθk +=-8π∴θ=-k π-4π∴tan θ=tan(-k π-4π)=-1.即a1=-1,∴a =-1为所求. 3. 解:由题设得)(2222Z k k x k ∈+≤≤-ππωππ.230.42,32.2222,0⎪⎩⎪⎨⎧≤<≥-≤-∴+≤≤-∴>ωπωππωπωπωπωπωπω解得k x k故ω的取值范围为].23,0(4. 解:(1) ,(2)由 ()又∵ ,∴∴定义域为 (),值域为. (3)由 (),又由∴∴定义域为(),值域为 .指出:求值域应注意用到 或 有界性的条件.5.解:(1)当,即()时,取得最大值∴函数的最大值为2,取最大值时的集合为.(2)当时,即()时,取得最大值.∴函数的最大值为1,取最大值时的集合为.(3)若,,此时函数为常数函数.若时,∴时,即()时,函数取最大值,∴时函数的最大值为,取最大值时的集合为.(4)若,则当时,函数取得最大值.若,则,此时函数为常数函数.若,当时,函数取得最大值.∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.思考:此例若改为求最小值,结果如何?6.解:(1)由,∴当时,式子有意义.(2)由,即∴当时,式子有意义.7.B 8.B 9.A 10.C 11.D12.;;13.分析:依据周期函数定义证明.证明:(1)∴的周期为.(2)∴的周期为.(3)∴的周期为.。
正弦函数和余弦函数的图像与性质

y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1
2 3
4
x
R [1,1]
x 2k
R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
其值从-1增至1 其值从 1减至-1
y=sinx
y
1 2 3 4
y= cosx
y
1
图 象 定义域 值 域
-2
-
o
-1
x
-2
-
o
-1
2 3
4
x
R [1,1]
x 2k
R [1,1]
x 2k ( k Z )
最 值
ymax=1
x 2k
2
(k Z ) 时
对于一个周期函数,如果在它的所有周期中
存在一个最小的正数,那么这个最小正数就叫做 它的最小正周期.
(2) 正弦函数的周期性
由公式 sin (x+k · 2 )=sin x (kZ) 可知:
正弦函数是一个周期函数,2 ,4 ,„ ,-2 ,
-4 ,„ , 2k (kZ 且 k≠0)都是正弦函数的周期. 2 是其最小正周期 .
时
2
ymax=1
(k Z ) 时
x 2k (k Z ) 时
ymin= 1
ymin= 1
x k
y= 0
x k ( k Z )
正弦函数、余弦函数的性质(全)

当且仅当 x 2k, ( k Z) 时 , (cos x)min 1.
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
ycox(sxR)
例题
求使函数
y3cos2x( )
取得最大值、最小值的
2
自变量的集合,并写出最大值、最小值。
y
1
3 5 2
而在每个闭区间[ 2k , 3 2k ](k Z )上都是
2
2
减函数,其值从1减小到-1。
探究:余弦函数的单调性 y
1
3 5 2
2 3
2
2
O 3 2 5 3 x
2
2
2
1
当x在区间 [3 , 2 ]、[,0]、[,2 ][3 , 4 ] 上时,
4
5 6 x
y=cosx (xR)
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
一.周期性
对于函数f (x),如果存在一个非零常数T,使得 当x取定义域内的每一个值时,都有 f (x+T)=f (x)
那么函数f (x)就叫做周期函数,非零常数T叫做这个 函数的周期。
注:1正、T弦要是函非数零常是数周期函数,2k(kZ且 k0),最小
其值从 1减至-1
五、余弦函数的单调性
y
1
-3 5 -2 3
2
2
o - 2
2
-1
x - … …
2
cosx -1
0
正弦函数和余弦函数的图像与性质.ppt

, 0), (2 ,1)
2
2
并注意-4 曲线的“凹凸”变化.
课堂练习
1.作函数 y sin x 与 y sin x 1在 [0, 2 ]
上的大致图像. 2.指出1.中各图像与正弦函数图像的位置关系.
3.作函数 y cos x, x [ , ]的大致图像.
4.利用3.解不等式:cos x sin x, x [ , ]
-2
五个关键点:(0, 0), ( ,1), ( , 0), (3 , 1), (2 , 0)
2
2
利用五个关-4键点作简图的方法称为“五点法”
10
三、余弦函数的图像
根据诱导公式
cos
8
x
sin(
x) 可知余弦函数
y
cos
6
x的图像可由
y
2 sin
x
的图像向左平移
2
4
个单位得到.
1
2
2
-10
3-5
0
2
1
-2
余弦函数的值域是[1,1] -4
当且仅当 x 2k , k Z 时, -6
余弦函数取得最大值1;-8
5
2
35
x10
2
yP
OM x
当且仅当 x 2k , k-10 Z 时,
余弦函数取得最小值-1-1.2例1.求下列函数的源自大值与最小值,及取到最值6
课堂练习答案
12
1. y sin x, x [0, 2 ] y4
10
x
0
2
3 2
2
2 8
5
-10
正弦函数余弦函数的图像与性质

三角函数在物理学中的应用
振动与波动
正弦和余弦函数是描述简谐振动和波动的基本函 数,广泛应用于声学、光学等领域。
交流电
交流电的电压和电流是时间的正弦或余弦函数, 用于驱动各种电器设备。
磁场与电场
在电磁学中,正弦和余弦函数用于描述磁场和电 场的分布和变工程中的许多振动问题都可以用 正弦和余弦函数来描述,如桥梁 振动、车辆振动等。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,满 足sin(-x) = -sin(x)。
余弦函数的定义
定义
余弦函数是三角函数的另一种形式,定义为直角三角形中锐角的邻边与斜边的比值,记作 cos(x)。
周期性
余弦函数也具有周期性,其周期为2π。
奇偶性
余弦函数是偶函数,满足cos(-x) = cos(x)。
奇偶性
总结词
正弦函数是奇函数,而余弦函数是偶 函数。
详细描述
奇函数满足$f(-x) = -f(x)$,偶函数满 足$f(-x) = f(x)$。对于正弦函数, $sin(-x) = -sin(x)$;对于余弦函数, $cos(-x) = cos(x)$。
最值与振幅
总结词
正弦函数和余弦函数都具有最大值和最小值,这取决于它们的振幅。
正弦函数余弦函数的图像与性质
目录
• 正弦函数与余弦函数的定义 • 正弦函数与余弦函数的图像 • 正弦函数与余弦函数的性质 • 正弦函数与余弦函数的应用 • 正弦函数与余弦函数的扩展知识
01 正弦函数与余弦函数的定 义
正弦函数的定义
定义
正弦函数是三角函数的 一种,定义为直角三角 形中锐角的对边与斜边 的比值,记作sin(x)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1正弦函数和余弦函数的图像与性质一、复习引入 1、复习(1)函数的概念在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作()x f y =,D x ∈。
(2)三角函数线设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值;当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值;当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值;根据上面规定,则,OM x MP y ==,由正弦、余弦、正切三角比的定义有:sin 1y yy MP r α====; cos 1x xx OM r α====; tan y MP AT AT x OM OAα====;这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。
二、讲授新课【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由.1、正弦函数、余弦函数的定义(1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数图象?2、正弦函数R x x y ∈=,sin 的图像(1)[]π2,0,sin ∈=x x y 的图像【方案1】——几何描点法步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点小结:几何描点法作图精确,但过程比较繁。
【方案2】——五点法步骤1:列表——列出对图象形状起关键作用的五点坐标; 步骤2:描点——定出五个关键点;步骤3:连线——用光滑的曲线顺次连结五个点小结:[]π2,0,sin ∈=x x y 的五个关键点是()0,0、⎪⎭⎫⎝⎛1,2π、()0,π、⎪⎭⎫ ⎝⎛0,23π、()0,2π。
(2)R x x y ∈=,sin 的图像由()Z k x x k ∈=+,sin 2sin π,所以函数x y sin =在区间[]πππ22,2+k k()0,≠∈k Z k 上的图像与在区间[]π2,0上的图像形状一样,只是位置不同.于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、右平行移动(每次平行移动π2个单位长度),就可以得到正弦函数R x x y ∈=,sin 的图像。
3、余弦函数R x x y ∈=,cos 的图像 (1)[]π2,0,cos ∈=x x y 的图像(2)R x x y ∈=,cos 的图像 图像平移法 由x x cos 2sin =⎪⎭⎫⎝⎛+π,可知只须将R x x y ∈=,sin 的图像向左平移2π即可。
三、例题举隅例、作出函数[]π2,0,sin 1∈+=x x y 的大致图像;【设计意图】——考察利用“五点法”作正弦函数、余弦函数图像 【解】①列表x2ππ 23π π2x sin 0 1 0 1- 0 x y sin 1+= 1 2 1 0 1②描点在直角坐标系中,描出五个关键点:()1,0、 ⎪⎭⎫ ⎝⎛2,2π、()1,π、⎪⎭⎫⎝⎛0,23π、()1,2π③连线练习、作出函数[]π2,0,sin 21∈-=x x y 的大致图像二、性质1.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作:y =sin x ,x ∈R y =cos x ,x ∈R2.值域因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sin x |≤1, |cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1也就是说,正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时, 取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-13.周期性由sin(x +2k π)=sin x ,cos(x +2k π)=cosx (k ∈Z )知:正弦函数值、余弦函数值是按照一定规律不断重复地取得的。
一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0)都是这两个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期。
4.奇偶性由sin(-x)=-sinx , cos(-x)=cosx可知:y =sinx 为奇函数, y =cosx 为偶函数∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称5.单调性结合上述周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1。
余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1y =sin x y = cos x图 象定义域 R R值 域 [-1,1][-1,1]最 值当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 当且仅当x =-2π+2kπ,k ∈Z 时,取得最小值-1当且仅当x =2k π,k ∈Z时,取得最大值1 当且仅当x =(2k +1)π,k∈Z 时,取得最小值-1周期性 2π 2π 奇偶性 奇函数 偶函数单调性在闭区间[-2π+2k π,2π+2k π](k ∈Z )上单调递增,;在闭区间[2π+2k π,23π+2k π](k ∈Z )上单调递减在闭区间[(2k -1)π,2k π](k ∈Z )上单调递增;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上单调递减典型例题(3个,基础的或中等难度)例1:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么。
(1)y =cosx +1,x ∈R ; (2)y =sin2x ,x ∈R 解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R 取得最大值的x 的集合{x |x =2k π,k ∈Z }。
∴函数y =cos x +1,x ∈R 的最大值是1+1=2。
(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sinZ ,Z ∈R 取得最大值的Z 的集合是{Z |Z =2π+2k π,k ∈Z } 由2x =Z =2π+2k π,得x =4π+k π即 使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =4π+k π,k ∈Z } ∴函数y =sin2x ,x ∈R 的最大值是1。
例2:求下列函数的单调区间 (1)y =-cosx (2)y=41sin(4x -3π) (3)y=3sin(3π-2x) 解:(1)由y =-cosx 的图象可知:单调增区间为[2k π,(2k +1)π](k ∈Z ) 单调减区间为[(2k -1)π,2k π](k ∈Z ) (2)当2k π-2π≤4x-3π≤2k π+2π, ∴函数的递增区间是[2πk -24π,2πk +245π](k ∈Z )当2k π+2π≤4x-3π≤2k π+23π∴函数的递减区间是[2πk +245π,2πk +2411π](k ∈Z )(3)当2k π-2π≤3π-2x ≤2k π+2π时,函数单调递减,∴ 函数单调递减区间是[k π-12π,k π+125π](k ∈Z )当2k π+2π≤3π-2x ≤2k π+23π时,函数单调递增,∴ 函数单调递减区间是[k π+125π,k π+1211π](k ∈Z )例3:求下列三角函数的周期:(1) y=sin(x+3π) (2) y=cos2x (3) y=3sin(2x +5π)解:(1) 令z= x+3π而 sin(2π+z)=sinz 即:f (2π+z)= f (z) f [(x+2π)+3π]=f (x+3π) ∴周期T=2π. (2)令z=2x ∴f (x )=cos2x=cosz=cos(z+2π)=cos(2x+2π)=cos[2(x+π)]即:f (x +π)=f (x ) ∴周期T=π。
(3)令z=2x +5π则 f (x )=3sinz=3sin(z+2π)=3sin(2x +5π+2π)=3sin(524ππ++x )=f (x +4π) ∴周期T=4π。
注:y =A sin(ωx +φ)的周期T=||2ωπ。
(四)课堂练习(2个,基础的或中等难度) 1、求使下列函数y=3-cos 2x取得最大值的自变量x 的集合,并说出最大值是什么。
解:当cos2x =-1,即2x=2k π+π,k ∈Z ,∴{x|x=4k π+2π,k ∈Z }, y=3-cos 2x取得最大值。
2、求y=x 2sin 21的周期。
解:∵y=x 2sin 21=41(1-cos2x )=41-41cos2x ,∴T=π。
3、求函数y=3cos(2x+3π)的单调区间。
解:当2k π≤2x+3π≤2k π+π时,函数单调递减,∴ 函数的单调递减区间是[k π-6π,k π+3π](k ∈Z )当2k π-π≤2x+3π≤2k π时,函数单调递增,∴ 函数的单调递增区间是[k π-32π,k π-6π](k ∈Z )(五)拓展探究(2个) 1、求下列函数的周期: (1)y=sin(2x+4π)+2cos(3x-6π) (2)y=|sinx| (3)y=23sinxcosx+2cos 2x -1 解:(1)y 1=sin(2x+4π) 最小正周期T 1=π y 2=2cos(3x-6π) 最小正周期 T 2=32π∴T 为T 1 ,T 2的最小公倍数2π ∴T=2π(2)T=π(3) y=3sin2x+cos2x=2sin(2x+6π) ∴T=π 2、求下列函数的最值:(1)y=sin(3x+4π)-1 (2)y=sin 2x -4sinx+5 (3)y=x xcos 3cos 3+- 解:(1) 当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时,y max =0 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时,y min =-2 (2) y=(sinx -2)2+1 ∴当x=2k π-2πk ∈Z 时,y max =10 当x=2k π-2πk ∈Z 时,y min = 2 (3) y=-1+xcos 31+ 当x=2k π+π k ∈Z 时,y max =2当x=2k π k ∈Z 时, y min =21作业一、填空题 1、函数y=cos(x -2π)的奇偶性是_________________。