人教版高一数学必修一重点知识点总结5篇
高一数学必修一知识点总结归纳精选5篇分享

高一数学必修一知识点总结归纳精选5篇分享学习高一数学知识点的时候需要讲究方法和技巧,更要学会对高一数学知识点进行归纳整理。
高一数学必修一知识点总结1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
k分别为正和负(2和-2)时的函数图像。
当K0时,反比例函数图像经过一,三象限,是减函数当K0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)高一数学必修一知识点总结2一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
高一必修一数学知识点归纳最全五篇

高一必修一数学知识点归纳最全五篇奋斗也就是我们平常所说的努力。
那种不怕苦,不怕累的精神在学习中也是需要的。
看到了一道有意思的题,就不惜一切代价攻克它。
为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。
下面就是给大家带来的高一数学必修一知识点,希望能帮助到大家大家!高一必修一数学知识点11.元素的三性(确定,互异,无序);已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y=2.集合代表元素已知集合M={y|y=x2,xR},N={y|y=x2+1,xR},求MN;与集合M={(x,y)|y=x2,xR},N={(x,y)|y=x2+1,xR}求MN的区别。
3.求集合的子集时是否忘记.4.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为如满足条件的集合M共有多少个5.韦恩图的应用;某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法?6.两集合之间的关系。
7.摩根定律(CUA)(CUB)=CU(AB)(CUA)(CUB)=CU(AB);;8.你对映射的概念了解了吗?映射f:AB中,A中元素的任意性和B中与它对应元素的性,哪几种对应能够成映射?A中有m 个元素B中有n个元素,f:AB的映射有多少个?高中数学学习方法(1)制定计划明确学习目的。
合理的学习计划是推动我们主动学习和克服困难的内在动力。
计划先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。
(2)课前预习是取得较好学习效果的基础。
课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。
预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。
高一数学必修一知识点梳理整合最新

高一数学必修一知识点梳理整合最新人教版高一数学必修一知识点梳理整合五篇最新在我们上学期间,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
掌握知识点有助于大家更好的学习。
以下是店铺收集整理的人教版高一数学必修一知识点梳理整合五篇最新,仅供参考,希望能够帮助到大家。
人教版高一数学必修一知识点梳理整合五篇最新1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)人教版高一数学必修一知识点梳理整合五篇最新21.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
高一数学必修一知识点总结【优秀6篇】

高一数学必修一知识点总结【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!高一数学必修一知识点总结【优秀6篇】在平凡的学习生活中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
高一数学必修一知识点归纳总结5篇分享

高一数学必修一知识点归纳总结5篇分享高一数学必修一知识点1函数的有关概念1.函数的概念:设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(_),_∈A.其中,_叫做自变量,_的取值范围A叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)| _∈A}叫做函数的值域.注意:○2如果只给出解析式y=f(_),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域.值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数_的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数.对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域.)2. 构成函数的三要素:定义域.对应关系和值域再注意:(1)构成函数三个要素是定义域.对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本_页相关例2)值域补充(1).函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数.二次函数.指数.对数函数及各三角函数的值域,它是求解复杂函数值域的基础.高一数学必修一知识点2函数的运用1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数.1)△ 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数a就不能是负数.总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:高一数学必修一知识点4重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域.一.教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法.二.教学内容: 1.函数的定义设A.B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数()f_和它对应,那么称:fAB?为从集合A 到集合B的一个函数(function),记作:(),yf_其中,_叫自变量,_的取值范围A叫作定义域(domain),与_的值对应的y值叫函数值,函数值的集合{()|}f_?叫值域(range).显然,值域是集合B的子集.注意:① 〝y=f(_)〞是函数符号,可以用任意的字母表示,如〝y=g(_)〞;②函数符号〝y=f(_)〞中的f(_)表示与_对应的函数值,一个数,而不是f乘_.2.构成函数的三要素定义域.对应关系和值域.3.映射的定义设A.B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.4. 区间及写法:设a.b是两个实数,且a(1) 满足不等式a_b??的实数_的集合叫做闭区间,表示为[a,b];(2) 满足不等式a_b??的实数_的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高一数学必修一知识点5一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.注意:常用数集及其记法:_非负整数集(即自然数集)记作:N正整数集:N_或N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}高一数学必修一知识点归纳总结最新5篇分享。
人教版高一数学必修一知识点难点总结5篇分享

人教版高一数学必修一知识点难点总结5篇分享不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数.在_大于0时,函数的值域总是大于0的实数.在_小于0时,则只有同时q为奇数,函数的值域为非零的实数.而只有a为正数,0才进入函数的值域.由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点.(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数.(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大.(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点.(6)显然幂函数.人教版高一数学必修一知识点21.柱.锥.台.球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.3.空间几何体的直观图——斜二测画法斜二测画法特点:①原来与_轴平行的线段仍然与_平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4.柱体.锥体.台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体.锥体.台体的体积公式人教版高一数学必修一知识点31. 对于集合,一定要抓住集合的代表元素,及元素的〝确定性.互异性.无序性〞.中元素各表示什么?注重借助于数轴和文氏图解集合问题.空集是一切集合的子集,是一切非空集合的真子集.3. 注意下列性质:(3)德摩根定律:4. 你会用补集思想解决问题吗?(排除法.间接法)的取值范围.6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题.)原命题与逆否命题同真.同假;逆命题与否命题同真同假.7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象.)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域.对应法则.值域)9. 求函数的定义域有哪些常见类型?_. 如何求复合函数的定义域?义域是_____________._. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?_. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解_;②互换_.y;③注明定义域)_. 反函数的性质有哪些?①互为反函数的图象关于直线y=_对称;②保存了原来函数的单调性.奇函数性;_. 如何用定义证明函数的单调性?(取值.作差.判正负)如何判断复合函数的单调性?∴……)_. 如何利用导数判断函数的单调性?值是( )A. 0B. 1C. 2D. 3∴a的值为3)_. 函数f(_)具有奇偶性的必要(非充分)条件是什么?(f(_)定义域关于原点对称)注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数._. 你熟悉周期函数的定义吗?函数,T是一个周期.)人教版高一数学必修一知识点4空间两条直线只有三种位置关系:平行.相交.异面1.按是否共面可分为两类:(1)共面:平行.相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交.异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线.两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法2.若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内.与平面相交.与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角. 空间向量法(找平面的法向量)规定:a.直线与平面垂直时,所成的角为直角,b.直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.人教版高一数学必修一知识点51. 函数的奇偶性(1)若f(_)是偶函数,那么f(_)=f(-_) ;(2)若f(_)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(_)±f(-_)=0或(f(_)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(_)]的定义域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定义域为[a,b],求f(_)的定义域,相当于_∈[a,b]时,求g(_)的值域(即 f(_)的定义域);研究函数的问题一定要注意定义域优先的原则.(2)复合函数的单调性由〝同增异减〞判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(_,y)=0,关于y=_+a(y=-_+a)的对称曲线C2的方程为f(y-a,_+a)=0(或f(-y+a,-_+a)=0);(4)曲线C1:f(_,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-_,2b-y)=0;(5)若函数y=f(_)对_∈R时,f(a+_)=f(a-_)恒成立,则y=f(_)图像关于直线_=a对称;(6)函数y=f(_-a)与y=f(b-_)的图像关于直线_= 对称;4.函数的周期性(1)y=f(_)对_∈R时,f(_ +a)=f(_-a) 或f(_-2a )=f(_)(a 0)恒成立,则y=f(_)是周期为2a的周期函数;(2)若y=f(_)是偶函数,其图像又关于直线_=a对称,则f(_)是周期为2︱a︱的周期函数;(3)若y=f(_)奇函数,其图像又关于直线_=a对称,则f(_)是周期为4︱a︱的周期函数;(4)若y=f(_)关于点(a,0),(b,0)对称,则f(_)是周期为2 的周期函数;(5)y=f(_)的图象关于直线_=a,_=b(a≠b)对称,则函数y=f(_)是周期为 2 的周期函数;(6)y=f(_)对_∈R时,f(_+a)=-f(_)(或f(_+a)= ,则y=f(_)是周期为2 的周期函数;5.方程k=f(_)有解k∈D(D为f(_)的值域);6.a≥f(_) 恒成立a≥[f(_)]ma_,; a≤f(_) 恒成立a≤[f(_)]min;7.(1) (a 0,a≠1,b 0,n∈R+); (2) l og a N= ( a 0,a≠1,b 0,b≠1);(3) l og a b的符号由口诀〝同正异负〞记忆; (4) a log a N= N ( a 0,a≠1,N 8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性._.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(_)与y=f-1(_)互为反函数,设f(_)的定义域为A,值域为B,则有f[f--1(_)]=_(_∈B),f--1[f(_)]=_(_∈A)._.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用〝两看法〞:一看开口方向;二看对称轴与所给区间的相对位置关系;_. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题_. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;人教版高一数学必修一知识点难点总结5篇分享。
高一必修一数学知识点归纳5篇
高一必修一数学知识点归纳5篇高一数学是很多同学的噩梦,知识点众多而且杂,对于高一的同学们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率.下面就是小编给大家带来的高一数学必修一知识点,希望能帮助到大家大家!高一必修一数学知识点11.〝包含〞关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系(5 5,且5 5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同〞结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集.A A②真子集:如果A B,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果A B,B C,那么A C④如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集.高一必修一数学知识点2一.集合一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ }如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c }2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_ R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5 5,且5 5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)③如果A B,B C,那么A C④如果A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集. 有n个元素的集合,含有2n个子集,2n-1个真子集二.函数1.函数定义域.值域求法综合2..函数.2.幂函数性质归纳.(1)所有的幂函数在(0,+ )都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.函数零点的求法:○1(代数法)求方程的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数.(1)△ 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△ 0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三.平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点.方向.长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则.已知两个从同一点O出发的两个向量OA.OB,以OA.OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA.OB的和,这种计算法则叫做向量加法的平行四边形法则.对于零向量和任意向量a,有:0+a=a+0=a.|a+b| |a|+|b|.向量的加法满足所有的加法运算定律.减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量.(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b).数乘运算实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作 a,| a|=| ||a|,当 0时, a的方向和a的方向相同,当 0时, a的方向和a的方向相反,当 =0时, a=0.设 . 是实数,那么:(1)( )a= ( a)(2)( )a= a a(3) (a b)= a b(4)(- )a=-( a)= (-a).向量的加法运算.减法运算.数乘运算统称线性运算.向量的数量积已知两个非零向量a.b,那么|a||b|cos 叫做a与b的数量积或内积,记作a?b, 是a与b的夹角,|a|cos (|b|cos )叫做向量a在b方向上(b在a方向上)的投影.零向量与任意向量的数量积为0.a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积.两个向量的数量积等于它们对应坐标的乘积的和.四.三角函数1.善于用〝1〝巧解题2.三角问题的非三角化解题策略3.三角函数有界性求最值解题方法4.三角函数向量综合题例析5.三角函数中的数学思想方法高一必修一数学知识点3一.定义与定义式:自变量_和因变量y有如下关系:y=k_+b则此时称y是_的一次函数.特别地,当b=0时,y是_的正比例函数.即:y=k_(k为常数,k 0)二.一次函数的性质:1.y的变化值与对应的_的变化值成正比例,比值为k 即:y=k_+b(k为任意不为零的实数b取任何实数)2.当_=0时,b为函数在y轴上的截距.三.一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线.因此,作一次函数的图像只需知道2点,并连成直线即可.(通常找函数图像与_轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(_,y),都满足等式:y=k_+b.(2)一次函数与y轴交点的坐标总是(0,b),与_轴总是交于(-b/k,0)正比例函数的图像总是过原点.3.k,b与函数图像所在象限:当k 0时,直线必通过一.三象限,y随_的增大而增大;当k 0时,直线必通过二.四象限,y随_的增大而减小.当b 0时,直线必通过一.二象限;当b=0时,直线通过原点当b 0时,直线必通过三.四象限.特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像.这时,当k 0时,直线只通过一.三象限;当k 0时,直线只通过二.四象限四.确定一次函数的表达式:已知点A(_1,y1);B(_2,y2),请确定过点A.B的一次函数的表达式.(1)设一次函数的表达式(也叫解析式)为y=k_+b.(2)因为在一次函数上的任意一点P(_,y),都满足等式y=k_+b.所以可以列出2个方程:y1=k_1+b ①和y2=k_2+b ②(3)解这个二元一次方程,得到k,b的值.(4)最后得到一次函数的表达式.五.一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数.s=vt.2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft.六.常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(_1-_2)2.求与_轴平行线段的中点:|_1-_2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长: (_1-_2) 2+(y1-y2) 2(注:根号下(_1-_2)与(y1-y2)的平方和)高一必修一数学知识点4指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑.(2)指数函数的值域为大于0的实数集合.(3)函数图形都是下凹的.(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与_轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.(6)函数总是在某一个方向上无限趋向于_轴,永不相交.(7)函数总是通过(0,1)这点.(8)显然指数函数_.高一必修一数学知识点5一:集合的含义与表示1.集合的含义:集合为一些确定的.不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体.把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集.2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于.(2)元素的互异性:一个给定集合中的元素是的,不可重复的.(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3.集合的表示:{ }(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.a.列举法:将集合中的元素一一列举出来{a,b,c }b.描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合. {_ R|_-3 2},{_|_-3 2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合.4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a A(2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R6.集合间的基本关系(1).〝包含〞关系(1) 子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集.二.函数的概念函数的概念:设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(_),_ A.(1)其中,_叫做自变量,_的取值范围A叫做函数的定义域;(2)与_的值相对应的y值叫做函数值,函数值的集合{f(_)|_ A}叫做函数的值域.函数的三要素:定义域.值域.对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线.直线.折线.离散的点等等.(3)列表法:选取的自变量要有代表性,可以反应定义域的特征.4.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(_),(_ A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_ A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_.y为坐标的点(_,y),均在C上.(2)画法A.描点法:B.图象变换法:平移变换;伸缩变换;对称变换,即平移.(3)函数图像平移变换的特点:1)加左减右只对_2)上减下加只对y3)函数y=f(_)关于_轴对称得函数y=-f(_)4)函数y=f(_)关于Y轴对称得函数y=f(-_)5)函数y=f(_)关于原点对称得函数y=-f(-_)6)函数y=f(_)将_轴下面图像翻到_轴上面去,_轴上面图像不动得函数y=|f(_)|7)函数y=f(_)先作_ 0的图像,然后作关于y轴对称的图像得函数f(|_|)三.函数的基本性质1.函数解析式子的求法(1.函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2.求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数_的集合称为函数的定义域.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数.对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)4.区间的概念:(1)区间的分类:开区间.闭区间.半开半闭区间(2)无穷区间(3)区间的数轴表示5.值域(先考虑其定义域)(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)反表示法:针对分式的类型,把Y关于_的函数关系式化成_关于Y的函数关系式,由_的范围类似求Y的范围.(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围.(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型.6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数.(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(4)常用的分段函数有取整函数.符号函数.含绝对值的函数7.映射一般地,设A.B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:A---B为从集合A到集合B的一个映射.记作〝f(对应关系):A(原象)---B(象)〞对于映射f:A B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的.所以函数是映射,而映射不一定的函数8.函数的单调性(局部性质)及最值(1.增减函数(1)设函数y=f(_)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量_1,_2,当_1(2)如果对于区间D上的任意两个自变量的值_1,_2,当_1注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种(2.图象的特点如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3.函数单调区间与单调性的判定方法(A)定义法:任取_1,_2 D,且_1作差f(_1)-f(_2);变形(通常是因式分解和配方);定号(即判断差f(_1)-f(_2)的正负);下结论(指出函数f(_)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数:如果y=f(u)(u M),u=g(_)(_ A),则y=f[g(_)]=F(_)(_ A)称为f.g的复合函数.复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:〝同增异减〞注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.9:函数的奇偶性(整体性质)(1.偶函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.(2.奇函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)= f(_),那么f(_)就叫做奇函数.(3.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:a.首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;b.确定f(-_)与f(_)的关系;c.作出相应结论:若f(-_)=f(_)或f(-_)-f(_)=0,则f(_)是偶函数; 若f(-_)=-f(_)或f(-_)+f(_)=0,则f(_)是奇函数.(4)利用奇偶函数的四则运算以及复合函数的奇偶性a.在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;a.复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-_) f(_)=0或f(_)/f(-_)= 1来判定;(3)利用定理,或借助函数的图象判定.10.函数最值及性质的应用(1.函数的最值a利用二次函数的性质(配方法)求函数的(小)值b利用图象求函数的(小)值c利用函数单调性的判断函数的(小)值:如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有值f(b);如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);(2.函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.(3.判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较.(4)绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值.(5)在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数.(高一阶段可以利用奇函数f(0)=0).1.精选高一数学知识点总结归纳5篇2.最全高一数学知识点归纳5篇3.精选最新高一数学知识点总结归纳5篇4.高一数学知识点大全5篇5.最新高一数学知识点5篇总结高一作文他生气了800字首夏犹清和,芳草亦未歇〞,本来是美好快乐的,可因为一件事,一切都变得不再那么美好借物喻人作文600字高一闻着春的气息,听见春的脚步,看见春的身影.已是六年级的毕业班学生,随之而来的压力高一作文开学第一天优秀范文今天是开学第一天.这一天是令人激动的,是崭新的一天.下面是小编给大家带来的开学第以生活启示为题的作文高一在生活中启示无处不在,每个人都会受到启发.我也是这样,就在今天我受到了蚂蚁的启示。
人教版高一数学必修一知识点难点总结5篇分享
人教版高一数学必修一知识点难点总结5篇分享进入高中后,很多新生有这样的心理落差,比自己成果优秀的大有人在,很少有人留意到自己的存在,心理因此失衡,这是正常心理,但是应尽快进入学习状态。
下面就是我给大家带来的人教版高一数学必修一学问点,希望能关怀到大家!人教版高一数学必修一学问点1幂函数定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假犹如时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假犹如时q为奇数,则函数的定义域为不等于0的全部实数。
当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种状况来商议各自的特性:首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是r,假如q是偶数,函数的定义域是[0,+∞),当指数n是负整数时,设a=-k,则x=1/(x^k),明显x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根据q的奇偶性来确定,即假犹如时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假犹如时q为奇数,则函数的定义域为不等于0的全部实数。
高一数学必修一知识点必背难点总结5篇
高一数学必修一学问点必背难点总结5篇在学习新学问的同时还要复习以前的旧学问,确定会累,所以要留意劳逸结合。
只有充分的精力才能迎接新的挑战,才会有事半功倍的学习。
下面就是我给大家带来的高一数学必修一学问点,期望对大家有所关怀!高一数学必修一学问点1集合间的根本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一局部,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系(5≥5,且5≤5,那么5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素违反”结论:对于两个集合A与B,假设集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=BA①任何一个集合是它本身的子集。
AB那就说集合A是集合B的真子集,记作A B(或B A)B,且A②真子集:假设AC C ,那么 A B, B③假设 AA 那么A=B B 同时 B④假设A3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
集合的运算1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A ∪A = A, A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集)A}S且 x x记作: CSA 即 CSA ={x(2)全集:假设集合S含有我们所要争辩的各个集合的全部元素,这个集合就可以看作一个全集。
人教版高一数学知识点总结5篇
人教版高一数学知识点总结5篇数学这个科目始终是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分许多;在平常的学习和考试中同学们要擅长总结学问点,这样有助于关心同学们学好数学。
下面就是我给大家带来的人教版高一数学学问点总结,盼望能关心到大家!人教版高一数学学问点总结1一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
留意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-32},{x|x-32}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:假如A B,且A B那就说集合A是集合B的真子集,记作AB(或BA)③假如A B,B C,那么A C④假如A B同时B A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学必修一重点知识点总结5篇
学习高一数学知识点的时候需要讲究方法和技巧,更要学会对高一数学知识点进行归纳
整理。下面就是给大家带来的人教版高一数学必修一知识点,希望能帮助到大家!
人教版高一数学必修一知识点1
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情
况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),
函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y
轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的
一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数。
人教版高一数学必修一知识点2
空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
2.2.直线、平面平行的判定及其性质
2.2.1直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直
线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ=∥α
a∥b
2.2.2平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个
平面平行。
符号表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—2.2.4直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直
线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
α∩β=b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面与平面平行得出直线与直线平行
人教版高一数学必修一知识点3
知识点1.集合与元素
一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集
合,元素是组成集合的元素。例如:你所在的班级是一个集合,是由几十个和你同龄的同学
组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个
班级组成的集合,你所在的班级只是其中的一分子,是一个元素。班级相对于你是集合,相
对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的
知识点2.解集合问题的关键
解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象
化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图
形来表示集合,比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐
标系中的图形表示相关的集合等
人教版高一数学必修一知识点4
定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或
重合时,我们规定它的倾斜角为0度。
范围:
倾斜角的取值范围是0°≤α180°。
理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
公式:
k=tanα
k0时α∈(0°,90°)
k0时α∈(90°,180°)
k=0时α=0°
当α=90°时k不存在
ax+by+c=0(a≠0)倾斜角为A,
则tanA=-a/b,
A=arctan(-a/b)
当a≠0时,
倾斜角为90度,即与X轴垂直
人教版高一数学必修一知识点5
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,
集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
人教版高一数学必修一重点知识点总结5篇