变化率问题观课报告
关于《变化率问题》的说课稿 2

关于《变化率问题》的说课稿宁夏育才中学马晓英关于《变化率问题》的说课稿宁夏育才中学马晓英教材:普通高中数学课程标准实验教科书(人教A版)选修2-2 P2-P4课题:1.1.1变化率问题课时:1课时下面,我将分别从教材分析和教学过程设计两方面对本课进行说明。
一、教材分析1、教材及学情分析微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。
导数概念是微积分的核心概念之一,它有着极其丰富的实际背景和广泛的应用。
本节课的学习内容是“变化率问题”,是普通高中数学课程标准实验教科书(人教A版)选修2-2第一章《导数及其应用》第一课时,内容较平淡、单薄,教学中很难“出新、出奇、出彩”,但本节课的作用举足轻重,是学习导数,进入微积分的“敲门砖”。
如何在教学中构建生动的情境,让学生在探索中求知、在思考中求智、在品味中求美,使课堂充满灵动、精彩,是对教师的悟性和能力的考验。
高中二年级的学生正值身心快速发展的时期,他们思维活跃,乐于探索,敢于探究,但逻辑思维能力尚属经验型。
关于“变化率问题”,学生有着一定的感知基础,比如吹气球的生活经验,物理课本中学过的平均速度,作自由落体运动的物体下落速度的变化等。
在备课过程中我依据学生的年龄特征、心理特征和身心发展规律认真研读教材,依据课程标准来理解、思考和处理,在确定教学目标上,没有简单地把教学目标锁定在完成“教材”上。
依据教材和生活实例,设计一系列探究活动,将教材中单一的、静态的知识转化为多样的、动态的知识。
让学生亲身经历“平均变化率”概念的形成、发展和应用过程,使学生既加深对数学概念本质的理解,也使学生学习的愿望和能力得到提升。
基于上述分析,我确定了本节课的重点与难点:重点:通过对大量实例的分析,让学生亲身经历“平均变化率”概念的形成、发展和应用过程,使学生加深对数学概念本质的理解。
难点:从数值意义和几何意义两个方面理解平均变化率的内涵与思想2、教学目标设计知识与技能(1)理解平均变化率的概念;(2)认识平均变化率的几何意义;过程与方法经历由实例抽象出平均变化率概念的过程,体会由特殊到一般的思想方法,通过例题的学习,学会用定义求平均变化率的方法。
变化率问题评课稿

变化率问题评课稿
轻敲实击,自学辅导,思维递进式课堂
———赏析“变化率问题”新课
本学期党老师在本组开设学案式教学公开课,本节课为《变化率问题》新授课,整堂课党老师教学老练,仿佛时刻在轻轻敲动学生的思维,在学案的指引下,让学生思维一直在递进着,最终达到本节知识目标的完成。
教学设计紧扣大纲教材,围绕教学目标,问题提出符合思维递进,学案设问、探究、总结结构符合学生思维。
下面我就这节课,谈谈自己的几点体会,与各位同仁交流,敬请指教:
一、学案设计赏析
1.1知识框架展示,预知学习内容
通过告知学生本章节所学内容,引起学生疑问,激发学生学习兴趣。
学生对导数知识早有所闻,但是对导数到底研究什幺,十分陌生。
告知学生本章学习内容,学生了解本章知识学习功能,这必然激起学生的求知欲望,同时形成对本章知识的基本了解,对本节内容具体目标有了初步的了解。
1.2学案教学引导,辅助学习进程
学案环节一通过两个问题,层层设问,党老师让学生同桌合作,自主探究,充分让学生自主学习。
在整个过程中,党老师总是在引导中达到自己的“预谋”
。
通过实际生活中的例子,实际上是给出特殊的东西,再到物理上的平均速度,开始抽象,为一般的变化率概念做好“预谋”,在学生围绕学案跟进党老师的思路的过程之后,达到“预谋”。
1.3知识总结呈现,激活学生思维。
5.1.1 变化率问题 教案-2022-2023学年高二数学人教A版(2019)选择性必修第二册

5.1.1 变化率问题教学设计一、教学目标1.体会由平均速度过渡到瞬时速度的过程,理解平均速度、瞬时速度的区别和联系.2.掌握瞬时速度的概念,会求解瞬时速度的相关问题.3.掌握割线与切线的定义,会求其斜率. 二、教学重难点 1、教学重点瞬时速度的概念、割线与切线的定义及斜率求法. 2、教学难点 割线与切线的斜率. 三、教学过程 1、新课导入在之前的学习中,我们研究了函数的单调性,并利用函数单调性等知识定性地研究了一次函数、指数函数、对数函数增长速度的差异,知道了对数增长是越来越慢的,指数爆炸比直线上升快得多,那么能否精确定量地刻画变化速度的快慢呢?这节课我们就来研究一下这个问题. 2、探索新知一、平均速度问题1 高台跳水运动员的速度探究 在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系2() 4.9 4.811h t t t =-++.如何描述运动员从起跳到入水的过程中运动的快慢程度呢?例如,在00.5t ≤≤这段时间里,(0.5)(0)2.35(m/s)0.50h h v -==-;在12t ≤≤这段时间里,(2)(1)9.9(m/s)21h h v -==--.一般地,在21t t t ≤≤这段时间里,211221()()4.9( 4.8)h t h t v t t t t -==-++-.思考:计算运动员在48049t ≤≤这段时间里的平均速度,发现了什么?用平均速度描述运动员的运动状态有什么问题吗?运动员在48049t ≤≤这段时间里的平均速度为0. 显然,在这段时间内,运动员并不处于静止状态. 因此,用平均速度不能准确反映运动员在这一时间段里的运动状态.二、瞬时速度1.瞬时速度的概念:物体在某一时刻的速度称为瞬时速度.2.求运动员在1t =s 时刻的瞬时速度设运动员在0t 时刻附近某一时间段内的平均速度是v ,可以想象,如果不断缩短这一时间段的长度,那么v 将越来越趋近于运动员在0t 时刻的瞬时速度.为了求运动员在1t =时的瞬时速度,在1t =之后或之前,任意取一个时刻1t +∆,t ∆是时间改变量,可以是正值,也可以是负值,但不为0. 当0t ∆>时,1t +∆在1之后;当0t ∆<时,1t +∆在1之前. 当0t ∆>时,把运动员在时间段[1,1]t +∆内近似看成做匀速直线运动,计算时间段[1,1]t +∆内的平均速度v ,用平均速度v 近似表示运动员在1t =时的瞬时速度.当0t ∆<时,在时间段[1,1]t +∆内可作类似处理.为了提高近似表示的精确度,我们不断缩短时间间隔,得到如下表格.思考:给出t ∆更多的值,利用计算工具计算对应的平均速度v 的值.当t ∆无限趋近于0时,平均速度v 有什么变化趋势?当t ∆无限趋近于0,即无论t 从小于1的一边,还是从大于1的一边无限趋近于1时,平均速度v 都无限趋近于5-.事实上,由(1Δ)(1)4.9Δ5(1Δ)1h t h v t t +-==--+-可以发现,当t ∆无限趋近于0时, 4.9Δt -也无限趋近于0,所以v 无限趋近于5-,这与前面得到的结论一致. 数学中,我们把5-叫做“当t ∆无限趋近于0时,(1Δ)(1)Δh t h v t +-=的极限”,记为Δ0(1Δ)(1)lim 5Δt h t h t→+-=-.从物理的角度看,当时间间隔||t ∆无限趋近于0时,平均速度v 就无限趋近于1t =时的瞬时速度. 因此,运动员在1t =s 时的瞬时速度(1)5m/s v =-.三、割线与切线的斜率 问题2 抛物线的切线的斜率 1.割线与切线的定义为了研究抛物线2()f x x =在点0(1,1)P 处的切线,我们通常在点0(1,1)P 的附近任取一点2(,)P x x ,考察抛物线2()f x x =的割线0P P 的变化情况.当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0PT 称为抛物线2()f x x =在点0(1,1)P 处的切线. 2.割线与切线的斜率 (1)割线的斜率抛物线2()f x x =在点0(1,1)P 处的切线0PT 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-,则点P 的坐标是2(1Δ,(1Δ))x x ++.于是,割线0P P 的斜率2()(1)(1Δ)1Δ21(1Δ)1f x f x k x x x -+-===+-+-.(2)切线的斜率我们可以用割线0P P 的斜率k 近似地表示切线0PT 的斜率0k ,并且可以通过不断缩短横坐标间隔||x ∆来提高近似表示的精确度,得到如下表格.时,割线0P P 的斜率k 都无限趋近于2.事实上,由(1Δ)(1)Δ2Δf x f k x x+-==+可以直接看出,当x ∆无限趋近于0时,Δ2x +无限趋近于2. 我们把2叫做“当x ∆无限趋近于0时,(1Δ)(1)Δf x f k x+-=的极限”,记为Δ0(1Δ)(1)lim2Δx f x f x →+-=.从几何图形上看,当横坐标间隔||x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0PT .这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0PT 的斜率0k .因此,切线0PT 的斜率02k =. 3、课堂练习1.某物体沿水平方向运动,其前进距离s (米)与时间t (秒)的关系为2()52s t t t =+,则该物体在运动前2秒的平均速度(单位:米/秒)为( ) A.18 B.13 C.9 D.132答案:C解析:2()52s t t t =+,∴该物体在运动前2秒的平均速度为(2)(0)18922s s -==(米/秒).故选C.2.若质点A 按照规律23s t =运动,则在3t =时的瞬时速度为( ) A.6 B.18C.54D.81答案:B解析:由题可得2220003(3)33183()lim lim lim(183)18t t t t t t t t t∆→∆→∆→+∆-⨯∆+∆==+∆=∆∆.故选B.3.一物体的运动方程为27138s t t =-+,且在0t t =时的瞬时速率为1,则0t =___________. 答案:1 解析:()()222000007138713814137()s t t t t t t t t t t ∆=+∆-+∆+-+-=⋅∆-∆+∆,()0000limlim 1413714131t t st t t t ∆→∆→∆∴=-+∆=-=∆,可得01t =. 4、小结作业小结:本节课学习了平均速度、瞬时速度的概念及求法以及曲线割线与切线斜率的求法. 作业:完成本节课课后习题. 四、板书设计5.1.1 变化率问题1.瞬时速度的概念:物体在某一时刻的速度称为瞬时速度.2.割线与切线的定义:为了研究抛物线2()f x x =在点0(1,1)P 处的切线,通常在点0(1,1)P 的附近任取一点2(,)P x x ,考察抛物线2()f x x =的割线0P P 的变化情况,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0PT 称为抛物线2()f x x =在点0(1,1)P 处的切线.。
《变化率问题教学》课件

详细描述
在变化率问题中,建立数学模型是解决问题的第一步。首先需要对问题进行抽象 和简化,然后使用数学符号和公式来表示问题中的变量、参数和关系。通过建立 数学模型,可以将实际问题转化为数学问题,便于进行定量分析和求解。
导数的计算和运用
总结词
导数在变化率问题中具有重要应用,通过计算导数可以分析函数的变化趋势和极值点。
变化率与函数图像的关系
单调性
如果一阶导数大于0,则函数在该区间内单调递增;如果一阶 导数小于0,则函数在该区间内单调递减。
凹凸性
如果二阶导数大于0,则函数在该区间内是凹的;如果二阶导 数小于0,则函数在该区间内是凸的。
04
变化率问题解决策略
建立数学模型
总结词
通过建立数学模型,将实际问题转化为数学问题,便于分析和求解。
学Байду номын сангаас参与度与反馈
分析学生在课堂上的参与 情况,以及他们对变化的 反应和反馈,以便更好地 调整教学方法和内容。
学生自我评价与反馈
学生自我评价
引导学生反思自己在本次教学中 对变化率问题的理解程度,以及 自己的学习方法和态度是否有所
改进。
学习困难与问题
鼓励学生提出自己在理解变化率问 题时遇到的困难和问题,以便教师 更好地了解学生的学习需求和困难 。
变化率的应用场景
要点一
总结词
变化率的应用场景非常广泛,包括物理、工程、经济、生 物等领域。
要点二
详细描述
在物理学中,变化率用于描述速度、加速度等物理量的动 态变化。在工程领域,变化率可以用于预测和优化系统的 性能,如机械振动、流体动力学等。在经济领域,变化率 用于分析经济增长、通货膨胀等经济指标的变化趋势。在 生物领域,变化率可以用于描述物种数量、种群动态等生 态现象的变化趋势。
变化率问题

第三章 导数及其应用§3.1.1变化率问题教学目标:(一)知识与技能目标(1)理解掌握平均变化率的的概念,会用平均变化率解决一些实际问题;(2)平均变化率的几何意义.(二)过程与方法目标通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻 画变量变化快慢程度的一种数学模型;体会发现问题,分析问题,解决问题的过程;(三)情感态度与价值观感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问 题、解决问题的能力.教学重点:平均变化率的概念教学难点:平均变化率概念的形成过程 教学过程:(一)问题情境,引入课题(以姚明的身高为背景引入)问题1 篮球巨星姚明身高2.26,在他身高发展过程中有这样一段曲线:观察并思考: (1)图形有什么变化趋势? (2)他在哪一个年龄段内身高变化最快?(3)从图上我们只能观察身高变化的一个大致趋势,华罗庚先生曾说过:形缺数时难入微,那么如果从数的角度,该如何刻画他的身高变化快慢呢?过渡: 其实前人早就做了这方面的研究,而且早在17世纪就已形成了系统的理论,这就是“微积分”理论.微积分是数学发展史上的继欧式几何后的又一划时代的伟大创造,恩格斯是这样评价微积分的:“只有微分学才能使自然科学有可能用数学来不仅仅表明状态,而且也表明过程、运动”,称微积分是“人类精神的最高胜利”.对于微积分的创立,有两位2.26 2.12 ● ● ● ● ● ● 年龄身高 4 710 13 16 ● 19 22 0.8 1.61 ● ● ●● ● ● ●科学家做出了重大的贡献:牛顿和莱布尼兹。
今天我们一起来学习微积分的基础:导数的概念第一课——变化率问题.(板书课题) 变化率问题主要是研究变量变化快慢程度(二)实例分析,探究概念 1、身高变化率我们先来看看有没有什么办法解决问题1中的最后一个问题:如何从数的角度刻画他身高 变化快慢,也就是身高的变化率?刚才通过我们对图形的观察发现,在[13,16]里曲线最陡,其他两段比较平缓如果我们将这段曲线近似的看成直线段,我们是如何刻画直线的倾斜程度的?——直线的斜率,那么我们是否可以用同样的方法来刻画一下身高的变化率呢?计算:在[13,16]这个年龄段里,身高的变化率:17.0131661.112.2=--=年龄的差值身高的差值(米/年) 那么这个年龄段的最陡,比值算出来是0.17(米/年),其他两端稍微平缓一些,也请同学们计算一下[4,13]这个年龄段里,比值是09.04-138.0-61.1=(米/年) [16,22]这个年龄段里,比值是023.061-22.122-.262≈(米/年) 从三个比值可以看出,13—16岁这个年龄段比值最大,从图形上看这个是最陡的,所以我们从形和数两个方面都予以了刻画,形上,这个年龄段最陡;数上,这个年龄段比值最大。
3.1.1变化率问题,教案

3.1.1变化率问题,教案篇一:3.1.1变化率问题教案3.1变化率与导数3.1.1变化率问题一、【创设情境】为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:1、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;2、求曲线的切线;3、求已知函数的最大值与最小值;4、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课讲授(一)问题提出问题1气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是V(r)?如果将半径r表示为体积V的函数,那么r(V)?3分析:r(V)?43?r33V4?3V4?(1)当V从0增加到1时,气球半径增加了r(1)?r(0)?0.62(dm)r(1)?r(0)气球的平均膨胀率为?0.62(dm/L)1?0(2)当V从1增加到2时,气球半径增加了r(2)?r(1)?0.16(dm)r(2)?r(1)气球的平均膨胀率为?0.16(dm/L)2?1可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?问题2高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间r(V2)?r(V1)V2?V1t(单位:s)存在函数关系h(t)??4.9t2?6.5t?10.如何用运动员在某些时间段内的平均速v度粗略地描述其运动状态?思考计算:0?t?0.5和1?t?2的平均速度v在0?t?0.5这段时间里,v?h(0.5)?h(0)?4.05(m/s)0.5?0在1?t?2这段时间里,v?探究:计算运动员在0?t?h(2)?h(1)??8.2(m/s)2?165这段时间里的平均速度,并思考以下问题:49(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)??4.9t2?6.5t?10的图像,结合图形可知,h(65)?h(0),所以v?49h(65)?h(0)49?0(s/m)65?049虽然运动员在0?t?65这段时间里的平均速度为0(s/m),49但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.(二)平均变化率概念1.上述问题中的变化率可用式子f(x2)?f(x1)表示,x2?x1称为函数f(x)从x1到x2的平均变化率.2.若设?x?x2?x1,?f?f(x2)?f(x1)(这里?x看作是对于x1的一个“增量”可用x1??x代替x2,同样?f??y?f(x2)?f(x1))则平均变化率为f(x2)?f(x1)f(x1??x)?f(x1)?y?f???x2?x1?x?x?x?ff(x2)?f(x1)表示什么???xx2?x1思考:观察函数f(x)的图象平均变化率三、典例分析例1已知函数f(x)??x?x的图象上的一点a(?1,?2)及2?y?.?x解:?2??y??(?1??x)2?(?1??x)临近一点B(?1??x,?2??y)则?y?(?1??x)2?(?1??x)?2??3??x∴?x?x例2求y?x2在x?x0附近的平均变化率.解:?y?(x0??x)?x02222x0?2x0?x??x2?x0?y(x0??x)2?x0所以???2x0??x?x?x?x所以y?x2在x?x0附近的平均变化率为2x0??x2课堂练习1.质点运动规律为s?t?3,则在时间(3,3??t)中相应的平均速度为.2.物体按照s(t)?3t?t?4的规律作直线运动,求在4s附近的平均变化率.3.过曲线y?f(x)?x上两点P(1,1)和Q(1??x,1??y)作曲线的割线,求出当?x?0.1时割线的斜率.四、【课堂小结】1.平均变化率的概念.2.函数在某点处附近的平均变化率.322篇二:3.1.1变化率问题(学、教案)变化率问题课前预习学案一、预习目标了解平均变化率的定义。
2023年秋《变化率问题》教学设计
《变化率问题》教学设计一、本节内容分析本节的主要知识内容是平均变化率、导数及导数的几何意义,在众多变化率问题中,教材选择了物理中的高台跳水运动的速度问题和几何学中圆锥曲线的抛物线问题,这两类问题来自不同的学科领域,把生活中直观感受的变化率转化为数学中可以度量的变化率,解决问题时都采用由“平均变化率”逼近“瞬时变化率”的思想方法.对学生来说,一个是生活中的物理问题,一个是熟悉的数学问题,这样的设计既可以引起学生的学习兴趣,又可以减少因背景复杂而形成对数学知识的干扰.学生学会先求函数的导数,继而求函数在某点处的切线的斜率与切线的方法,通过实际问题的引入加深对几何意义的理解和应用,使学生自然的接受新知识的教授.本节内容是高中数学的主要内容,也是高考考查的热点,本节包含的核心知识和体现的核心素养如下:二、学情整体分析在学习本节内容之前,学生已经学习了速度问题和抛物线问题,知识的引入比较简单直接,所以本节引入难度不是很大,但是大部分学生对极限含义的理解有一定的困难,导数概念的本质是极限,本教材没有介绍极限形式化定义及相关知识,而是通过列表计算,直观把握函数变化趋势,在此过程中学生可以很好的理解并建立导数的概念.本部分知识涉及大量的计算和相关符号,对于学生的计算能力和符号的正确运用的考查也是很关键的.学情补充:____________________________________________________________________ _________________________________________________________________________________ 三、教学活动准备【任务专题设计】1.变化率问题2.导数的概念3.导数的几何意义【教学目标设计】1.了解平均变化率的概念.2.利用学生对瞬时速度的理解,逐步达到对导数概念和基本方法的直观准确的理解.3.理解导数的几何意义,体会导数在刻画函数性质中的作用.【教学策略设计】学生体验用平均速度逼近瞬时速度,割线斜率逼近切线斜率,这是求瞬时速度,求切线斜率的重要方法,也是建立导数概念的重要支持,学生在高中数学学习过程中对“观察、分析、归纳、概括、抽象”的概念建立过程有了较多的体会和认知.教学中利用预设问题激发学生思考,问题的设置体现由特殊到一般的认知规律;在学生充分经历瞬时速度的计算和切线斜率的计算过程后,引导学生归纳概括导数概念,强化学生数学抽象核心素养的形成;通过割线逼近切线,割线斜率逼近切线斜率的过程,引导学生借助直观想象理解导数的几何意义.【教学方法建议】情境教学法、问题教学法,还有__________________________________________________ 【教学重点难点】重点:1.了解函数的变化率、平均变化率.2.理解瞬时速度、瞬时变化率的概念、导数概念.3.理解导数的几何意义及“数形结合、以直代曲”的思想方法.难点:1.通过大量实例,使学生学会用数学的度量来描述平均变化率,体会函数的内涵与思想.2.准确理解导数概念,体会极限思想.3.发现、理解并应用导数的几何意义.【教学材料准备】1.常规材料:计算器、多媒体课件、____________________________________________2.其他材料:________________________________________________________________四、教学活动设计教学导入师:同学们,我们都进行过这样的运动—爬山,请回答下面的问题:问题1:在爬山的过程中,感觉平缓的山好攀登,还是陡峭的山好攀登呢?问题2:想想什么原因呢?请同学们做个简单图形来分析.问题3:对比分析两个一样高度的山,一个平缓,一个陡峭,那么两者的区别在哪里?【师生共同讨论为什么陡峭的山攀登感觉更累.学生独立做出图形】师:这都是日常生活中的例子,我们找出了问题关键,导致不同感觉的原因是因为在相同条件下,变化率大小不同.【设计意图】通过登山运动,教师引入本课所学变化率问题,提升学生的探究兴趣.教学精讲探究1 瞬时速度【情境设置】高台跳水在一次高台跳水运动中,某运动员在运动过程中的重心相对于水面的高度h (单位:m )与起跳后的时间t (单位:S )存在函数关系2() 4.9 4.811h t t t =-++.如何描述运动员从起跳到入水过程中运动的快慢程度呢?(1)如何计算00.5t ≤≤和12t ≤≤的平均速度? (2)如何计算运动员在48049t ≤≤这段时间里的平均速度? 师:运动员从起跳到入水的过程中,在上升阶段运动得越来越慢,在下降阶段运动得越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v 近似地描述他的运动状态.【学生思考,合作交流,回答问题,教师予以肯定】 生:(1)在00.5t ≤≤这段时间里,(0.5)(0)2.35(m /s)0.50h h v -==-;在12t ≤≤这段时间里,(2)(1)9.9(m /s)21h h v -==--.(2)根据函数2() 4.9 4.811h t t t =-++的图象,结合图形可知,48(0)49h h ⎛⎫= ⎪⎝⎭,所以48(0)490(m /s)48049h h v ⎛⎫- ⎪⎝⎭==-.师:根据上述的解答过程,总结一下,在12t t t ≤≤这段时间内的运动员平均速度v 如何表示? 生:()()()2112214.9 4.8h t h t v t t t t -==-++-.【以学定教】通过类比师生对登山问题的研究,学习高台跳水问题,强化所学知识,提高对概念的认知. 【概括理解能力】通过教师提醒函数能够代表很多问题,提醒学生概念上需要注意的点,引导学生敢于总结,规范语言,概括出题目条件,培养学生概括理解的能力.师:探究思考以下问题:【情境设置】高台跳水1.运动员在这段时间内是静止的吗?2.你认为用平均速度描述运动员的运动状态有什么问题吗? 【学生思考,合作交流,回答问题,教师予以启发和肯定】 生:虽然运动员在48049t ≤≤这段时间里的平均速度为0m /s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.【自主学习】学生自主解决实际问题,教师继续设疑,使学生逐步建立知识体系和认知,增强了学生学习的主动性.师:为了精确刻画运动员的运动状态,需要引入瞬时速度的概念. 【要点知识】瞬时速度我们把物体在某一时刻的速度称为瞬时速度.设物体运动的路程与时间的关系是()S S t =,当t ∆趋近于0时,函数()S t 在0t 到0t t +∆之间的平均变化率()()00s t t s t s t t+∆-∆=∆∆趋近于常数,我们把这个常数称为运动物体在0t 时刻的瞬时速度.【概括理解能力】通过引入概念,使学生充分理解函数变化率的概念和计算顺序,加深对概念的运用能力. 师:瞬时速度与平均速度有什么关系?你能利用这种关系求运动员在1s t =的瞬时速度吗? 师:设运动员0t 时刻附近某一时间段内的平均速度是v ,可以想象,如果不断缩短这一时间段的长度,那么v 将越来越趋近于运动员在0t 时刻的瞬时速度.为了求运动员在1t =时的瞬时速度,我们在1t =之后或之前,任意取一个时刻1,t t +∆∆是时间改变量,可以是正值,也可以是负值,但不为0.当0t ∆>时,1t +∆在1之后;当0t ∆<时,1t +∆在1之前.当0t ∆>时,把运动员在时间段[1,1]t +∆内近似看成做匀速直线运动,计算时间段[1,1]t +∆内的平均速度v ,用平均速度v 近似表示运动员在1t =时的瞬时速度.当0t ∆<时,在时间段[1,1]t +∆内可作类似处理.为了提高近似表示的精准度,我们不断缩短时间间隔,得到如下表格.【学生以小组为单位,列好表格,准备好计算器】【以学定教】引出瞬时速度与平均速度有什么关系的问题,激发学生好奇心和学习动力,充分调动学生的积极性.师:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?生:当t ∆趋近于0时,即无论t 从小于1的一边,还是从大于1的一边趋近于1时,平均速度v 都趋近于一个确定的值5-.师:从物理的角度看,时间||t ∆间隔无限变小时,平均速度v 就无限趋近于1t =时的瞬时速度,因此,运动员在1t =时的瞬时速度是5m /s -.为了表述方便,我们用0(1)(1)lim 5t h t h t∆→+∆-=-∆,表示“当1,t t =∆趋近于0时,平均速度v 趋近于定值5-”.师:你能求出运动员在2t =时的瞬时速度吗?如何求运动员从起跳到入水过程中在某一时刻0t 的瞬时速度.【分组讨论,思考,组内合作完成】师:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值.小结一下:【要点知识】对瞬时速度的理解1.计算瞬时速度必须先求出平均速度sv t∆=∆,再对平均速度取极限.2.t ∆趋近于0,是指时间间隔越来越小,能小于任意小的时间间隔,即||t ∆要多小就有多小,其含义是可以小到任何预先给定的正数,但t ∆始终不能为零.【设情境 巧激趣】利用学生的活动和熟悉的例题,教师创设物理情境根据问题引导学生从物理学角度理解数学问题.探究2 抛物线的切线的斜率 【情境设置】抛物线切线斜率的探究如果一条直线与一个圆只有一个公共点,那么这条直线与这个圆相切,对于一般的曲线C ,如何定义它的切线呢?下面我们以抛物线2()f x x =为例进行研究.你认为应该如何定义抛物线2()f x x =在点0(1,1)P 处的切线?0P 附近的点?师:与研究瞬时速度类似,为了研究抛物线2()f x x =在点0(1,1)P 处的切线,我们通常在点0(1,1)P 的附近任取一点()2,P x x ,考察抛物线2()f x x =的割线0P 的变化情况.【推测解释能力】教师通过具体问题引导,提醒学生概念上需要注意的关键点,引导学生重视概念本身,加深理解.【情境设置】抛物线切线斜率的探究()2,P x x 沿着2()f x x =趋近于0(1,1)P 时,割线0P P 有什么变化趋势?生:我们发现,当点P 无限趋近于点0P 时,割线0P P 无限趋近于一个确定的位置,这个确定位置的直线0P T 称为抛物线2()f x x =在点0(1,1)P 处的切线.【以学论教】教师类比研究瞬时速度,来进行抛物线的切线的斜率的探究,巩固旧知,加强对新知的理解,体现以学论教.师:从上述切线的定义可见,抛物线2()f x x =在点0(1,1)P 处的切线0P T 的斜率与割线0P P 的斜率有内在联系.记1x x ∆=-,则点P 的坐标是()21,(1)x x +∆+∆.于是,割线0P P 的斜率2()(1)(1)121(1)1f x f x k x x x -+∆-===∆+-+∆-.我们可以用割线0P P 的斜率k 近似地表示切线0P T 的斜率0k ,并且可以通过不断缩短横坐标||x ∆来提高近似表示的精确度,得到如下表格.【学生以小组为单位,列好表格,准备好计算器】师:在表格中当x ∆无限趋近于0时,割线的斜率趋近于多少?生:当x ∆无限趋近于0时,即无论x 从小于1的一边,还是从大于1的一边无限趋近于1时,割线0P P 的斜率k 都无限趋近于2.【活动学习】学生分组列表,用计算器来计算割线的斜率,提高学生的计算能力,体现活动学习. 【要点知识】抛物线切线斜率的探究事实上,由(1)(1)2f x f k x x+∆-==∆+∆可以直接看出,当x ∆无限趋近于0时,2x ∆+无限趋近于2.我们把2叫做“当x ∆无限趋近于0时,(1)(1)f x f k x+∆-=∆的极限”,记为(1)(1)lim2x f x f x∆→+∆-=∆.从几何图形上看,当横坐标||x ∆无限变小时,点P 无限趋近于点0P ,于是割线0P P 无限趋近于点0P 处的切线0P T ,这时,割线0P P 的斜率k 无限趋近于点0P 处的切线0P T 的斜率0k ,因此,切线0P T 的斜率02k =.【设活动 深探究】通过探究抛物线切线的斜率,经探究得出切线斜率的特点,提高学生的活动学习能力. 【课堂小结】变化率问题1.理解并掌握函数变化率的几何意义和概念.2.准确运用数学符号正确地表达函数变化率. 【设计意图】通过课堂总结,让学生对变化率问题有深刻理解,对下节课导数的学习起到了铺垫作用.培养学生的概括理解能力.教学评价本部分学习注重以学生为主体,每一个知识的引入和发现都学生自己得出,课堂上教师给予学生充足的思考空间,保证学生书写过程清楚,表达正确,尽量正确使用规范的符号语言.本节课学习从源头上说明导数的意义,让学生充分理解导数知识来源于生活.【设计意图】通过动手实践,学生经历探究导数的几何意义的建构过程,从而准确理解导数的几何意义,应用大量实例,使学生体会思想方法和应用的广泛.培养了学生的概括理解,分析计算能力和数学运算、逻辑推理核心素养.应用所学知识,完成下面各题:1.求函数2()f x x =在1,2,3x =附近的平均变化率,取x ∆都为13,哪一点附近平均变化率最大?解析:直接代入公式()()00f x x f x y x x+∆-∆=∆∆计算平均变化率,比较大小即可.在1x =附近的平均变化率为21(1)(1)(1)12f x f x k x x x +∆-+∆-===+∆∆∆;在2x =附近的平均变化率为222(2)(2)(2)24f x f x k x x x +∆-+∆-===+∆∆∆;在3x =附近的平均变化率为223(3)(3)(3)36f x f x k x x x+∆-+∆-===+∆∆∆.若13x ∆=,则123171131192,4,6333333k k k =+==+==+=.由于123,k k k <<∴在3x =附近的平均变化率最大.2.两个学校开展节能活动,活动开始后两学校的用电量1()W t 、2()W t 与时间t (天)的关系如图所示,则一定有( )A.1W 比2W 节能效果好.B.1W 的用电量在[]00,t 上的平均变化率比2W 的用电量在[]00,t 上的平均变化率大.C.两学校节能效果一样好.D.1W 与2W 自节能以来用电量总是一样大.解析:由图象可知,对任意的()100,t t ∈,曲线1()W W t =在1t t =处的切线比曲线2()W W t =在1t t =处的切线要“陡”,所以,1W 比2W 节能效果好,A 正确,C 错误;由图象可知,()()1012020(0)(0)W t W W t W t t --<,则1W 的用电量在[]00,t 上的平均变化率比2W 的用电量在[]00,t 上的平均变化率要小,B 选项错误;由于曲线1()W W t =和曲线2()W W t =不重合,D 选项错误.答案:A3.已知22()3f x x =-,若1()3f a '=,则a 的值等于( ) A.14- B.14 C.49- D.34解析:本题只需根据导数的定义可得2220002242()()4243333()lim lim lim 333x x x x x x x x x f x x x x x x x x ∆→∆→∆→⎛⎫-+∆---∆-∆ ⎪⎛⎫⎝⎭'===--∆=- ⎪+∆-∆⎝⎭, 因此41()33f a a '=-=,则14a =-. 答案:A4.曲线223y x x =-+在点(1,6)A -处的切线方程是________.解析:本题利用导数的几何意义求曲线切线的步骤解题.因为223y x x =-+,切点为(1,6)A -,所以斜率2100(1)2(1)3(123)lim lim (4)x x x x x k y x x=-∆→∆→-+∆--+∆+-++='==∆-=∆4-,所以切线方程为64(1)y x -=-+,即420x y +-=.答案:420x y +-=【分析计算能力】根据所学平均变化率的知识,分析具体数据,让学生自主的计算,提高对概念的理解和运用.【综合问题解决能力】学生在理解导数概念的基础上进行审题,强化导数几何意义,提高综合问题解决能力.教学反思本节课在正确理解函数平均变化率的问题和导数的概念等知识的基础上,研究导数的几何意义,由于新教材涉及极限,尽量采用形象直观的方式,提高学生的动手能力,注重多媒体的使用和数形结合思想的应用,使学生深刻体会导数的几何意义和“以直代曲”的思想,即在利用导数几何意义研究具体实际问题时,某点附近的曲线可以用过此点的切线近似代替,从而达到“以简单的对象刻画复杂对象”的目的,并通过对例题的研究,让学生体验导数与切线斜率的关系,并感受导数应用的广泛性,应提供学生多实践,多练习的机会,提高计算能力和概念的认知能力.【以学定教】启发并引导学生理解函数变化率、导数的概念和几何意义,熟练掌握导数概念的表示方法和利用导数几何意义求切线的解题步骤,提高综合问题的解决能力.【以学论教】通过教师引导学生阅读教材,归纳探究,解决有关导数问题,课堂上教师采用活动学习、意义学习的策略,使得学生掌握导数概念及其几何意义,达到较好的学习效果.。
变化率问题教案
变化率问题教案教案: 变化率问题I. 引言A. 引入变化率的概念B. 引出学生在解决变化率问题上的困惑C. 目标:通过本课程,学生将能够熟练解决变化率问题II. 学习目标与能力要求A. 学习目标:了解变化率的定义,掌握计算变化率的方法,能够应用变化率解决实际问题B. 能力要求:具备基本的数学计算能力,理解直线的斜率概念III. 预习活动A. 学生通过阅读教科书或课外资料扩充对变化率的理解B. 学生为预习问题解决方案做准备IV. 暖身活动A. 学生通过解决简单的变化率问题来复习前一个章节的知识B. 学生互相讨论解决方案,分享自己的思考过程V. 教学过程A. 引导学生理解变化率1. 提供一个简单的实例,让学生观察和描述变化率的含义2. 指导学生使用数学表达式定义变化率,讨论其意义3. 练习计算变化率的例子,确保学生掌握计算方法B. 应用变化率解决实际问题1. 提供一些实际生活中的问题,引导学生用变化率解决2. 要求学生在解决问题的过程中陈述他们的思考步骤,以促进深入理解3. 练习更复杂的变化率问题,以加强学生的应用能力C. 深入理解变化率1. 引导学生思考变化率的特性和性质2. 提供一些挑战性问题,让学生通过分析和推理来解决3. 鼓励学生提出自己的问题,并寻找解决方案VI. 巩固练习A. 给学生一些变化率相关的题目作为巩固与拓展B. 学生独立完成练习,然后和同伴交流解决方案C. 教师梳理学生的答案与思路,进行解析与讨论D. 对于有困惑的学生,教师提供额外的辅导与指导VII. 总结与反思A. 教师引导学生总结课程的内容,强调变化率的重要性与应用B. 学生反思自己的学习过程,提出问题和心得C. 教师提供鼓励和指导,激发学生继续深入学习相关知识的兴趣VIII. 作业布置A. 提供一些练习题作为课后作业B. 要求学生总结今天学到的重点知识,书写对变化率的理解和应用IX. 扩展学习A. 推荐学生到外部资源寻找更多变化率相关的问题和实例B. 鼓励学生参加数学竞赛或研究性学习,拓宽数学应用领域X. 复习与检测A. 定期安排复习课堂,检验学生对变化率概念的理解与应用B. 根据学生的学习情况进行个别辅导和指导本教案按照教案格式来介绍了一堂关于变化率问题的课程。
变化率问题教学设计(王占军)
《变化率问题》教学设计宁夏回族自治区银川市第九中学王占军教材版本:普通高中数学教材人教A版《选修2-2》“1.1.1变化率问题”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。
教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。
平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。
从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。
在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。
基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。
二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。
并能从图像中看出函数变化的快与慢。
2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。
(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。
2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。
对高中生而言,抽象概括能力和应用数学语言的能力还有待进一步的提高。
高中数学《变化率问题》公开课优秀教学设计
《变化率问题》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“1.1.1变化率问题”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。
教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。
平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。
从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。
在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。
基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。
二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。
并能从图像中看出函数变化的快与慢。
2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。
(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。
2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。
对高中生而言,抽象概括能力和应用数学语言的能力还有待进一步的提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变化率问题观课报告
一、引言
变化率问题作为数学中的一个重要概念,被广泛应用于各个领域。
变化率问题在高中数学中也是一个重要的考查点,尤其是对于高中数学物理等相关专业的学生来说,变化率问题更是一个重要的知识点。
因此,本文将从观课的角度出发,谈一谈关于变化率问题的一些理解以及应用。
二、观课感想
我参加了一堂高中数学课程关于变化率的授课观摩,这节课老师采用了循序渐进的教学方法带领学生们逐步地理解变化率这个概念。
首先老师作了铺垫,让学生了解何为变化率,其次老师通过具体的例子引导学生理解变化率的概念以及计算方法,然后老师给出了合理的选择题以帮助学生进行巩固和练习。
在课堂上,我也加入了课堂互动,与老师以及同学们进行激烈的讨论。
这堂课深入浅出,生动形象,配有生动画面,形式多样的教学模式不仅有效地帮助我们理解变化率的概念与应用,同时也激发了我们的学习热情。
三、变化率的理解与应用
1. 变化率的概念
变化率指的是物体或量在一段时间内发生变化的速率,可以分为瞬时变化率和平均变化率。
其中,瞬时变化率是指某一瞬间的变化速率,而平均变化率则是经过一段时间的变化速率的平均值。
2. 变化率的计算方法
变化率的计算方法主要有两个,分别为微积分的方法和代数方法。
微积分的方法主要涉及求导和积分等知识点,比如利用导数可以求出物体每时每刻的变化率;而代数方法主要是利用比例关系来计算变化率,比如变化率等于变化量与时间的比值。
3. 变化率的应用
变化率问题在实际生活中应用广泛,如在物理学、经济学和生物学等相关领域中常被使用。
下面就给出一个例子:
假如我们想要知道一辆汽车的加速度,我们可以利用汽车行驶过程中的速度变化情况,计算汽车的加速度。
在公路上行驶时,我们可以通过速度计来测量汽车不
同时刻的速度并作图,利用速度的变化率就可以计算出加速度。
这个例子表明了变化率问题在实际生活中的一些应用。
四、总结
本文通过观摩一堂变化率问题的课程,试图阐述变化率的概念、计算方法及其应用。
从观课的角度出发,全面理解变化率问题,对于学生们更好地掌握变化率这一概念是非常必要的。
同时,在理解变化率的过程中,我们也应该注重其一些具体应用场景的理解,如物理学、经济学和生物学等。
通过加深理解和练习,我们可以更好地掌握变化率这一概念,并在实际生活中加以应用。