nsga2算法加约束条件
NSGA-Ⅱ算法大量测试函数实验结果展示

如上图所示,蓝色曲线是经典测试函数ZDT2用NSGA-Ⅱ算法得到的 pareto前沿面,主要参数pop=500,gen=500,n=30,vardomain=[0,1],fun=2;红色曲线是经典测试函数ZDT2的理想pareto 前沿面,pop=500个
nsga_2.m(主函数)
initialize_variables.m(初始化种群)
non_domination_sort_mod.m(初始种群排序)
开始进化过程
tournament_selection.m(锦标赛选择) genetic_operator.m(遗传操作) non_domination_sort_mod.m(非支配解集排序) replace_chromosome.m(替代种群)
如上图所示,蓝色曲线是经典测试函数ZDT1用NSGA-Ⅱ算法得到的pareto前 沿面,主要参数pop=500,gen=500,n=30,var-domain=[0,1],fun=2;红 色曲线是经典测试函数ZDT1的理想pareto前沿面,pop=500个
理想pareto前沿面数据来源:http://www.cs.cinvestav.mx/~emoobook/
多目标进化优化领域的一些主要算法 ——Coello Coello总结方式
参考文献:进化多目标优化算法研究
• 第一代多目标进化优化算法:(1)MOGA(多目标
优化遗传算法)(2)NSGA(非支配排序多目标优化遗传算法)(3 )NPGA(小生境pareto多目标优化遗传算法) 主要特点:基于非支配排序选择、小生境(共享函数)多样性保持 主要问题:如何将进化算法与多目标优化问题有机地结合
O( mN 2 );最坏的情
况下,有N个等级,每 个等级只存在一个解,
基于改进NSGA2算法的配电网分布式电源优化配置

信息技术XINXISISHU2021年第5期基于改进NSGA2算法的配电网分布式电源优化配置苏路,董学育,张森,王浩宇,郭杰(南京工程学院电力工程学院,南京211157)摘要:基于NSGA2算法存在收敛性和分布均匀性不足的问题,文中研究了一种改进的NSGA2算法,该算法使用和精,并引入了伪适应度值的概念。
同时,为更好布式电源选址定容问题,文中建立了以有功网损和节点电压偏移为目标的分布式电源选址定容模型,并用改进算法对该模型进行求解,最后在MATLAB软件下以IDEE-SS节点系统为例进行测试,仿真结果与传统的NSGA2算法进行比较,证明了该方法在分布式电源优化配置方面的有效性和优越性。
关键词:;算数;精;度值;NSGA2算法中图分类号:TM715文献标识码:A文章编号:1029-2552(2221)25-0239-25DOI:12.13977/j.cods hdzj.2221.25.227OptimaU conOgurotion oO distriautey poweo geeerotion in distriOution network baed on improvve NSGA0aUokthmSU Lu,DONG Xuv-yp,ZHANG Sen,WANG Hso-ya,GUO Jis(Colleev of Electuc Powoo EngineeXng,Nanjing Institute of Technolopy ,Nanjing211127,China) Abstroci:Basel on tho proClem of insyf^lcieni converaence and unifoxnity of distriSution of NSGA2hqol rithm,sn12X0—NSGA2aleorithm is raised in this pdpof,which usos arithmetic cxssoif opewtof and elito crossovox stratepy,and introCucos tho concept of psenUo fitness veluo.At tho samo tiso ,in ordox to bettor stuUy tho distriSuteP o—extion location and canscity,tho pdpo estaplisyvs s distriSuteP powoo o—-o-ation location and canscity moCel taroeting active network loss and noCo voltaoo offset,and usos sn im-pxveP aloorithm to maSo moCel solution.Finaliy,Tho IEEE-S3noCo system is used as sn exampio to test undof MATLAB softwaro.Tho31^1131100xsu/,pxvos tho effectiveness and supoioXty of tho methoC in texns of tho optimizhWn cenfiouration of distriSuteP powox socxos compared with tho1x000—1NSGA2 Oorithm.Key wo O s:DistriSuteP powox supply;arithmetic crossovox operatox;elito crossovox stratepy;psenUo U p nos veluo;NSGA2alyorithm2引言于全球范的快速发展,传统能源的持人们日常生成的污染济成本增加愈发严重,在这种形式下,基金项目:江苏省研究生实践创新计划项目(SJCX19-2525)作者简介:苏路(1995-),女,硕士研究生,研究方向为分布式电源优化配置研究。
非支配排序遗传算法ii

非支配排序遗传算法II简介在搜索和优化问题中,非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm,NSGA)是一种有效的多目标优化算法。
本文将深入探讨非支配排序遗传算法的原理、应用和改进。
一、非支配排序遗传算法概述非支配排序遗传算法是根据生物进化的思想设计出来的一种启发式搜索算法。
它通过不断地进化和优胜劣汰的策略,从一个初始种群中逐步生成出一组优质的解,这些解构成了一个称为“非支配解集合”(Non-dominated Set)的前沿。
1.1 基本原理非支配排序遗传算法的基本原理如下:1.初始化种群:随机生成一组个体作为初始种群。
2.评估个体适应度:计算每个个体的适应度值,适应度函数常用于衡量个体在目标空间的性能。
3.非支配排序:根据个体之间的支配关系,将种群划分为不同的非支配层次。
4.拥挤度计算:为每个个体计算其在非支配层次内的拥挤度,用于维持种群的多样性。
5.选择操作:根据非支配排序和拥挤度计算,选择优质的个体进入下一代种群。
6.交叉和变异:对选择出的个体进行交叉和变异,生成新的个体。
7.更新种群:将新生成的个体与原种群合并,形成新的种群。
8.终止条件:根据预设的停止条件,判断是否终止算法。
1.2 算法特点非支配排序遗传算法具有以下特点:•能够处理多目标优化问题,得到一组在目标空间上均衡分布的解。
•通过非支配排序和拥挤度计算维护种群的多样性,避免陷入局部最优解。
•采用进化策略,能够逐步优化种群,逼近全局最优解。
•算法的计算复杂度相对较高,但在实际应用中具有较好的效果。
二、NSGA-II算法改进NSGA-II是非支配排序遗传算法的一种改进版本,它在保留NSGA原有特点的基础上,加入了一些优化手段,提高了算法性能。
2.1 快速非支配排序算法为了减少排序的时间复杂度,NSGA-II使用了一种称为“快速非支配排序算法”(Fast Non-dominated Sorting Algorithm)的方法。
(完整版)NSGA-II

Abstract:NSGA(采用Non—dominated sorting and sharing算法的MOEA)存在以下三个问题:a、非劣排序遗传算法的复杂度为O(MN3)b、没有引进精英策略;c、必须人为指定一个共享参数;Introduction:传统的优化方法(Multi-criterion decision-making methods)提出将多目标优化问题转换为单目标优化问题,强调一次仿真运行只获得一个最优解,然后通过多次仿真希望获得多个不同的最优解;NSGA-II改进主要是针对如上所述的三个方面:a、提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;b、引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;c、采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
NSGA-II提出了一个简单的解决约束优化问题的方法;Part II:强度Pareto进化算法,SPEA(suggested an elitist multi-criterion EA with the concept of non-domination)具体步骤如下:a、产生初始种群P和空的外部非劣解集NP;b、将种群P中的非劣个体拷贝到非劣解集NP;c、剔除集合NP中受种群P中个体支配的解;d、如果保留在集合NP中的非劣解的个数超过事先给定的最大值,则通过聚类分析对集合NP进行修剪,剔除多余的解;e、计算种群P和集合NP中每个个体的适应度值;f、利用二元锦标赛方法从P +NP中选择个体进入下一代;g、对个体实施交叉和变异操作;h、如果最大代数达到,停止搜索;否则转到b.适应度赋值:首先对非劣解集NP中的个体进行赋值,然后对种群中的个体赋值,具体描述如下:a、对于每个解x i ∈ NP,赋予一个强度值S i ∈[0,1),S i = h i /(N+1),其中h i 表示种群中受个体xi 支配的个体数,N为种群规模.Si即为xi的适应度值;b、每个个体x j ∈ P 的适应度值为1+ ∑S i ,即所有支配解x j 的解x i ∈ NP的强度之和再加1.聚类分析:通常情况下,非劣解集大小必须受限,必须为其规定最大规模,即保留在其中的解的最大个数,主要原因有四个方面:a、M OP的非劣解集大小可能非常大,甚至无穷大b、实现算法的计算资源是有限的;c、档案维护的复杂性会随档案规模的变大而显著增加;d、遗传漂移可能出现,因为均匀采样过程中搜索空间中过度代表的区域总是优先被选择。
解决多目标旅行商问题的改进NSGA-II算法

《工业控制计算机》2018年第31卷第4期仅有一个目标函数的最优化问题称为单目标优化问题,目标函数超过一个的最优化问题称为多目标优化问题(Multi-objec⁃tive Optimization Problems ,MOP )[1]。
在解决科学与工程问题时,一般需要考虑多个目标函数,而这几个目标函数通常是相互冲突和相互影响的,一个子目标的改善可能会引起另一个子目标性能的降低,通常不存在唯一的使所有目标函数同时达到最优值的绝对最优解,而是存在多个相互之间无法比较优劣的Pareto 最优解。
这些解所构成的集合称为Pareto 最优解集,其对应的目标向量组成的曲线(或曲面)称为Pareto 前端[2]。
多目标旅行商问题是经典TSP 扩展和延伸,属于典型的多目标组合优化问题。
一般叙述为:有一旅行商从第一个城市出发,欲遍历其余城市至少一次,最后再回到第一个城市,其中各城市之间距离和花费是已知的,试求解合适的行走路线,使其满足总路程最短、时间最少、费用最省、风险最小等多个目标函数[3]。
工程决策中的大量问题可归结为多目标TSP 问题,如生产计划、物流调度等,因此寻找适合有效的算法尤为重要。
本文提出了一种ANSGA-II+2opt 算法来解决双目标TSP 问题,此算法在NSGA-II 的基础上,加入了局部搜索策略2opt ,并且对遗传算法的变异参数采取了自适应策略,论文将ANS⁃GA-II+2opt 算法与传统的NSGA-II 在标准的双旅行商问题上进行性能对比,实验结果验证了算法的有效性。
1多目标旅行商问题旅行商问题(Travelling Salesman Problem ,TSP ),也称为货郎担问题,是一个典型的NP 完全性组合优化问题[4]。
多目标旅行商问题其数学描述为:min s ∈A D=n-1i =1∑d a a i+1+d a na 1min s ∈A W=n-1i =1∑w a a i+1+w a na1⎧⎩⏐⏐⎨⏐⏐(1)其中,A 表示邀1,2,3,…,n妖的所有排列组合,{a 1,a 2,…,a n }是其中一个排列组合,d a a +1表示城市i 到城市j 的距离,w a a +1表示城市i 到城市j 的花费,对于对称型TSP 来说,d a a +1=d a +1a ,w a a +1=w a i+1a 。
具有修正策略的改进NSGA-Ⅱ三维路径规划

300机械设计与制造Machinery Design&Manufacture第5期2021年5月具有修正策略的改进NSGA-II三维路径规划封建湖1,郑宝娟1,封硕2,张婷宇1(1.长安大学理学院,陕西西安710064;.长安大学工程机械学院,陕西西安710064)摘要:针对传统多目标遗传算法存在收敛速度慢和难以得到Pareto最优解的缺点,提出了一种在三维环境下具有修正策略的改进带精英策略的非支配排序的遗传算法(NSGA-II)o首先建立能使路径最短、能耗最小、起伏最少的多目标函数;其次加入修正算子来减少冗余的路径点,实现快速收敛;然后在选择算子中加入辅助决策算子来比较优先级,提高解的多样性。
为了测试改进算法的效果,将传统算法与改进算法进行对比,改进算法得到的解更优且在不同环境下具有多个Pareto前沿分布解,其中修正算子使迭代次数减少了约63%,验证了改进算法的可行性和有效性。
关键词:三维路径规划;改进NSGA-II;修正算子;Pareto解中图分类号:TH16;TP242.6文献标识码:A文章编号:1001-3997(2021)05-0300-05The Three-Dimensional Path Planning Based on anImproved NSGA2-II with Modified StrategyFENG Jian-hu1,ZHENG Bao-juan1,FENG Shuo2,ZHANG Ting-yu1(1.School of Sciences,Chang'an University,Shaanxi Xi'an710064,China;2.School of Construction Machinery,Chang'an University,Shaanxi Xi'an710064,China)Abstract:In view of the shortcomings of convergence speed and difficult to get Pareto's optimal solution,an improved NSGA-II with a modified strategy is proposed to plan the optimal collision-free path for a mobile robot in three-dimensional environment.Firstly,the optimization targets involving the shortest path,minimum energy consumption and least fluctuation were determined.Secondly,a modified operator was added to reduce redundant path points to achieve fast convergence. Meanwhile,an auxiliary decision operator was added to the selection operator to compare the priorities and reinforce the diversity ofsolutions.The traditional algorithm compares with the improved algorithm in order to verify the effectiveness ofthe improved algorithm,using improved NAGA-II not only obtains a more satisfactory Pareto solution,but also get better diversity ofsolutions in Pareto optimalfront in different cases,t he modified operator reduces the number qfiterations by about 63%,which verify that the improved algorithm owns betterfeasibility and effectiveness.Key Words:Three-Dimensional Path Planning;Improved NSGA-II;Modified Operator;Pareto Solution1引言路径规划是机器人定位与导航领域研究的热点问题之一,目前的路径规划方法如蚁群算法,粒子群算法,蜂群算法,萤火虫算法及混合算法等|1-3]多用于二维平面空间规划。
一种基于区域局部搜索的NSGA Ⅱ算法
一种基于区域局部搜索的NSGA II 算法栗三一 1王延峰 1乔俊飞 2黄金花3摘 要 针对局部搜索类非支配排序遗传算法 (Nondominated sorting genetic algorithms, NSGA II)计算量大的问题,提出一种基于区域局部搜索的NSGA II 算法(NSGA II based on regional local search, NSGA II-RLS). 首先对当前所有种群进行非支配排序, 根据排序结果获得交界点和稀疏点, 将其定义为交界区域和稀疏区域中心; 其次, 围绕交界点和稀疏点进行局部搜索. 在局部搜索过程中, 同时采用极限优化策略和随机搜索策略以提高解的质量和收敛速度, 并设计自适应参数动态调节局部搜索范围. 通过ZDT 和DTLZ 系列基准函数对NSGA II-RLS 算法进行验证, 并将结果与其他局部搜索类算法进行对比, 实验结果表明NSGA II-RLS 算法在较短时间内收敛速度和解的质量方面均优于所对比算法.关键词 非支配排序遗传算法, 分区搜索, 局部搜索, 多目标优化引用格式 栗三一, 王延峰, 乔俊飞, 黄金花. 一种基于区域局部搜索的NSGA II 算法. 自动化学报, 2020, 46(12): 2617−2627DOI 10.16383/j.aas.c180583A Regional Local Search Strategy for NSGA II AlgorithmLI San-Yi 1 WANG Yan-Feng 1 QIAO Jun-Fei 2 HUANG Jin-Hua 3Abstract In order to reduce the amount of calculation and keep the advantage of local search strategy simultan-eously, this paper proposed a kind of nondominated sorting genetic algorithms (NSGA II) algorithm based on re-gional local search (NSGA II-RLS). Firstly, get corner points and sparse point according to the results of non-dom-inated sorting of current populations, define those points as the centers of border areas and sparse area respectively;secondly, search around the corner points and sparse point locally during every genetic process; NSGA II-RLS ad-opts extreme optimization strategy and random search strategy simultaneously to improve the quality of solutions and convergence rate; adaptive parameter is designed to adjust local search scope dynamically. ZDT and DTLZ functions are used to test the effectiveness of NSGA II-RLS, the performance is compared with four other reported local search algorithms. Results show that: the solution quality of NSGA II-RLS is better than the other methods within limited time; the time complexity of NSGA II-RLS needed to achieve the set IGD value is less than the oth-er methods.Key words Nondominated sorting genetic algorithms (NSGA II), regional search, local search, multi-objective op-timizationCitation Li San-Yi, Wang Yan-Feng, Qiao Jun-Fei, Huang Jin-Hua. A regional local search strategy for NSGA II algorithm. Acta Automatica Sinica , 2020, 46(12): 2617−2627带精英策略的非支配排序遗传算法(Nondom-inated sorting genetic algorithms, NSGA II)作为一种启发式算法, 通过模拟进化论的自然选择和遗传学机理, 可以在不考虑实际工程内部工作方式的情况下求解高度复杂的非线性最优值问题, 被广泛应用于经济结构优化[1]、路径规划[2]、生产调度[3]等实际工程中. 然而作为一种类随机搜索算法, NSGA II 存在收敛速度慢的问题[4].针对NSGA II 收敛速度慢的问题, 已有的研究表明局部搜索策略可以有效提高种群收敛速度, 并且在靠近Pareto 前沿时避免陷入局部极优[5]. 目前已经提出的局部搜索算法可以分为两类: 随机搜索算法和定向搜索算法.X )Y )Y X Y X,Y 随机搜索算法将指定解(设为 周围区域作为搜索区间, 对该解增加一较小的随机值形成新的解(设为 , 若 支配 则 取代 之后以 为中心继续进行搜索. 一些研究者认为初始种群对局部搜索算法的效果有重要影响[6−7], 初始种群分布范收稿日期 2018-09-01 录用日期 2019-01-18Manuscript received September 1, 2018; accepted January 18,2019全国教育科学规划一般课题(BJA170096), 湖北省教育科学规划课题 (2018GB148), 教育部新一代信息技术创新项目(2019ITA04002),河南省科技攻关项目基金 (202102310284)资助Supported by General Project of National Education Science (BJA170096), Education Science Project of Hubei Province (2018GB148), Innovation Project in Information Technology of Education Ministry (2019ITA04002), and Key Projects of Sci-ence and Technology of Henan Province (202102310284)本文责任编委 魏庆来Recommended by Associate Editor WEI Qing-Lai1. 郑州轻工业学院 郑州 4500022. 北京工业大学信息学部 北京 1001243. 武汉船舶职业技术学院 武汉 4300001. Zhengzhou University of Light Industry, Zhengzhou 4500022. Faculty of Information Technology, Beijing University of Technology, Beijing 1001243. Wuhan Institute of Shipbuild-ing Technology, Wuhan 430000第 46 卷 第 12 期自 动 化 学 报Vol. 46, No. 122020 年 12 月ACTA AUTOMATICA SINICADecember, 2020围越大、分布越均匀, 随机搜索的效果越好, 从这一方面出发设计了基于任务分解的种群初始化方法,产生初始解之后使用随机搜索尝试从不同的初始解逼近Pareto前沿. 部分研究者尝试将单目标局部搜索算法扩展应用于解决多目标优化问题[8]. 还有一些专家尝试调整搜索区域和搜索范围以提高局部搜索的效率[9−10]. 在专家学者的努力下, 已有的随机搜索类算法可以有效提高种群的收敛速度, 避免种群陷入局部极优, 然而在每一次迭代过程中都需要对每个解进行局部搜索, 普遍存在计算复杂度高的问题.定向搜索算法通过梯度或任务分解等方法指定搜索方向, 使初始种群朝着指定方向收敛. 一些专家使用梯度求导等方法获得搜索方向[11−12], 可以有效指导种群向Pareto前沿逼近, 但是求导计算量太大. 为了避免求导, 研究者利用目标空间几何信息[13]、解的邻域信息[14]和父代与子代之间差别信息[15]等获得搜索方向. 定向搜索算法通过指定搜索方向,搜索效率高, 但由于搜索方向固定, 对初始种群的分布特性要求很高, 且方向函数的计算也增加了计算复杂度, 与随机算法相同的是随机算法在每一次迭代过程中对每个解进行局部搜索, 计算成本高.随机搜索算法和定向搜索算法在搜索过程中对每个解均进行局部搜索, 计算复杂度很高[9, 16], 限制了局部搜索算法在对优化速度要求较高场合的应用. 针对这一问题本文提出基于区域局部搜索的NSGA II算法(NSGA II based on regional local search, NSGA II-RLS). NSGA II-RLS以NSGA II 为框架, 在交叉变异操作过程后进行局部搜索, 首先根据非支配排序结果获得交界点(目标空间中单个目标向量方向上值最大的解)和稀疏点(除了交界点以外拥挤距离最大的点), 将其定义为交界区域和稀疏区域中心, 然后围绕交界点和稀疏点进行局部搜索. 局部解由极限优化变异策略[17]和随机搜索策略产生, 在局部搜索过程中设计自适应参数动态调整局部搜索范围, 提高了局部搜索的效率. NSGA II-RLS主要有以下优势:1)交界点和稀疏点可以直接根据非支配排序结果获得, 不需要计算密度和梯度, 计算量小.2)在交界区域和稀疏区域进行局部搜索可以同时提高收敛速度和增加种群分布的均匀性.3)只在交界区域和稀疏区域进行局部搜索可以避免计算资源浪费, 有效降低计算复杂度.4)自适应参数的设定可以使算法在初期具有较大的搜索范围, 靠近Pareto前沿时具有较小的搜索范围, 提高了局部搜索的搜索效率.通过基准多目标优化实验验证算法的有效性.实验结果证明NSGA II-RLS可以有效提高NSGA II 算法的收敛速度. NSGA II-RLS在有限时间内得到的解的质量明显优于其他算法; 评价指标达到设定值所消耗的计算量明显少于其他算法; 优化效果优于固定搜索范围的局部搜索方法.1 非支配、拥挤距离排序P,N,X i iS i C i,S i X i C iX i C i=0P1,C i C i=0P2,NSGA II算法结合非支配关系与拥挤距离对非支配解进行排序. 假设当前种群为 种群规模为 对每个个体(第个个个体), 设两个参数和 为被支配的个体的集合, 为支配的个体的数量. 将所有的个体组成集合 其为第1级非支配解, 也是当前的非支配解集.然后将剩下的所有个体的减1, 此时的个体组成集合 其为第2级非支配解, 重复上述过程直到所有解完成分级.iD i,i然后对每一级的解进行拥挤距离排序, 设第个解的拥挤距离为 定义为在个体周围包含个体本身但不包含其他个体的最小的长方形(周长最小的长方形), 如图1所示. 将同一级别的解按照拥挤距离从大到小排列, 最边界的解的拥挤度为无穷大, 同一级别的解拥挤距离越大越好.i图 1 个体的拥挤距离iFig. 1 Crowded distance of individual2 NSGA II-RLS算法为了解决目前局部搜索多目标优化算法计算复杂度高的问题, 本文提出基于一种基于分区局部搜索的多目标优化算法NSGA II-RLS. NSGA II-RLS根据NSGA II算法的非支配排序结果直接获2618自 动 化 学 报46 卷得交界点和稀疏点, 将其设为交界区域和稀疏区域中心, 不需要额外的计算量; 在交界点和稀疏点周围进行局部搜索, 在提高种群收敛速度的同时保证了进化过程中种群的多样性和均匀性; 分区搜索较以往的局部搜索算法计算复杂度明显降低; 为了提高局部搜索的效率, 对局部搜索范围进行自适应动态调整.2.1 获取区域中心局部搜索可以有效提高收敛速度[8−12], 然而对每一个解都进行局部搜索计算量很大, 而且对远离Pareto 前沿的被支配解进行局部搜索对种群逼近Pareto 前沿贡献不大. 因此人们尝试分区域进行搜索, 区域搜索的中心思想是在重点区域进行局部搜索, 有侧重点的搜索以增加搜索效率, 如在目标空间进行聚类得到聚类中心、通过拐点确定中心等,然后围绕中心点进行局部搜索.然而通过聚类、密度计算等确定中心, 任意两个解之间的欧氏距离都需要计算, 增加了算法的计算量. 因此本文直接利用非支配排序和拥挤距离排序获得搜索区域中心, 非支配排序和拥挤距离排序是NSGA II 算法的固有步骤, 因此利用其获得搜索区域中心不会增加计算复杂度.t P,m,P P 1P 1m m +1m +1P 1m m +1m 获取区域中心具体方法如下: 设第 代种群为 目标函数个数为 根据第1节对种群 进行非支配排序和拥挤距离排序, 则第1级非支配解 为当前种群的非支配解. 由拥挤距离排序机理可知,交界点的个数等于目标函数个数, 在种群 中前 个个体的拥挤距离为无穷大, 第 个个体的拥挤距离为除了边界点之外最大的点, 意味着第 个个体周围解的密度最低. 由此可知非支配解集 中前 个个体为交界点, 第 个个体为稀疏点, 对应着 个交界区域的中心和稀疏区域的中心.本文以交界点和稀疏点为中心进行局部搜索,交界点是至少在一个目标向量方向上的极大值或极小值, 以交界点为中心进行搜索是确保种群分布范围的一个措施. 拥挤距离最低的点周围是解最稀疏的区域, 围绕稀疏点进行局部搜索可以增加种群分布的均匀性. 因此本文以交界点和拥挤距离最小的点为中心进行局部搜索是有意义的.以两目标优化问题为例, 图2显示了NSGA II-RLS 算法的种群进化过程. 从图中可以看到以下三点: 局部搜索可以提高种群收敛速度; 围绕稀疏点进行局部搜索可以增加种群的分布均匀性; 围绕交界点进行局部搜索可以保持种群的分布范围.2.2 局部搜索搜索区域中心确定之后需要围绕区域中心进行局部搜索, 局部搜索的方法对局部搜索效果有重要影响. 本文采用文献[18]提出的局部搜索方法, 同时采用极限优化策略和随机优化策略产生局部解,可以平衡局部搜索算法的全局搜索能力和局部搜索能力.X =(x 1,x 2,···,x n ),n n,极限优化的具体方法如下[17]: 设被搜索区域的中心解为 为决策变量个数,种群规模为N , 则产生局部解个数为 变异公式为X i =(x 1,···,x ′i ,···,x n ),0<i ≤n(1)x ′i =x i +α×βmax (x i ),0<i ≤n(2)图 2 NSGA II-RLS 算法的种群进化过程Fig. 2 The evolution process of NSGA II-RLS algorithm12 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2619βmax (x i )=max [x i −l i ,u i −x i ],0<i ≤n(4)x i h q q l i u i i βmax (x i )x i 其中, 为决策变量; 为0到1之间的随机数; 为正实数, 称为形状参数, 根据文献[17]将 设为11; 和 分别为第 个决策变量的下界和上界; 为当前决策变量 可变动的最大值.X =(x 1,x 2,···,x n ),n,n N,随机局部搜索策略为: 设当前搜索中心解为 为决策变量个数, 种群总数为 随机搜索产生局部解个数为种群总数的20%[19] (如不能整除则取整), 随机搜索变异公式为γrand (γ)(−γ,γ)0.1N (m +1)(n +⌈0.3N ⌉)m 其中, 为搜索范围参数, 用于确定搜索范围的大小; 表示取值在 之间的随机数. 同时还产生 个随机解以保证种群的多样性[17]. 以上变异策略共产生 个局部解, 为目标函数个数.2.3 自适应参数设定T max 对于随机局部搜索策略, 在算法运行初期较大的搜索范围可以提高全局搜索能力, 使种群快速靠近Pareto 前沿. 在靠近Pareto 前沿后, 较小的搜索范围可以提高种群逼近Pareto 前沿的能力. 本文根据最大优化时间( )设计参数动态调整方法.T max ,根据经验与已有的研究成果[9−10, 19]设定的取值范围为(0.05,0.2), 设最大优化时间为 搜索范围调整公式为t T max T max t T max T max γT max 其中, 为从优化开始到当前时刻的时间, 使用式(9)时需 的值大于5, 若小于5则单位量级可以降低一个等级, 如当 为3 s, 则可设其为3 000 ms, 与 统一单位. 图2和图3分别显示了 为5 s 和1 000 s 时 的变化曲线, 从图中可以看出, 其变化轨迹完全相同, 且其变化规律符合预期的搜索范围变化规律, 因此本文提出的自适应公式针对不同的 设定值具有很好的自适应性.γ注1. 的取值范围本文根据经验与相关文献[9–10, 19]进行设定, 并没有通过实验验证, 后期研究可以通过实验找到最佳的搜索范围.注2. 多数实际优化问题的Pareto 前沿是未知的, 本文提出的搜索范围调整方法并不需要知道Pareto 前沿, 而且需要设定的参数很少, 适用于解决实际问题.2.4 NSGA II -RLS 算法流程N ;T max ;n ;u =(u 1,u 2,···,u n )l =(l 1,l 2,···,l n );m ;q ;p c pm ;ηc ηm .根据实际MOP 问题设定算法参数: 初始种群数量为 最大优化时间 决策向量维数 决策变量取值上界 和下界 目标函数个数 形状参数 交叉概率和变异概率 交叉参数 和变异参数 NSGA II-RLS 的具体算法流程如下:P I ={X 1,X 2,···,X N }X i =(x ′1,x ′2,···,x ′n )i =1,2,···,n 步骤1. 在取值范围内随机初始化种群 , 其中, , .P I P C ,步骤2. 对 进行非支配、拥挤距离排序, 当前种群中所有非支配解记为 根据排序结果确定交界区域中心和稀疏区域中心.P I P M .步骤3. 按照标准NSGA II 算法对 中的种群进行交叉变异, 形成子代T max γ图 3 为5 s 时 的变化曲线γT max Fig. 3 the change curve of when is set to be 5 sT max γ图 4 为1 000 s 时 的变化曲线γT max Fig. 4 the change curve of when isset to be 1 000 s2620自 动 化 学 报46 卷(m +1)(n +⌈0.3N ⌉)P N .步骤4. 围绕交界中心和稀疏区域中心进行局部搜索, 共产生 个局部解, 将其集合设为种群 P I P M P N N P O ,P I =P O .步骤5. 将 、 和 合并, 并对所有解进行非支配、拥挤距离排序, 从中选取最优的 个解形成下一代种群 并设 T max 步骤6. 重复步骤2~5, 当达到最大优化时间 或目标精度时进行步骤7.P I 步骤7. 当前 中的非支配解即为得到的最优解.与其他局部搜索NSGA II 算法相比, NSGA II-RLS 算法只在边界和稀疏区域进行局部搜索, 计算量明显降低, 并且能够保证算法的收敛速度和种群的分布性; 采用两种局部搜索策略, 使算法在搜索前期和后期都有较好的搜索效率; 搜索范围的自适应调整平衡了全局搜索与局部搜索的比重; 本文提出的搜索范围调整方法不需要提前获知Pareto 前沿, 需要设定的参数也较少, 符合实际工程应用要求.下面分析NSGA II-RLS 算法运行一代的时间复杂度(函数计算次数, 每一次公式的计算都增加计算复杂度1). NSGA II-RLS 的时间开销主要集中在子代目标函数值求解部分.0.5N +(m +1)(n +⌈0.3N ⌉)n m N,O (mN )O (0.8N +0.3mN )子代目标函数值求解: 交叉变异和局部搜索共产生 个解, 因决策变量个数 和目标个数 一般远小于 因此该步骤计算复杂度为 , 一代函数计算次数为 .O (mN )O (N 2)O (N )N 综合以上分析, NSGA II-RLS 的计算复杂度为 . 当单个解的局部搜索解数量与本文相同时, 全部解都进行局部搜索的随机搜索算法的计算复杂度为 . 对于定向搜索算法, 由于需要通过梯度等方法计算方向, 计算复杂度一般高于随机搜索算法. 标准NSGA II 的一代计算复杂度为 ,由此可以看出, 本文提出算法的计算复杂度与标准NSGA II 都为 的一次方级别, 且其系数也不大,因此NSGA II-RLS 的计算复杂度远远低于其他局部搜索算法, 而且其搜索范围也可以自适应调整.注3. NSGA II-RLS 算法采用分区搜索机制,重点在交界区和解稀疏区域局部搜索, 因此, 对于Pareto 非连续的问题, 在优化过程中可能出现某些片段无解的情况, 所以NSGA II-RLS 适用于解决Pareto 前沿连续的问题.3 仿真实验本文通过双目标ZDT 系列函数和三目标DTLZ系列函数对算法NSGA II-RLS 进行验证, 测试函数的特征及参数如表1所示. 实验结果与基于密度O (0.8N +0.1N 2)O (0.5N +C 2nN )O (0.5N +15(n −3)N )O (2.5N +C 2n N )O (N 2)O (n 2N )O (nN )O (n 2N )O (0.8N +0.3mN )O (mN )的局部搜索算法NSGA II-DLS [18]、随机局部搜索算法ED-LS [9]、变深度随机局部搜索算法MOILS [10]和定向搜索算法DirLS [15]进行对比, 一代函数计算次数分别为 、 、 和 , 计算复杂度分别为 、 、 和 . 本文提出的NS-GA II-RLS 的一代函数计算次数为 ,计算复杂度为 . 采用MATLAB10.0b 软件进行仿真实验, 处理器为3.60 GHz, 8.00 GB 内存,Microsoft 实验环境.N n ηc ηm 1/n ;q 双目标实验初始种群规模 为100, 三目标实验初始种群规模为200; 决策变量个数 如表1所示; 所有实验均采用模拟二进制交叉变异方法, 交叉参数 和变异参数 均设为20, 交叉和变异概率分别为0.9和 形状参数 设为11.I 采用综合评价指标 IGD (Inverted generation-al distance) 和种群多样性指标 进行评价. IGD 的计算公式为P ∗P d (v,P )v P |P ∗|其中, 为帕累托解集; 为近似解; 为向量 与解集 中的向量的欧氏距离最小值; 为帕累托解集中解的个数.I 指标 的计算公式为d f d l d i ,i =1,2,···,N −1d m d i 其中, 和 为帕累托末端解和所得解集边界解之间的欧氏距离, 为所获得的连续非支配解之间的欧氏距离, 为所有 的平均值.实验结果使用秩和检验(Wilcoxon ranksum test), 在0.05显著性水平上说明不同结果之间的差异显著性.注4. 在使用优化算法做基准实验时, 大部分文表 1 测试函数参数Table 1 Paramter setting of the test functions函数Pareto 前沿特征决策变量维度目标维度种群规模ZDT1凸3021 000ZDT2凹3021 000ZDT4凸1021 000ZDT6凹1021 000DTLZ1非凸非凹732 500DTLZ2凹734 096DTLZ3凹734 096DTLZ4凹1234 09612 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2621章将种群规模设定为100或200[3−7], ZDT 系列问题是双目标问题, 相对比较简单, 因此我们对ZDT 实验设定种群规模为100, DTLZ 系列为三目标问题,比较复杂, 我们设定种群规模为200. Deb 等[20]在提出NSGA II 算法时设定交叉变异参数为20, 交叉概率为0.9, 变异概率为1/n , 之后人们在使用和改进NSGA II 算法时, 有一些保持了该参数设定[21−23],而这一部分不是本文研究的重点, 因此本文也按照文献[20]对交叉变异参数进行设定. 文献[17]提出了极限优化算法, 本文根据文献[17]将形状参数q 设为11.3.1 实验1T max 本实验设定当ZDT 系列函数IGD 值达到0.01、三目标函数IGD 值达到0.1 (所对比算法双目标函数IGD 最优值在0.01以下但接近0.01, 三目标函数IGD 最优值在0.1以下并接近0.1)时停止优化, 对双目标和三目标函数最大优化时间 分别设为50 s 和200 s (各对比算法达到目标精度的时间多数情况下小于此设定值, 为了防止未达到目标精度而因达到最大优化时间停止优化, 将最大优化时间设定为较大的值比较合理), 计算停止时的总函数计算次数. 本实验用于验证算法在达到目标精度时函数计算总次数, 可以反映算法的收敛速度,实验结果如表2和表3所示.从表2和表3可以看出, 本文提出的NSGA II-RLS 在所有实验中达到目标精度时总函数计算次数远远低于其他对比算法. 在双目标ZDT 系列实验中, NSGA II-RLS 的总进化代数是最低的. 对于ZDT1和ZDT2, MOILS 的函数计算次数均低于ED-LS, 说明当n 较大时对搜索范围的调整可以有效提高搜索效率. NSGA II-RLS 的实验结果优于ED-LS, 说明极限优化策略的引入可以有效提高种群的收敛效果. DirLS 的函数计算次数低于ED-LS,且该两种算法的局部解生成机制同为2-opt (2-op-timization)方法, 说明在双目标实验中指向性参数的加入对收敛性有较大提升. 同时从表2中可以看到, NSGA II-RLS 结果的波动范围最小, 说明NSGA II-RLS 有较好的稳定性.在三目标DTLZ 系列实验中, MOILS 在DTLZ1、DTLZ3和DTLZ4中的进化代数最低, 除NSGA II-DLS 之外的算法总进化代数差异不超过30%, 因此总函数计算次数的差异主要由单步函数计算次数产生. 从总函数计算次数可以反映出NSGA II-RLS 单步计算复杂度低的优势. MOILS 在三目标实验中总函数计算次数是最高的, 结合双目标实验结果表 2 ZDT 系列函数IGD 值达到0.01时对比算法的总时间复杂度与进化代数 (连续10次实验求平均)Table 2 For ZDT series function the comparison of total time complexity and the evolution algebra of differentalgorithms when IGD value reaches 0.01 (mean value of ten consecutive experimental results)算法ZDT1ZDT2ZDT3ZDT4复杂度代数复杂度代数复杂度代数复杂度代数NSGA II-RLS 2 10015 2 38017 1 96014 1 40010NSGA II-DLS [17]46 440 (+)4334 560 (+)3231 320 (+)2932 400 (+)30ED-LS [9]2 569 450 (+)591 698 450 (+)39168 350 (+)37163 800 (+)36MOILS [10]1 419 250 (+)351 135 400 (+)28327 050 (+)31232 100 (+)22DirLS [15]1 312 500 (+)301 137 500 (+)26156 750 (+)33114 000 (+)24注: (+) 表示NSGA II-RLS 的结果明显优于相应的算法表 3 DTLZ 系列函数IGD 值达到0.1时对比算法的总时间复杂度与进化代数 (连续10次实验求平均)Table 3 For DTLZ series function the comparison of total time complexity and the evolution algebra of differentalgorithms when IGD value reaches 0.1 (mean value of ten consecutive experimental results)算法DTLZ1DTLZ2DTLZ3DTLZ4复杂度代数复杂度代数复杂度代数复杂度代数NSGA II-RLS 29 9208817 3401933 6609927 54041NSGA II-DLS [17]378 000 (+)17599 360 (+)46416 880 (+)193192 240 (+)89ED-LS [9]369 800 (+)86116 100 (+)27460 100(+)107545 300 (+)41MOILS [10]883 300 (+)73254 100 (+)211 028 500 (+)851 084 000 (+)40DirLS [15]385 400 (+)82159 800 (+)34451 200 (+)96671 300 (+)49注: (+) 表示NSGA II-RLS 的结果明显优于相应的算法2622自 动 化 学 报46 卷n n 可知, 当决策变量维数较高时, 变深度局部搜索的总函数计算次数优于2-opt 方法, 当决策变量维数低时2-opt 方法的总函数计算次数优于变深度搜索. NSGA II-DLS 在所有实验中消耗的进化代数最大, 原因是其只在稀疏解周围进行局部搜索, 导致算法先收敛到前沿附近的某一区域, 之后还需要继续对周边区域进行探索. 由以上分析可知, NSGA II-RLS 产生局部解时使用极限优化策略和随机搜索策略可以有效提高种群收敛速度, 其单步函数计算次数远远低于所对比算法. 从局部解生成公式(1)~(6)可知, 其生成解数量仅与种群规模N 相关,而目前大部分局部搜索方法产生局部解时采用2-opt 及其衍生方法, 产生局部解的个数不仅与N 相关, 而且与决策变量维数 成正相关, 实际问题中, 的维数一般较高, 这也是导致一般局部搜索计算复杂度高的原因之一.从以上实验结果分析可知, 达到目标精度时NSGA II-RLS 的总函数计算次数最低, 说明NSGA II-RLS 具有快速收敛的优点, 并且优化效果比较稳定.注5. 文献[14, 18, 24]以优化函数计算次数作为评价标准, 但对于局部搜索类算法而言, 遗传过程中梯度计算、密度计算等消耗的计算资源也不容忽视. 为了更公平地比较算法效果, 本文以总时间复杂度为评价标准.3.2 实验2T max T max T max T max T max 实际工程中经常以时间作为停止标准, 本实验设定当达到最大优化时间 时停止实验. 本文提出的NSGA II-RLS 优势在于计算复杂度低、收敛速度快, 因此为了体现算法的优势, 本实验对ZDT 系列实验设 为20 s, DTLZ1和DTLZ3实验设 为200 s, DTLZ2实验设 为40 s, DTLZ4实验设 为80 s, 比较实验停止时的IGD 值、GD 值和I 值. 所有实验除局部搜索步骤不同, 其他部分完全相同, 以保证实验对比的公平性. 本实验的目的是检验在有限的时间内各算法的优化效果.实验结果如表4和表5所示.T max 从表4可以看出, 除DTLZ2实验外NSGA II-RLS 的IGD 均值与标准差均为最小. DTLZ2实验各算法实验结果相差不超过30%, 说明对于DT-LZ2函数将 设为40 s 各算法有相对充足时间收敛到Pareto 前沿, 也说明当时间足够长时NSGA II-RLS 的效果反而不如已有的局部搜索算法, 但其优化效果与对比算法中最优的结果差距在5% 以内,从实验1的结果可以看出, 在达到目标精度时NSGA II-RLS 的总计算量不超过对比算法总计算量的10%,也就是说用10%的计算资源达到了95%的优化效果. 在其他实验中NSGA II-RLS 的IGD 均值与方差均最小, 对应实验1的结果可知, 在优化时间有限且较短时, 计算复杂度低、收敛速度快的NSGA II-RLS 算法具有明显优势.ED-LS 与DirLS 算法类似, DirLS 比ED-LS 多加了方向性指标指导种群进化, 在ZDT 函数实验中DirLS 的结果优于ED-LS, 而在三目标实验中ED-LS 的结果反而优于DirLS, 这是由于DirLS 随着种群进化, 根据进化前后两代种群更新方向指标, 在目标个数较少时方向指标可以加快收敛到Pareto 前沿的速度, 但当目标空间维数较高时, 虽然其也能加快收敛速度, 但解的分布性反而不如ED-LS,从而导致其综合评价指标IGD 值不理想. NSGA II-RLS 的实验结果均优于NSGA II-DLS, 说明本文提出的分区域搜索比只在稀疏区域搜索有更好的效果, 计算复杂度更低.从表5可以看出, 对于DTLZ1、DTLZ3和DT-LZ4, NSGA II-RLS 的I 值均值与标准差最低, 说明在较短时间内NSGA II-RLS 获得的种群有较好的分布特性. 对于优化时间充足的DTLZ2, NSGA II-RLS 的I 值较最优的ED-LS 的I 值降低了2.4%,说明当优化时间充足时NSGA II-RLS 的解的分布特性虽不如最优的算法, 但差距不大. 这与从表4得到的结论相一致.从表4和表5的实验结果可以看出, 对于ZDT 系列实验、DTLZ1、DTLZ3和DTLZ4, NSGA II-RLS 的实验结果优于对比算法且具有显著差异性,说明其结果具有统计学意义.由以上分析可知, 对于多目标优化问题, 在有限的较短时间内NSGA II-RLS 获得种群的IGD 值与I 值优于所对比算法, 说明在较短时间内NSGA II-RLS 具有较好的逼近性和分布特性. 从DTLZ2的实验结果可知, 当优化时间充足时NSGA II-RLS 算法效果与最优算法相比虽有所降低, 但差距在5%以内.注6. NSGA II-RLS 的提出主要为了解决局部搜索算法计算量大的问题, 因此将停止时间设定较低可以反映算法的优势. 当算法运行时间足够长时NSGA II-RLS 失去其优势, 但从DTLZ2的实验结果可以看出, 优化时间充足时NSGA II-RLS 的优化效果与其他优秀算法的优化结果差距在5%以内,效果相差不大. 本文提出的算法更适用于对优化快速性要求较高的场合, 时间充足的场合也可以应用.12 期栗三一等: 一种基于区域局部搜索的NSGA II 算法2623。
基于NSGA-Ⅱ算法的含风电场的电力系统动态经济调度
基于NSGA-Ⅱ算法的含风电场的电力系统动态经济调度郝晓弘;何侃【摘要】本文针对风功率的不确定性,大规模风电并网给电力系统调度带来很多问题,考虑了风电功率波动对动态经济调度旋转备用的约束,在优化目标中计及了火电机组阀点效应和最小化污染物排放量对发电成本的影响.在10机系统上采用NSGA-Ⅱ算法进行仿真,并通过与改进的粒子群算法和遗传算法进行比较,验证了该算法对含风电场电力系统动态经济调度模型求解的合理性和优越性.%In this paper,due to the uncertainty of wind power,in response to large-scale wind power to the power grid after the impact of the system operator.Considering the wind power fluctuations on the dynamic economic dispatch of spinning reserve constraints.In the optimization goal,the account of the impact of thermal power valve point effect and minimize pollutant emissions for power generation costs.Adopted NSGA-Ⅱ algorithm simulation based on a typical 10 units test power system,and through improved PSO and genetic algorithm is verified by comparing the algorithm in wind power system dynamic scheduling model to solve economic rationality and superiority.【期刊名称】《电子设计工程》【年(卷),期】2017(025)011【总页数】6页(P170-175)【关键词】风电;动态经济调度;NSGA-Ⅱ算法;调度模型【作者】郝晓弘;何侃【作者单位】兰州理工大学计算机与通信学院,甘肃兰州730050;兰州理工大学电气工程与信息工程学院,甘肃兰州730050【正文语种】中文【中图分类】TN-9近些年来,风电发展速度迅猛,风力发电在电网中所占的比例不断增加,给电网带来了很大的冲击,使电网的不确定性增大,尤其是大规模风电接入后电网的安全与稳定性问题[1]。
约束多目标 算法
约束多目标算法一、引言约束多目标算法是一种能够解决多目标优化问题的算法。
在现实生活中,我们常常面临着多个目标之间的冲突,而这些目标往往又受到一定的约束条件的限制。
约束多目标算法的目标就是在满足这些约束条件的前提下,找到一组最优解,使得多个目标函数达到最优。
二、基本概念1. 目标函数目标函数是约束多目标算法中的核心概念之一。
每个目标函数都代表着一个要优化的目标,可以是最大化或最小化的形式。
在约束多目标算法中,通常会有多个目标函数同时存在,这些目标函数之间往往存在着相互制约的关系。
2. 约束条件约束条件是指在优化过程中需要满足的限制条件。
这些约束条件可以是等式约束,也可以是不等式约束。
在约束多目标算法中,我们需要找到一组解,使得所有的约束条件都得到满足。
3. Pareto最优解Pareto最优解是指在多目标优化问题中,没有其他解能够在所有目标函数上同时取得更好的结果。
换句话说,Pareto最优解是一组相互之间没有可比性的解,它们在目标函数空间中构成了一个非支配解集。
4. 支配关系在约束多目标算法中,我们需要通过比较不同的解之间的支配关系来确定Pareto 最优解。
如果一个解在所有目标函数上都不劣于另一个解,那么我们就说这个解支配另一个解。
三、常见的约束多目标算法1. 遗传算法遗传算法是一种基于生物进化原理的优化算法。
它通过模拟自然界中的遗传过程,不断演化出更好的解。
在约束多目标算法中,遗传算法通过交叉、变异等操作来生成新的解,并通过比较解之间的支配关系来筛选出Pareto最优解。
2. 粒子群优化算法粒子群优化算法是一种模拟鸟群觅食行为的优化算法。
在约束多目标算法中,粒子群优化算法通过模拟粒子在解空间中的移动来寻找最优解。
粒子之间通过比较解之间的支配关系来确定Pareto最优解。
3. 改进的NSGA-II算法NSGA-II算法是一种经典的多目标优化算法。
在约束多目标算法中,NSGA-II算法通过维护一个种群来不断演化出更好的解。
基于NSGA-II的炼钢-连铸调度多目标优化
1 数 字 技 术
N S G A- I I 是在NS G A (  ̄支配排序遗传算法) 的基础上进行改进 [ G 1 , G 2 , . . . G , ] ( 5 ) 3 . 2求 解步骤 的算法 , 具有 以下特 点: ( 1 ) 采用快速非支配排序 , 降低了算法的计算 量; ( 2 ) 提 出了拥挤度 比较算子, 并在快速排序后作为衡量同级个体 S t e p 1 : 确定种群规模 , 截止进化代数 等算法 相关参数 。 优劣 的标准 ; ( 3 HI 入精英策略, 将交叉变异操作前后的种群合并 , 共 S t e p 2 : = 0 , 随机生成 足够 多的个体 , 筛选符合 约束条件 的 个 , 同竞争产生下一代种群【 3 ] 。 构成种群 。 S t e p 3 : 交叉 、 变异 , 生成 子代种群 。 将 和 合 并 , 2 . 1 NS G A— I I 排 序 方 法 规模2 。 S t e p 4 : 将混合后 的种群进行非支配排序, 同一等级的个体 对种群 中任一个体X , 都有支配X 的个体数 和x 所支配 的解集 按 照拥挤度 距离 排序 。 选 出优 良个体 组成 下一代 种群 。 重 复 首先 , 选出种群 中所有 = 0 的个体 , 构成集合 ; 然后对于 E 中 S t e p 3 和S t e p 4 , 直到 = 一。 S t e p 5 : 种群 中非劣等级为1 的个体构成 a r e t o 最优解集 , 将其输出并结束运行[ 4 1 。 的每 个个体y, 找 出其所 支配 的解集 中的每 个个 体Z 的 ,, 若 P
一 一
2 N S GA — l I 算 法
图1 NS G A — I I 编 制 的作 业 计 划
收稿 日 期: 2 0 1 6 — 0 6 — 1 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 2 页
nsga2算法加约束条件
【原创实用版】
目录
1.NSGA2 算法简介
2.约束条件的概念和作用
3.NSGA2 算法中加约束条件的方法
4.加约束条件对 NSGA2 算法的影响
5.结论
正文
【1.NSGA2 算法简介】
SGA2(Nouvelle Strategie Genetique Avancée 2)算法是一种先进
的遗传算法,用于解决复杂的优化问题。它通过模拟自然进化过程,包括
选择、交叉和变异等操作,在搜索空间中寻找最优解。与传统的遗传算法
相比,NSGA2 算法具有较高的收敛速度和较好的全局搜索能力。
【2.约束条件的概念和作用】
在实际问题中,优化目标往往受到一些限制条件,这些限制条件称为
约束条件。约束条件有助于界定搜索空间,降低问题的复杂度,并保证解
的质量。在优化过程中,满足约束条件是达到最优解的必要条件。
【3.NSGA2 算法中加约束条件的方法】
在 NSGA2 算法中,可以通过以下方法加入约束条件:
(1)将约束条件转化为适应度函数的一部分。这种方法将约束条件
与目标函数合并,使得满足约束条件的解具有更高的适应度。
(2)在选择操作中考虑约束条件。通过引入约束条件,可以限制选
择操作的搜索范围,提高算法的搜索效率。
第 2 页 共 2 页
(3)在交叉操作中考虑约束条件。通过在交叉过程中引入约束条件,
可以保证生成的新解满足约束条件,从而提高算法的收敛速度。
(4)在变异操作中考虑约束条件。通过在变异过程中引入约束条件,
可以限制解的变化范围,保证解的质量。
【4.加约束条件对 NSGA2 算法的影响】
加入约束条件会对 NSGA2 算法产生以下影响:
(1)降低搜索空间。约束条件的引入可以限制搜索空间,减少无效
解的产生,提高算法的搜索效率。
(2)提高解的质量。约束条件的引入可以保证解满足实际问题的限
制条件,从而提高解的质量。
(3)提高算法的收敛速度。通过引入约束条件,可以限制解的变化
范围,使算法更快地收敛到最优解。
【5.结论】
在 NSGA2 算法中加入约束条件可以有效地提高算法的搜索效率、解
的质量和收敛速度。