材料加工新技术与新工艺 7 复合铸造

合集下载

精密铸造

精密铸造

1、精密铸造的特点与优势:精密铸造又称熔模铸造,同其它铸造方法和零件成形方法相比熔模铸造有以下特点:1.铸件尺寸精度高,表面粗糙度值细,铸件的尺寸精度可达到4—6级,表面粗糙度可达0.4—3.2μm,可大大减少铸件的加工余量,并可实现无余量制造,降低生产成本.2.可铸造形状复杂,并难于用其它方法加工的铸件.铸件轮廓尺寸小到几毫米大到上千毫米,壁厚最薄0.5mm,最小孔经1.0mm以下.3.合金材料不受限制:如碳钢、不锈钢、合金钢、铜合金、铝合金以及高温合金、钛合金和贵金属等材料都可用精铸生产.对于难以锻造、焊接和切削的合金材料,更是特别适用精铸方法生产.4.生产灵活性高,适应性强.既可用于大批量生产,也适用于小批量甚至单件生产.综上所述,精密铸造具有投资规模小、生产能力大、生产成本低、复杂产品工艺简单化、投资见效快的优点.从而在与其它工艺和生产方式的竞争中处于有利的地位,前景光明.* 以不锈钢壳胚为例:传统的机械啤压加工方法,最简单的壳胚啤压2次,其加工成本(模具、啤压、回火、材料)大约在3—5元/个,用精铸技术其加工成本在1.2元/个左右,一套精铸设备月生产壳胚在10—15万个左右.2.精密铸造适用范围:几乎应用于所有的工业部门,特别是航天、航空、造船、汽轮机和燃汽轮机、兵器、电子、石油、化工、核能、交通运输、轻工、纺织、制药、医疗器械、仪器仪表、机械、泵和阀、运动器械、家用电器、近年来大量用于餐具、工具、表业、首饰和小五金等等.3.精密铸造的生产设备和辅助设备设施:1.精铸主要生产设备一套:注蜡环节的各类设备、制壳环节的各类设备、脱蜡环节的各类设备、后处理环节的各类设备等2.精铸主要辅助设备:a:柴油储罐 b:空气压缩机 c:空调机 d:抽湿机e:温度测量仪 f:水糸统:冷却水、冷冻水、应急水4.精密铸造主要原辅料:a.金属材料:不锈钢、铜合金、钛合金等各种金属板材、棒材、边角料、回炉料等.b.辅助材料:中温蜡料、硅溶胶、锆英粉砂、马来石粉砂等各种耐火材料.行业介绍铸造是获得机械产品毛坯的主要方法之一,是机械工业重要的基础工艺,在国民经济中占有重要的位置。

挤压铸造双金属复合材料成型工艺及性能分析

挤压铸造双金属复合材料成型工艺及性能分析

世界有色金属 2023年 5月上10冶金冶炼M etallurgical smelting挤压铸造双金属复合材料成型工艺及性能分析户 芳,高秀峰,叶 云(山西晋中理工学院,山西 晋中 030600)摘 要:双金属复合材料是一种具有高利用率、综合性能优于其它金属材料的新型浇铸材料,为此,本文对挤压铸造工艺和性能进行了分析。

首先,通过对双金属复合材料的模态结构的建模、固液复合度的控制、双金属材料的包覆温度和退温成型等方面的研究,而后对其成型过程进行了分析,最后再对其导电性、轻量化等方面作了较为深入的研究。

关键词:复合材料;性能分析;挤压铸造;成型工艺中图分类号:TG249.2 文献标识码:A 文章编号:1002-5065(2023)09-0010-3Forming Technology and Performance Analysis of Squeeze Casting Bimetal CompositesHU Fang, GAO Xiu-feng, YE Yun(Shanxi Jinzhong Institute of Technology,Jinzhong 030600,China)Abstract: Bimetal composite material is a new type of casting material with high utilization rate and better comprehensive performance than other metal materials. Therefore, the squeeze casting process and performance are analyzed in this paper. First of all, through the research on the modeling of the modal structure of the bimetallic composite, the control of the solid-liquid composite, the coating temperature of the bimetallic material and the annealing molding, the molding process is analyzed, and finally, the conductivity and lightweight of the bimetallic composite are further studied.Keywords: composite materials; Performance analysis; Squeeze casting; Forming process收稿日期:2023-03作者简介:户芳,女,生于1988年,汉族,山东曹县人,硕士研究生,助教,研究方向:材料成型。

材料加工原理课件

材料加工原理课件
个性化与定制化
随着个性化需求的增加,未来材料加工将更加注重个性化与定制化, 满足不同用户的需求。
THANKS
感谢观看
04
材料加工设备与、落砂机、抛丸机等,用于生产砂型铸件。
特种铸造设备
如金属型铸造机、离心铸造机、连续铸造机等,适用于特定类型的铸件生产。
焊接设备
手工焊接设备
包括焊枪和焊条,适用于手工焊接金属材料。
自动焊接设备
如焊接机器人、焊接专机等,能够实现自动化焊接,提高生产效率。
电子信息产业
医疗器械制造
材料加工在电子信息产业中广泛应用,涉 及芯片制造、电子封装、PCB板制造等领域, 是现代电子产品的核心技术之一。
材料加工在医疗器械制造中具有重要作用, 如钛合金、医用不锈钢等材料的加工制造, 对医疗技术的发展起到关键作用。
材料加工新技术与新工艺
增材制造
增材制造技术通过逐层堆积材料来制造三维实体,具有个 性化定制、高效、节能等优点,是现代制造技术的重要发 展方向。
对流换热定律
在流体流动过程中,流体与固体壁面之间的热量 交换速率与表面积、温差及流体的性质有关。
辐射换热定律
物体之间相互辐射和吸收热量,其交换速率与物 性、温度、波长等因素有关。
传质学原理
扩散定律
物质在静止或缓慢流动的流体中传递 的速率与该物质的浓度梯度和扩散系 数成正比。
对流传质定律
在流动的流体中,溶质传递的速率与 浓度梯度、流体流动的速度、扩散系 数及质量作用系数成正比。
钎焊
使用熔点低于母材的金属作为钎料,将母材连接在一起。
塑性加工技 术
轧制
01
通过旋转轧辊将金属板材轧制成各种形状和尺寸的板材和管材。
锻造

材料制备与加工

材料制备与加工

、八、•刖言材料制备与加工(液态成形)材料科学与工程学院党惊知1)材料制备铸造材料的熔炼(化),处理等。

2)材料加工铸造方法、工艺、铸型、设备等。

1、材料制备1)铸铁普通灰口铸铁、球墨铸铁、蠕墨铸铁、特种铸铁等。

2)铸钢普通碳钢、低合金钢、特殊用钢等。

3)铸造有色合金铝合金、铜合金、锌合金、镁合金钛合金等。

材料的熔炼铸铁的熔炼铸钢的熔炼有色合金的熔炼熔炼设备铸铁——冲天炉,中频感应电炉等。

铸钢——电弧炉,中频感应电炉等。

有色合金——燃气、燃油炉,电阻炉,感应炉等。

熔炼工艺材料准备加料顺序熔炼温度化学成分处理工艺等液态合金的处理铸铁——孕育处理、球化处理、蠕化处理。

铸钢——净化处理。

有色合金——精炼处理、变质处理等。

2电磁泵低压铸造技术电磁泵系统是将电磁作用力直接作用于液态金属,驱动其定向移动,具有传输平稳、加压规范连续精确可调、炉体不需密封、生产过程稳定可靠等特点。

2. 1电磁泵低压铸造技术原理与过程电磁泵的工作参数是电磁铁磁隙间的磁感应强度和流过液态金属的电流密度。

它们与电磁泵的主要技术性能指标压头间存在如下关系:式中:厶p ――液态金属经过磁场作用区(长度为)后压强的增加量(即泵产生的理想压头)(N/m2);j ------- 在金属液中垂直于磁感应强度方向和金属液体流动方向上的电流密度(A/m2);B ----- 垂直于电流方向和金属液流动方向上的磁感应强度(T);L --------- 处于磁隙间的升液方向上的金属液体长度(m);2. 2电磁泵低压铸造工艺措施及参数选择1)铸型工艺参数的选择2)凝固方式的选择3)浇冒系统的选择2.3 浇注工艺参数的确定 低压铸造的浇注过程一般包括升液、充 型、结壳、增压、保压结晶、卸压等几个阶段。

加在密封坩埚内金属镁合金触变注射成形技术 近年来美国、日本和加拿大等国的 公司相4)铸型的排气充型模拟预测卷气、卷渣、冷隔等缺凝固过程模拟 -------- *•预测缩孔缩松 后处理设定初始条件及边界继成功开发出镁合金半固态触变注射成形机,其中主要有美国的Thixomat公司,日本的JSW公司等。

机械制造中的材料工程与加工技术

机械制造中的材料工程与加工技术

机械制造中的材料工程与加工技术引言:机械工程是一门应用科学,涵盖了材料工程和加工技术等多个领域。

材料工程是机械制造的基础,而加工技术则是将材料转化为实际产品的关键。

本文将从材料工程和加工技术两个方面探讨机械制造的重要性和发展趋势。

材料工程:材料工程是机械制造的基石,它研究材料的性能、结构和制备方法。

在机械工程中,选择合适的材料对产品的性能和寿命至关重要。

例如,使用高强度金属材料可以增加机械零件的承载能力,而耐高温材料可以保证发动机在极端工况下的正常运行。

因此,机械工程师需要了解各种材料的特性,并根据具体的应用场景选择合适的材料。

随着科技的进步,新型材料的涌现为机械制造带来了新的发展机遇。

例如,纳米材料具有独特的力学和电学性能,可以应用于微型机械和电子器件中。

复合材料的出现使得产品的轻量化成为可能,提高了机械系统的效率和性能。

此外,生物材料的研究也为仿生机械的设计提供了新思路。

因此,机械工程师需要紧跟材料科学的发展动态,不断探索新材料的应用潜力。

加工技术:加工技术是将材料转化为实际产品的过程,它涵盖了多种加工方法和工艺流程。

机械工程师需要掌握各种加工技术,以确保产品的精度和质量。

常见的加工方法包括机械加工、焊接、铸造和热处理等。

机械加工是最常用的加工方法之一。

它包括车削、铣削、钻孔等操作,通过切削去除材料的多余部分,得到所需形状和尺寸。

机械加工具有高精度和灵活性的优势,适用于各种材料和复杂结构的加工。

焊接是将两个或多个材料通过热源加热并融合在一起的过程。

焊接广泛应用于机械工程中,可以连接金属零件、修复损坏的结构和制造复杂的装配件。

不同的焊接方法包括电弧焊、激光焊和电阻焊等,机械工程师需要根据具体需求选择合适的焊接方法。

铸造是将熔融金属或合金注入到模具中,通过凝固形成所需的零件或构件。

铸造具有较低的成本和高生产率的优势,适用于大批量生产和复杂形状的制造。

机械工程师需要设计合理的铸造工艺,确保铸件的质量和性能。

材料加工和成形工艺

材料加工和成形工艺

材料加工和成型工艺绪论1.材料、能源、信息现代技术和现代文明的三大支柱。

2.材料:指那些能够用于制造结构、器件或其它有用产品的物质。

3.工程材料分类,据组成与结构特点分为:金属材料、无机非金属材料、有机高分子材料、复合材料;据性能特征分为:结构材料、功能材料;据用途分为:建筑材料、能源材料、机械工程材料、电子工程材料。

4.结构材料:是以力学性能为主的工程材料的统称,主要用于制造工程建筑中的构件、机械装备中的支撑件、连接件、运动件、传动件、紧固件、弹性件及工具、模具等。

5.功能材料:是指以物理性能为主的工程材料,即指在电、磁、声、光、热等方面有特殊性能或在其作用下表现出特殊功能材料。

6.材料加工:指材料的成型加工及强化、改性和表面技术的应用等。

7.材料的加工和改性是挖掘材料性能的潜力和充分发挥材料效能的主要手段。

8.表面技术:指通过施加覆盖层或改变表面形貌、化学组分、相组成、微观结构、缺陷状态,达到提高材料抵御环境作用的能力或赋予材料表面某种功能特性的材料工艺技术。

第一章材料的力学行为和性能1.材料的性能包括使用性能和工艺性能。

2.使用性能分为物理性能、化学性能、力学性能。

3.物理性能:包括材料的密度、熔点、热膨胀性、导电性、导热性及磁性等;化学性能:指材料在不同条件下表现出来的各种性能,如化学稳定性、抗氧化性、耐蚀性等;力学性能:材料在力的作用下表现出来的各种性能,主要是弹性、塑性、韧性和强度。

4.工艺性能:指材料对某种加工工艺的适应性,包括铸造性能、压力加工性能、焊接性能、热处理工艺性和切削加工性等。

5.工程构件、机械零件在使用过程中的主要功能是传递各种力和能。

6.力学行为:材料在载荷作用下的表现。

7.弹性变形:当物体所受外力不大而变形处于开始阶段时,若去除外力,物体发生的变形会完全消失,并恢复到原始状态,这种变形称为弹性变形。

8.塑性变形(残余变形):当外力增加到一定书之后再去除时,物体发生的变形不能完全消失而一部分被保留下来,这是材料进入塑性变形阶段,所保留的变形称塑性变形或残余变形。

材料加工原理课件

材料加工原理课件

材料加工技术面临的挑战
技术创新不足
当前材料加工技术的发展面临着技术创新不足的挑战。新 的材料加工技术需要不断探索和研究,需要加大科研力度 和资金投入。
人才短缺
随着材料加工技术的不断发展,人才短缺问题逐渐凸显。 培养具备专业技能和创新能力的材料加工人才成为当前的 重要任务。
成本压力
随着材料加工技术的精密化、智能化发展,生产成本不断 提高。如何在保证产品质量和性能的同时降低生产成本是 当前材料加工技术面临的重要挑战。
电子领域应用
半导体制造
半导体制造是电子领域的关键环节,其中材料加工技术如薄膜沉积、光刻和刻 蚀等是必不可少的。这些技术可以制造出高度集成的半导体芯片。
电子封装
电子封装中,材料加工技术如金属引线框架的制作和焊接等是关键。这些技术 可以确保电子产品的可靠性和性能。
建筑领域应用
钢结构制造
建筑领域中,钢结构是常见的结构形式之一。为了确保钢结构的安全性和稳定性 ,材料加工技术如切割、弯曲和焊接等是必不可少的。
案例三:高强度钢焊接工艺研究
总结词
高强度钢焊接工艺研究可以提高焊接质量和效率,降 低成本。
详细描述
高强度钢焊接工艺研究主要包括优化焊接参数、选择合 适的焊接方法和采用先进的焊接设备等。优化焊接参数 可以控制熔池温度、冷却速度和热影响区等,提高焊接 质量和效率。选择合适的焊接方法可以适应不同的材料 类型和厚度要求,例如激光焊接、电子束焊接和气体保 护焊等。采用先进的焊接设备可以实现自动化和机器人 焊接,提高生产效率和质量稳定性。此外,高强度钢焊 接工艺研究还可以涉及焊接缺陷检测和修复技术,以确 保产品质量。
推动科技进步
材料加工技术的发展不断推动着科 技进步,促进新材料、新工艺和新 设备的研发和应用。

材料成形技术--第2章 铸造成形

材料成形技术--第2章 铸造成形

2)设备投资大,生产准备周期长,只适于大量生产。
压力铸造主要用于生产铝、锌、镁等有色合金铸件, 如发动机缸体、缸盖、箱体、支架等。
4. 低压铸造
低压铸造:用较低压力将金属液由铸型底部注入型腔, 并在压力下凝固以获得铸件的方法。 (1).低压铸造的工艺过程 : 低压铸造的工艺过程如图2-26所示,包括如下过程:

刮板造型 用刮板代替模样造型。节约木材, 用于等截面或回转体大中 缩短生产周期,生产率低,技术水 型铸件的单件、小批生产 平高,精度较差 两箱造型 最基本的造型方法。各种 铸型由上型和下型构成,各类模样, 铸型,各种批量 操作方便
三箱造型
铸件两端截面尺寸比中间大,必须 主要用于手工造型,具有 有两个分型面 两个分型面的铸件的单件、 小批生产
5. 离心铸造
离心铸造:将金属液浇入高速旋转的铸型中,使其在离心 力作用下成形并凝固的铸造方法。可用金属型也可用砂型
(1).离心铸造的类型 根据铸型旋转轴的空间位置,离心铸造可分为立式 和卧式两大类。 1)立式离心铸造:铸型绕垂直轴旋转,如图2-27a,b所 示。在离心力和重力的共同作用下,内表面为回转抛物 面,因此用于高度小于直径的圆环类或成形铸件。
主要特点如下:
R 1) 铸件 的 精 度 和 表 面质量高 ;尺寸公差 IT11∼IT14, a 12.5∼ Ra 1.6;
2)可制造形状较复杂的铸件; 3)适用于各种合金铸件,尤其是高熔点和难以加工的高 合金钢,如耐热合金、不锈钢、磁钢等。 4)工艺过程较复杂,生产周期长,使加工费和消耗的材 料费较贵,多用于小型零件。 熔模铸造适用于制造形状复杂,难以加工的高熔点合 金及有特殊要求的精密铸件;主要用于汽轮机、燃汽轮机 叶片、切削刀具、仪表元件、汽车、拖拉机及机床等零件 的生产。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7 复合铸造7.1 概述现代机械设备的设计和制造技术的发展,不断对铸件的性能和质量提出更高的要求,例如,要求同一铸件兼有几种不同的使用性能。

要生产这类铸件,仅仅靠控制单一材料的成分和组织,一般是难以实现的,需要采用某些特殊的复合制造方法,如机械连接复合、镶套复合、铸造复合等方法。

复合铸造是指将两种或两种以上具有不同性能的金属材料铸造成为一个完整的铸件,使铸件的不同部位具有不同的性能,以满足使用的要求。

通常是一种合金具有较高的力学性能,而另一种或几种合金则具有抗磨、耐蚀、耐热等特殊使用性能。

常见的复合铸造工艺有镶铸工艺、重力复合铸造工艺、离心复合铸造工艺。

镶铸工艺是将一种或两种金属预制成一定形状的镶块,镶铸到另一种金属液体内,得到兼有两种或多种特性的双(多)金属铸件。

目前用镶铸工艺生产的铸件有:高压阀门、高压柱塞泵等耐磨耐蚀耐热关键性金属零部件、硬质合金导卫板等。

重力复合铸造是将两种或多种不同成分、性能的铸造合金分别熔化后,采用特定的浇注方式或浇注系统,在重力条件下先后浇入同一铸型内,获得复合铸件的工艺。

重力复合铸造生产的铸件有:挖掘机斗齿、双金属锤头、保险柜材料等。

离心复合铸造是将两种或多种不同成分、性能的铸造合金分别熔化后,先后浇人离心机旋转的模筒内,获得复合铸件的工艺。

离心复合铸造生产的铸件有:轧辊辊环,陶瓷内衬复合铸铁管等。

复合铸造铸件的质量除取决于铸造合金本身的性能外,更主要地取决于两种合金材料界面结合的质量。

在双金属复合铸造过程中,两种金属中的主要元素在一定温度场内可以相互扩散、相互熔融形成一层成分与组织介于两种金属之间的过渡合金层,一般厚度为40~60mm。

控制各工艺因素以获得理想的过渡层的成分、组织、性能和厚度,是制造优质复合铸造铸件的技术关键。

除上述常规复合铸造工艺外,近年来还出现了水平磁场制动复合连铸法(LMF)、包覆层连续铸造法(CPC)、电渣包覆铸造法(ESSLM)、反向凝固连铸复合法、复合线材铸拉法、双流连铸梯度复合法、双结晶器连铸法、充芯连铸法(CFC法)等复合铸造新技术和新工艺。

7.2水平磁场制动复合连铸法(LMF)近年来,电磁力技术在材料加工过程中的应用取得了引人注目的成就。

利用温度计检验和磁流体动力学分析的方法,研究安装在结晶器上的水平磁场(LMF)所产生的磁场对钢液在结晶器中流动的影响,发现LMF可以抑制结晶器内化学成分的混合程度,导致了一种新的复合钢坯连铸工艺概念的形成,即水平磁场制动复合连铸工艺。

在这种新工艺中,结晶器中的不同钢液通过水平磁场的作用实现分离,并且凝固成复合钢坯。

用LMF方法生产复合钢坯的连铸工艺如图7-l所示。

图7-1中水平磁场安装在结晶器的下部,两种不同化学成分的金属液分别通过长型和短型的浸入式浇口同时注入结晶器的上部和下部。

如果没有水平磁场的作用,从两个浇口流出的两种金属液会造成混合。

有了水平磁场,它的制动力会对垂直穿过水平磁场的钢液流产生作用,从而阻止两种金属液的混合。

根据磁流体动力学的原理,在结晶器中形成以水平磁场为界的上下两部分,冷却仍然采用水冷铜结晶器和出结晶器后喷水冷却两种方式。

位于结晶器上部的熔融钢液凝固形成复合钢坯的外层,位于结晶器下部的钢液凝固成复合钢坯的芯部。

此工艺过程中关键技术是:(1) 水平磁场的作用强度;(2) 两种金属的浇注速度的正确控制。

实验用连铸机是一个长度为8m的垂直型连铸机,其结晶器为170mm厚,800mm宽,900mm长,水平磁场的中部位于从结晶器的顶部向下690mm处,水平磁场的最大强度为0.8T。

在拉铸方向上,磁场强度的峰值出现在水平磁场的中部,并且在磁场的顶端和底端达到峰值的80%;在宽度方向上的磁场强度几乎是相同的。

水平磁场的强度是指磁场中间的强度。

两个浇包都装置了钢液重量偏差在1kg范围内的负载测试仪,以使作为芯材和外层钢液的浇注速度可得到准确测量和控制。

针对芯材是碳钢、外层是不锈钢的复合钢坯连铸进行了实验。

芯材和外层钢液在不同的炉中熔化,然后注人不同的浇包,并且连续浇人结晶器。

拉速为0.8~1.2m/min,磁场强度为0~0 8T。

上、下两部分金属液的边界位置定位在距结晶器顶部750~810mm的地方。

没有水平磁场作用时,复合钢坯的内外层边界难以分辨,说明结晶器中芯材和外层的钢液混合在一起。

而有水平磁场作用时,复合钢坯的芯部与外层界面可通过凝固组织很明显地分辨出来,且外层坯壳厚度基本均匀,说明结晶器上下部分的边界维持在稳定的水平面状态。

采用x射线微观分析仪对复合钢坯中的Ni浓度沿厚度方向上的变化进行测定的结果表明,在水平磁场的制动作用下,复合钢坯外层中Ni的浓度大致等同于相应中间包内的浓度。

对其他元素的分析也得出类似的结果,从而证实了芯部与外层化学元素被良好隔离,只在芯部与外层之间有厚度为l~2mm的化学成分连续变化的过渡层。

7.3包覆层连续铸造法(CPC)轧钢技术的发展要求轧辊具有更高的强韧性和耐磨性,因此近年来欧美和日本不断采用新的轧辊制造工艺,如CPC、Osprey、HIP、CBC、ESR、CIC等方法,使生产的复合轧辊的强韧性和耐磨性显著提高。

其中,包覆层连续铸造法(CPC法:Continuous Pouring Process for Cladding)工艺简单,复合性能好,生产成本低。

CPC法的原理如图7-2所示。

将轧辊辊芯材料l垂直地放于水冷紫铜的结晶器8中,为了减小刚进入结晶器金属的冷却强度,防止出现裂纹,在结晶器的上部设置和结晶器同轴心的石墨隔离环7。

将金属液4浇注到配置在结晶器和隔离环上方的耐火材料浇口杯6和辊芯材料之间,使外层金属液和辊芯熔合,并顺序向上凝固,将凝固部分连续向下拉拔,实现连续铸造复合辊外层9,为了实现辊芯金属和外层金属的冶金结合,需要控制外层金属液的温度,因此在耐火材料浇口杯的外面设置感应加热线圈5。

为了实现辊芯金属和外层金属的良好复合,需要预热辊芯材料,防止辊芯材料进入外层金属液时的温度太低,因此在辊芯材料的外面设置感应热线圈3。

为了防止辊芯在进入外层金属液之前被氧化,导致辊芯金属和外层金属的复合质量下降,需要在辊芯材料的外面涂一层防氧化涂料2。

CPC法的关键技术包括以下两个方面:(1) 温度的正确设定、匹配与控制;(2) 辊芯防氧化。

温度的正确设定、匹配与控制:在生产复合轧辊的尺寸和生产装备确定的条件下,通过控制预热器的功率、加热器的功率、浇注温度、拉拔速度等工艺参数,实现在生产复合轧辊的不同高度位置上和时间下,复合界面的热量均衡,实现外层金属液将辊芯材料均匀熔化l~3mm,使辊芯金属和外层金属实行冶金结合。

通过汁算机数值模拟可以为设计生产装置和制定生产工艺参数提供定量参考。

辊芯防氧化:在CPC法复合前一般需要将辊芯整体预热,预热温度约:350—450℃。

在复合过程中需要对辊芯局部预热,使其在进入外层金属液时的温度达到800~900℃。

为了防止辊芯材料在进入外层金属液之前被氧化,导致辊芯金属和外层金属的复合质量下降,需要在辊芯材料的外面涂一层防氧化涂料,防氧化涂料的成分之一例为:36%Si02,5%A12O3,6%CaO,25%Na2O,3%K2O,25%B2O3;密度2.58g/cm3,软化点578℃。

CPC法制造复合轧辊具有如下特点:(1) 轧辊的芯部材质可为强韧钢系材料;(2) 轧辊的外层材质可以选择多种高合金材料;(3) CPC法外层凝固速度快,组织致密;(4) 离心铸造工具钢时出现的初晶碳化物偏折在用CPC法制造轧辊时可以避免;(5) CPC法由下向上的顺序凝固,避免了缩孔的产生;(6) 在浇口杯中保持一定的金属液也保证了非金属夹杂物的上浮;(7) 工作层中有高的残余压应力,其抗热裂性好;(8) 外层材料与芯部材料的结合强度高,结合强度可达540~640MPa。

采用CPC法生产高速钢复合轧辊的实例:辊芯为42CrMo锻钢(300rmn),辊芯的预热温度900℃,外层高速钢液的金属温度控制为1300℃,复合轧辊的尺寸为150mm×700mm,复合后经过1100℃淬火及500~550℃回火,轧辊表面硬度HS为85,用于热轧板具有耐磨、轧材表面质量好等优点。

日本新日铁的CPC法设备可以制造热带连轧机精轧用的轧辊,轧辊最大直径为850mm,辊身最大长度3000mm,辊身外层最大厚度100mm,轧辊全长5700m,轧辊最大单重15t。

CPC法对于解决外层金属复合的完整性及控制复合效果方面有着独到的优势,而在实际生产中产品的质量也得到了保证,但对设备的能力、厂房条件的要求也比较高,对操作工人的能力和实际操作水平要求较高,且这种方法只适用于单件小批量生产。

7.4 电渣包覆铸造法(ESSLM)1997年乌克兰ELMET轧辊集团研究开发成功了采用电渣包覆铸造法生产复合轧辊的工艺,该法简称为ESSLM法,其原理如图7-3所示。

从成形原理上考虑,ESSLM法与CPC法在本质上是相同的。

用ESSLM法生产复合轧辊的工艺过程为:先将轧辊辊芯材料l垂直地放于水冷紫铜的结晶器5 中,并使二者保持同轴状态轧辊辊芯的外表面和结晶器的内表面的间隙决定复合轧辊的外层厚度。

然后,在化渣炉中熔化电渣,将电渣液浇入轧辊辊芯的外表面和结晶器的内表面的间隙中,电渣液形成渣池3,其热量将轧辊辊芯的外表面预热。

随后用浇包2浇入外层所需成分的金属液4,可以连续浇入也可以按预先设定的程序浇入。

外层金属在通过电渣池时被电渣精炼,同时将电渣上浮。

外层金属液与已经被电渣预热的轧辊辊芯材料表面熔合,并因水冷结晶器的冷却而凝固,形成复合层6。

由拉拔装置不断地将已经凝固部分拉出结晶器,或使结晶器上移,同时不断注入外层金属液,直至达到预定的复合轧辊长度为止。

水冷结晶器采用特殊设计,具有导电功能,起到保持电渣过程所需的电极的作用(不消耗电极)。

采用ESSLM法生产辊类件的直径可由l00mm到1000mm以上。

复合层厚度可根据需要控制在20mm到100mm范围。

复合轧辊致密、无疏松、裂纹、缩孔等缺陷;外层金属与母体熔合良好,主要合金元素、硬度及显微组织在高度方向和横断面上的分布均匀;生产成本低,生产效率高,电能消耗少,设备简单,可生产任意成分的复合辊外层。

采用ESSLM法成功地制备了热带钢工作辊用高速钢复合轧辊,其尺寸为344mm×650mm。

7.5 反向凝固连铸复合法反向凝固连续铸造复合成形的原理图如图7-4所示。

母带6从下向上以一定速度穿过熔池5,熔池内装有一定量和温度的包覆层金属液4,包覆层金属液附在母带表面凝固,凝固的厚度逐步增加,直至完全通过包覆层金属液;然后通过一对轧辊2对母带及附在母带表面凝固层3进行轧制,达到平整表面、控制复合带材厚度的目的,最终获得所需的复合带材产品l。

相关文档
最新文档