铸造的特点

铸造的特点
铸造的特点

锻造、铸造的区别?用途,优劣势?

浏览次数:1324次悬赏分:0 |解决时间:2009-10-20 09:08 |提问者:四噜噜

最佳答案

锻造是利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法

铸造——熔炼金属,制造铸型,并讲熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能金属零件毛坯的成型方法

比较:金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。

铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的

参考资料:百度百科

一次投资成本低,模具易制作(泡馍、木型、塑料、金属等模具方式不受限制),生产运行成本也低。缺点是员工需要一定技能,工艺如果不成熟易导致废品率高。

铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。

铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件,如燃汽轮机的镍基合金零件不用铸造方法无法成形。

另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。

砂型铸造的特点

最佳答案

优点:1、可以铸造外形和内腔十分复杂的毛坯。如:各种箱体、床身、机架等。

2、适用性广泛,从几克到几百吨的铸件都可以。

3、原材料来源广泛,成本低廉。如可以熔化铁屑。

4、铸件形状与零件尺寸比较接近,减少切削加工余量。

缺点:1、工序较多,一些工序质量难以保证。

质量不稳定,容易形成废品。

2、铸件中容易出现缩孔和气孔,性能不如锻件,因此对于承载较大载荷的重要零件一般不用铸件。

什么是铸造?铸造成型的主要特点

浏览次数:1046次悬赏分:0 |提问时间:2008-10-16 18:44 |提问者:14121001

推荐答案

铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代机械制造工业的基础工艺之一。

铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。

铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。

金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外

精炼、孕育或变质处理等。熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。

不同的铸造方法有不同的铸型准备内容。以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型造芯两大项工作。砂型铸造中用来造型造芯的各种原材料,如铸造砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。常用的混砂设备有碾轮式混砂机、逆流式混砂机和叶片沟槽式混砂机。后者是专为混合化学自硬砂设计的,连续混合,速度快。

造型造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。铸件的精度和全部生产过程的经济效果,主要取决于这道工序。在很多现代化的铸造车间里,造型造芯都实现了机械化或自动化。常用的砂型造型造芯设备有高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。

铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。

铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件,如燃汽轮机的镍基合金零件不用铸造方法无法成形。

另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。

铸造生产经常要用的材料有各种金属、焦炭、木材、塑料、气体和液体燃料、造型材料等。所需设备有冶炼金属用的各种炉子,有混砂用的各种混砂机,有造型造芯用的各种造型机、造芯机,有清理铸件用的落砂机、抛丸机等。还有供特种铸造用的机器和设备以及许多运输和物料处理的设备。

铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。

铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。

铸造:熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状、尺寸、成分、组织和性能铸件的成形方法。有宿松、不致密,不适应重要件;

锻造:在锻压设备及工(模)具的作用下,使坯料或铸锭产生塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。致密,重要件。

传统砂型:先用木头等材料制作原型,把原型放在木箱子中,用砂填实压紧(沙子湿度以能握成团为准,太湿会炸,太干无法成型),然后把木箱打开,分割沙型,取出原型,小心修补沙型内面损坏处,添加浇筑口和出气口(金属流入和气体排出的通道),然后在内面涂上脱模剂(麦芽糖浆/蜡等),把沙型拼合成整体就可以等待浇铸了。

精密铸造:同样的过程,但是原型表面涂刷锆英粉,然后外一层用锆英砂,在外面用普通黄砂。因为锆英粉/砂抗高温且膨胀系数小,同时也更细,有更好的铸造精度。

失蜡法:用蜡作原型,用陶土等耐热塑型材料完全包裹原型(开出浇铸口和排气口)然后在高温下把内部的蜡融化流出,得到的就是精密且完整的模具。

铸造:把铸造用的金属熔炼成液体,从浇铸口倒入模具,然后在浇铸口撒砂封闭,避免金属氧化。冷却后,砸开模子,取出铸件,人工修理毛刺和变形/缺陷处,然后对不同铸件进行组合焊接。

铸造的重点,一个是原型合理分件/合理设置浇注口和排气口(防止存有空气产生空洞)/模具的精度,另一个是浇铸中对湿度/温度的控制(防止炸模)。

完全是自己写的,加分吧~

简单工艺流程:型砂准备,造型,熔化金属,浇注,落砂,清理铸件。

砂型铸造工艺流程图:制作木模-翻砂造型-熔化-浇注-落砂-去浇冒口清理-检验入库。

压铸铸造工艺流程图:压铸模具设计—压铸模制造—压铸模试模—浇口冲裁-检验入库。

3.5 关键过程 critical process

对形成产品质量起决定作用的过程。一般包括形成关键、重要特性的和过程;加工难度大、质量不稳定、易造成重大经济损失的过程等。7.5.6 关键过程

组织应识别关键过程,编制关键过程明细表,并执行关键过程控制文件。关键过程控制内容除符合7.5.1的要求外还应包括:

a) 对关键过程进行标识;

b) 设置控制点,对过程参数和产品关键或重要特性进行监视和控制;

c) 对首件产品进行自检和专检,并作实测记录;

d) 可行时,对关键或重要特性实施百分之百检验;

e) 适用时,利用统计技术;

f) 填写质量记录,保证可追溯性。

军标中是这样要求的,你参考一下吧

1 铸造通用基础及工艺标准规范汇编

1.1 GBT 5611-1998 铸造术语

1.1.1 基本术语1.1.2 砂型铸造1.1.3 特种铸造1.1.4 造型材料1.1.5 铸件后处理1.1.6 铸件质量1.1.7 铸造工艺设计及工艺装备1.1.8 铸造合金及熔炼、浇注1.2 GBT 5678-1985铸造合金光谱分析取样方法

1.3 GBT 60601-1997 表面粗糙度比较样块铸造表面

1.4 GBT 6414-1999 铸件尺寸公差与机械加工余量

1.5 GBT1 1351-1989 铸件重量公差

1.6 GBT 15056-1994 铸造表面粗糙度评定方法

1.7 JBT 2435-1978 铸造工艺符号及表示方法

1.8 JBT 40221-1999 合金铸造性能测定方法

1.9 JBT 40222-1999 合金铸造性能测定方法

1.10 JBT 5105-1991 铸件模样起模斜度

1.11 JBT5106-1991 铸件模样型芯头基本尺寸

1.12 JBT 6983-1993 铸件材料消耗工艺定额计算方法

1.13 JBT7528-1994 铸件质量评定方法

1.14 JBT 7699-1995 铸造用木制模样和芯盒技术条件

2 铸铁标准规范汇编

2.1 GBT 1348-1998 球墨铸铁件

2.2 GBT 3180-1982 中锰抗磨球墨铸铁件技术条件

2.3 GBT 5612-1985 铸铁牌号表示方法

2.4 GBT 5614-1985 铸铁件热处理状态的名称、定义和代号

2.5 GBT 6296-1986 灰铸铁冲击试验方法

2.6 GBT 7216-1987 灰铸铁金相

2.7 GBT 8263-1999 抗磨白口铸铁件

2.8 GBT 8491-1987 高硅耐蚀铸铁件

2.9 GBT 9437-1988 耐热铸铁件

2.10 GBT 9439-1988 灰铸铁件

2.11 GBT 9440-1988 可锻铸铁件

2.12 GBT 9441-1988 球墨铸铁金相检验

2.13 GBT 17445-1998 铸造磨球

2.14 JBT 2122-1977 铁素体可锻铸铁金相标准

2.15 JBT 3829-1999 蠕墨铸铁金相

2.16 JBT 4403-1999 蠕墨铸铁件

2.17 JBT 5000.4-1998 重型机械通用技术条件铸铁件

2.18 JBT 7945-1999 灰铸铁力学性能试验方法

2.19 JBT 9219-1999 球墨铸铁超声声速测定方法

2.20 JBT 9220.1-1999 铸造化铁炉酸性炉渣化学分析方法总则及—般规定

2.21 JBT 9220.2-1999 铸造化铁炉酸性炉渣化学分析方法高氯酸脱水重量法测定二氧化硅量

2.22 JBT 9220.3-1999 铸造化铁炉酸性炉渣化学分析方法重铬酸钾容量法测定氧化亚铁量

2.23 JBT 9220.4-1999 铸造化铁炉酸性炉渣化学分析方法亚砷酸钠—亚硝酸钠容量法测定—氧化锰量

2.24 JBT 9220.5-1999 铸造化铁炉酸性炉渣化学分析方法氟化钠—EDTA容量法测定三氧化二铝量

2.25 JBT 9220.6-1999 铸造化铁炉酸性炉渣化学分析方法DDTC分离EGTA 容量法测定氧化钙量

2.26 JBT 9220.7-1999 铸造化铁炉酸性炉渣化学分析方法高锰酸钾容量法测定氧化钙

2.27 JBT 9220.8-1999 铸造化铁炉酸性炉渣化学分析方法DDTC分离EDTA容量法测定氧化镁

2.28 JBT 9220.9-1999 铸造化铁炉酸性炉渣化学分析方法磷矾钼黄—甲基异丁基甲酮萃取光度法测定五氧化二磷量

2.29 JBT 9220.10-1999 铸造化铁炉酸性炉渣化学分析方法硫酸钡重量法测定硫量

2.30 JBT9220.11-1999 铸造化铁炉酸性炉渣化学分析方法燃烧—碘酸钾容量法测定硫量

2.31 JBT 9228-1999球墨铸铁用球化剂

3 铸钢标准规范汇编

3.1 GBT 2100-2002 —般用途耐蚀钢铸件

3.2 GBT 5613-1995 铸钢牌号表示方法

3.3 GBT 5615-1985 铸钢件热处理状态的名称、定义及代号

3.4 GBT 5677-1985 铸钢件射线照相及底片等级分类方法

3.5 GBT 5680-1998 高锰钢铸件

3.6 GBT 6967-1986 工程结构用中、高强度不锈钢铸件

3.7 GBT 7233-1987 铸钢件超声探伤及质量评级方法

3.8 GBT 7659-1987 焊接结构用碳素钢铸件

3.9 GBT 8492-2002 —般用途耐热钢和合金铸件

3.10 GBT 8493-1987 —般工程用铸造碳钢金相

3.11 GBT 9943-1988 铸钢件渗透探伤及缺陷显示迹痕的评级方法

3.12 GBT 9444-1988 铸钢件磁粉探伤及质量评级方法

3.13 GBT 11352-1989 —般工程用铸造碳钢件

3.14 GBT 13925-1992 铸造高锰钢金相

3.15 GBT 14408-1993 —般工程与结构用低合金铸钢件

3.16 GBT 16253-1996 承压钢铸件

3.17 JBT 50006-1998 重型机械通用技术条件铸钢件

3.18 JBT 500014-1998 重型机械通用技术条件铸钢件无损探伤

3.19 JBT 6402-1992 大型低合金钢铸件

3.20 JBT 6403-1992 大型耐热钢铸件

3.21 JBT 404-1992 大型高锰钢铸件

3.22 JBT 6405-1992 大型不锈钢铸件

3.23 IBT 7024-1993 300~600MW 汽轮机缸体铸钢件技术条件

3.24 JBT 7349-2002 混流式水轮机焊接转轮不锈钢叶片铸件

3.25 JBT 7350-2002 轴流式水轮机不锈钢叶片铸件

3.26 JBT 1026-2001 混流式水轮机焊接转轮上冠、下环铸件

4 铸造有色合金标准规范汇编

4.1 GBT 1173-1995 铸造铝合

4.2 GBT 1174-1992 铸造轴承合金

4.3 GBT 1175-1997 铸造锌合金

4.4 GB 1176-1987 铸造铜合金技术条件

4.5 GB 1177-1991 铸造镁合

4.6 GBT 6614-1994 钛及钛合金铸件

4.7 GBT 8063-1994 铸造

4.8 GBT 9438-1999 铝合金铸件

4.9 GB 11346-1989 铝合金铸件射线照相检验针孔(圆形)分级4.10 GBT 15073-1994 铸造钛及钛合金牌号和化学成分

4.11 GBT 16746-1997 锌合金铸件

4.12 GBT 8733-2000 铸造铝合金锭

5 压铸合金标准规范汇编

5.1 GBT 13818-1992 压铸锌合金

5.2 GBT13821-1992 锌合金压铸件

5.3 GBT 13822-1992 压铸有色合金试样

5.4 GBT 15114-1994 铝合金压铸件

5.5 GBT 15115-1994压铸铝合金

5.6 GBT 15116-1994 压铸铜合金

5.7 GBT 15117-1994 铜合金压铸件

5.8 JB 3070-1982 压铸镁合金技术条件

6 熔模铸造标准规范汇编

6.1 GB 12214-1990 熔模铸造用硅砂、粉

6.2 GB 12215-1090 熔模铸造用铝矾土砂、粉

6.3 GBT 14235.1-1993 熔模铸造模料熔点测定方法(冷却曲线法) 6.4 GBT 14235.2-1993 熔模铸造模料抗弯强度测定方法

6.5 GBT 14235.3-1993 熔模铸造模料灰分测定方法

6.6 GBT 14235.4-1993 熔模铸造模料线收缩率测定方法

6.7 GBT 14235.5-1993 熔模铸造模料表面硬度测定方法

6.8 GBT 14235.6-1993 熔模铸造模料酸值测定方法

6.9 GBT 14235.7-1993 熔模铸造模料流动性测定方法

6.10 GBT 14235.8-1993 熔模铸造模料粘度测定方法

6.11 GBT 14235.9-1993 熔模铸造模料热稳定性测定方法

6.12 JBT 2980.1-1999 熔模铸造型壳高温热变形试验方法

6.13 JBT 2980.2-1999 熔模铸造型壳高温抗弯强度试验方法

6.14 JBT 4007-1999 熔模铸造涂料试验方法

6.15 JBT 4153-1999 型壳高温透气性试验方法

6.16 JBT 5100-91 熔模铸造碳钢件技术条件

7 铸造用生铁及铁合金标准规范汇编

7.1 GBT 717-1998炼钢用生铁

7.2 GBT 718-2005 铸造用生铁

7.3 GBT 1412-2005 球墨铸铁用生铁

7.4 GB 2272-1987 硅铁

7.5 GB 3282-1987 钛铁

7.6 GBT 3648-1996 钨铁

7.7 GB 3649-1987 钼铁

7.8 GBT 3650-1995 铁合金验收、包装、储运、标志和质量证明书的一般规定7.9 GBT 3795-2006锰铁

7.10 GBT 4008-1996 锰硅合金

7.11 GB 4009-1989 硅铬合金

7.12 GBT 4010-1994 铁合金化学分析用试样的采取和制备

7.13 GBT 4137-2004 稀土硅铁合金

7.14 GBT 4138-2004 稀土镁硅铁合金

7.15 GBT 41390-2004 钒铁

7.16 GB 5683-1987 铬铁

7.17 GB 5684-1987 真空法微碳铬铁

7.18 GB/T 7737-1997铌铁

7.19 GB 7738-1987 铁合金产品牌号表示方法

7.20 GB 8729-1988 铸造焦炭

7.21 GBT 9971-2004 原料纯铁

7.22 GBT 13247-1991 铁合金产品粒度的取样和检测方法

7.23 GBT 1 4984-1994 铁合金术语

7.24 GBT 15710-1995 硅钡合金

7.25 YBT 092-1996合金铸铁球

7.26 YBT 093-1996 低铬合金铸铁段

8 铸造用造型材料标准规范汇编

8.1 GBT 2684-1981 铸造用原砂及混合料试验方法

8.2 GBT 7143-1986 铸造用硅砂化学分析方法

8.3 GBT9442-1998 铸造用硅砂

8.4 GBT 12216-1990 铸造用合脂粘结剂

8.5 JBT 2755-1980 铸造用亚硫酸盐木浆废液粘结剂

8.6 JBT 3828-1999 铸造用热芯盒树脂

8.7 JBT 5107-1991 砂型铸造用涂料试验方法

8.8 JBT 6984-1993 铸造用铬铁矿砂

8.9 JBT 6985-1993 铸造用镁橄榄石砂

9 性能试验方法标准规范汇编

9.1 GBT 228-2002 金属材料室温拉伸试验方法

9.2 GBT 229-1994 金属夏比缺口冲击试验方法

9.3 GBT 230.1-2004 金属洛氏硬度试验第1 部分:试验方法(A、B、C、D、

E、F、G、H、K、N、T标尺)

9.4 GB/T 230.2-2002 金属洛氏硬度试验第2 部分:硬度计(A、B、C、D、E、

F、G、H、K、N、T标尺)的检验与校准

9.5 GBT 230.3-2002 金属洛氏硬度试验第3 部分:标准硬度块(A、B、C、D、

E、F、G、H、K、N、T标尺)的标定

9.6 GBT 231.1-2002 金属布氏硬度试验第1 部分1试验方法

9.7 GBT 231.2-2002 金属布氏硬度试验第2 部分:硬度计的检验与校准

9.8 GBT 231.3-2002 金属布氏硬度试验第3部分:标准硬度块的标定

9.9 GBT 232-1999 金属材料弯曲试验方法

9.10 GBT 1172-1999 黑色金属硬度及强度换算值

9.11 GBT 2039-997 金属拉伸蠕变及持久试验方法

9.12 GBT 4337-1984 金属旋转弯曲疲劳试验方法

9.13 GBT 4338-1995 金属材料高温拉伸试验

9.14 GBT 7314-2005 金属压缩试验方法

9.15 GBT 12778-1991 金属夏比冲击断口测定方法

9.16 GBT 13239-1991 金属低温拉伸试验方法

9.17 GBT 13298-1991 金属显微组织检验方法

只是中国的就不只这么多,其余还有还有欧洲标准、日本标准等等。

简述压力铸造技术

简述压力铸造技术 1.引言 1.1 压铸技术的起源 压铸技术最早用于泥制备青铜生活器具、钱币等,后来发展了金属型制备简单的武器,如青铜箭头。金属型的大量使用在印刷机械中出现制备铅字以后,国外在1872年发明了世界上第一台最简单的手动小型压铸机,并于1920年制造出了冷室压铸机,1927年发明了立式冷室压铸机。 1.2 我国压铸技术的发展 我国的压铸件工业化生产开始于20世纪50年代,那时靠仿制原捷克斯洛伐克和前苏联生产的500KN和1000KN卧式冷室压铸机和进口他们的立式压铸机和卧式冷室压铸机;发展到今天国内现在的压铸机厂家可生产最大的280000KN卧式冷室压铸机和4000KN以下热室压铸机及3150KN以下立式冷室压铸机。 1.3 近几年国际压铸技术的发展 ⑴压铸计算机模拟技术分析压铸过程有了大的理论突破。 ⑵压铸机和辅助设备方面有了很大的发展。 ⑶压铸产品检测方面,特别是内部缺陷的无损检测:如X射线、 荧光、超声波探测等得到了发展。 ⑷压铸模具材料和寿命的发展。 ⑸快速成型设计及制造技术在压铸生产中得到应用。 ⑹压铸材料的发展,如镁合金及金属基复合材料。 ⑺压铸新技术的开发,如真空压铸、充氧压铸、局部加压压铸等 2.压铸特点和应用范围 2.1 压铸工艺过程 压力铸造(简称压铸)是在高压作用下将液态或半液态金属快速压入铸型中,并在压力下凝固而获得铸件的方法。 压铸所用的压力一般为30~70MPa,充型速度可达5~100m/s,充型时间为0.05~0.2s。金属的压力铸造广泛用于汽车、冶金、机电、建材等行业。目前90%的镁铸件和60%的铝铸件都采用压力铸造成型。 金属液在高压下以高速填充铸型,并在压力下冷却,是压铸区别于其他铸造工艺的重要特征。 压力铸造的主要工序可分为:合型、压射、顶出三个阶段。压铸机的主要结构简图如图2-1所示。

压力铸造的基本概念和过程

压力铸造的基本概念和过程 压铸的过程 压力铸造是将熔融金属在高的压力下,以高的速度填充入模具型腔内,并使金属在这一压力下凝固而形成铸件的过程。通常所采用的压力为200-2000公斤/c㎡,填充时的初始速度(称为内浇口速度)为15-70米/秒,填充过程在0.01-0.2秒的时间内即告完成。 压铸的填充过程受许多因素的影响,如:压力、速度、温度、熔融金属的性质以及填充特性等等。在压铸全过程的始终,熔融金属总是被压力所推动,而填充结束时,熔融金属仍然是在压力的作用下凝固的。压力的存在,是这种铸造过程区别于其他铸造方法的主要特征。也正因为压力的缘故,便产生了对速度、温度、型腔中气体以及一系列的填充特性的影响。所以,在压铸填充过程中,对压力的变化应有一个总体的概念。 压铸填充过程中,压射冲头移动的情况和压力的变化如图1-1所示,以卧式冷压室压铸为例。图中每一阶段的左图表示压射的过程,右下图为对应的压射冲头位移曲线,右上图为每一位移阶段时相应的压力增升值。 图1-1(a)为起始阶段,熔融金属浇入压室内,准备压射。 图1-1 (b)为阶段1,压射冲头以慢的速度移过浇料口,熔融金属受到推动,但冲头的移动慢而冲力不大,.故金属不会从浇料口处溅出。这时推动金属的压力为Po,其作用为克服压射缸内活塞移动时的总摩擦力、冲头与压室之间的摩擦力。冲头越过浇料 口的这段距离为S1即为慢速封口阶段。

图1-1压铸填充过程各个阶段

P-压射压力; S-压射冲头移动距离 t-时间 图1-1(C)为阶段2,压射冲头以一定的速度(比阶段1的速度度略快)移动,与这一速度相应的压力增升值达到Pl,熔融金属充满压室的前端和浇道并堆聚于内浇口前沿,但因速度不大,故金属在流动时,浇道中包卷气体只在一个较小的限度以内。冲头在这一阶段所移动的距离为S2,是为金属堆聚阶段。在这一阶段的最后瞬间,亦即金属到达内浇口时,由于内浇口的截面在浇口系统(包括压室)各部分的截面中总是最小的,故该处阻力最大,压射压力便因此而增升,其增升值即为达到足以突破内浇口处的阻力为 止。 图1- 1(d)为阶段3,这一阶段的开始,压射压力便因内浇口处的阻力而增升至P2,而冲头的速度亦按调定的最大速度移动,推动熔融金属突破内浇口而以高的速度(内浇口速度)填充入模具型腔,这一阶段冲头移动的距离为S3,此即为填充阶段。在短促的填充瞬间,金属虽然已充满型腔,但还存在“疏”、“空”的组织。图1-1 (e)为阶段IV,压射冲头按调定的压力作用在型腔中的正在凝固的金属上,“疏”,、“空,”,的组织便成为“密”,、“实”的组织。这个作用在金属上的压力,通常便称为最终压力。其大小与压铸机的压射系统的性能有关。当压射系统没有增压机构时,最终压力能达到的增升值为P3,当压射系统带有增压机构时,最终压力又从P3。增升至P4。这一阶段冲头移动的距离为S4,其实际的距离是很小的。 从压铸工艺上的特性来看,上述的过程便称为四阶段压射过程。近年来,先进的压铸机的压

压铸成型工艺与模具设计

1.充氧压铸技术概念:是金属液充填压铸型腔前,将氧气充入压铸模具型腔取代其中的氧气,当能与氧气发生反应的金属液压入型腔时,一部分氧气通过排气槽排出,而残留在型腔中的氧气就与金属液发生反应,生成氧化物颗粒,呈弥散状分布在铸件中,从而消除了压铸件的气孔。 优点:减少了铸件废品,提高了性能,节省了机械加工费用,对质量要求较高的铸件反而可以节约成本10%~30% 2.影响压铸金属流动的因素: 1)压射速度度金属流充填型腔的影响:(1)高速压射,则金属流喷射和喷射流的方式充填,金属流直冲端部尔后折回,在内浇口附近,金属液变为压力流, 气体被卷入其中。(2)低速压射开始,待金属流充填到型腔容积的1/3时转为高速压射,则前面的金属流在后续金属流的推动下以压力流方式进行充填,能获得无气孔的铸件。 2)内浇口位置和形状对压铸金属流充填型腔的影响:横浇道与内浇口开设在型腔的同一外侧,则金属液的喷射就会很快封住分型面,导致型腔内气体无法排出,形成气孔。 3.金属流动状态与压铸件的质量: (1)表面质量:金属液流速越快,表面质量越好,因此喷射流充填的部位比压入流充填部位的避免质量好。 (2)内部质量:金属液流速越慢,内部缺陷越少,所以压力流的压铸件比压力流成型的压铸件内部缺陷要少。但是压力流充填的型腔。最后充填的地方一定要开溢流槽和排气槽,防止压铸件中产生气孔和金属夹杂物等缺陷。 4.压力铸造与砂型铸造的特点比较: (1)由模具材料的导热性引起的成型特点:由于冷却速度快,表面晶粒细化,强度高,耐磨,其二是由于冷却速度快,薄壁充填困难,其三是为了减缓金属液的冷却速度,有利充型,压铸凹凸模时每次成型均需喷涂料。 (2)由模具材料无退让性引起的成型特点:(1)铸件温度在合金的再结晶温度以上时,由于补充金属液,裂纹影响大;(2)以下时,易产生冷裂。 (3)由于膜具材料无透气性引起的成型特点:易使铸件形成气孔,并易形成气孔,造成压铸件上有充不足的缺陷,长期使用的压铸模,在模具的成型零件表面出现许多裂纹,充填金属液后裂纹中的气体受热膨胀,通过涂料层渗入液态金属,使铸件出现针孔,所以应合理设计排气系统。另外,合理的浇注系统设计也是减少压铸件气孔的有效方法。 5.压铸成型的优点:(1)生产效率高,生产过程容易实现机械化和自动化;(2)压铸件的尺寸精度高,表面粗糙度值低;(3)压铸件的力学性能较高;(4)可压铸复杂薄壁零件;(5)压铸件中可嵌铸其他材料的零件 压铸成型的缺点:(1)压铸件中易产生气孔;(2)不适宜小批量生产;(3)压铸高熔点合金时模具寿命较低 6.压铸件的结构要求:(1)壁厚:最大壁厚与最小壁厚之比要大于3:1 ;(2)孔: 特点是能直接压铸出比较深而小的孔;(3)加强肋:当壁厚大于2.5mm时,随壁厚的增加反而抗拉强度下降,这是由于厚壁压铸件易产生气孔缩松,所以设置加强肋来增加零件强度和刚度,另外设置加强肋液可使金属液流动顺畅; (4)

低压铸造原理及特点

第一节概述 在二十世纪初期,国外开始研究并应用低压铸造工艺,同时期,英国https://www.360docs.net/doc/c13738202.html,ke登记了第一个低压铸造专利,主要用于巴氏合金的铸造。法国人制定了用于铝合金和铜合金的计划,并首先在铝合金铸造生产中得到推广使用。 第二次世界大战爆发后,随着航空工业的发展,英国广泛地采用低压铸造生产技术要求较高的航空发动机的气缸等轻铝合金铸件,并采用金属性低压铸造,大量生产高硅铝合金铸件。北美的汽车工业和电机工业又广泛采用金属型低压铸造生产汽缸、电机转子等重要铸件。这样,低压铸造工艺迅速扩散到通用机械、纺织机械、仪表和商业产品的领域。 我国从五十年代开始研究低压铸造,但发展一直比较缓慢。随着汽车工业的发展,和大量新技术的采用,在上世纪末和本世纪初,低压铸造在我国得到快速发展,国产低压铸造机的功能和性能,及使用的稳定性和可靠性已经接近或达到国际先进水平,被大量用于汽车轮毂、汽车缸盖等铸件的生产。 第二节低压铸造原理及特点 低压铸造是使液体金属在压力作用下充填型腔,以形成铸件的一种方法。由于所用的压力较低,所以叫做低压铸造。其工艺过程如下:在装有合金液的密封容器(如坩埚)中,通入干燥的压缩空气,作用在保持一定浇注温度的金属液面上,造成密封容器内与铸型型腔的压力差,使金属液在气体压力的作用下,沿升液管上升,通过浇口平稳地进入型腔,并适当增大压力并保持坩埚内液面上的气体压力,使型腔内的金属液在较高压力作用下结晶凝固。然后解除液面上的气体压力,使开液管中未凝固的金属液依靠自重流回坩埚中,再开型并取出铸件,至此,一个完整的低压浇铸工艺完成。低压铸造工艺过程演示如下: 低压铸造过程动画演示

低压铸造独特的优点表现在以下几个方面: 1.低压铸造的浇注工艺参数可在工艺范围内任意设置调整,可保证液体金属充型平稳,减少或避免金属液在充型时的翻腾、冲击、飞溅现象,从而减少了氧化渣的形成,避免或减少铸件的缺陷,提高了铸件质量; 2.金属液在压力作用下充型,可以提高金属液的流动性,铸件成形性好,有利于形成轮廓清晰、表面光洁的铸件,对于大型薄壁铸件的成形更为有利; 3.铸件在压力作用下结晶凝固,并能得到充分地补缩,故铸件组织致密,机械性能高; 4.提高了金属液的工艺收得率,一般情况下不需要冒口,使金属液的收得率大大提高,收得率一般可达90%。 5.劳动条件好;生产效率高,易实现机械化和自动化,也是低压铸造的突出优点。 6.低压铸造对合金牌号的适用范围较宽,基本上可用于各种铸造合金。不仅用于铸造有色合金,而且可用于铸铁、铸钢。特别是对于易氧化的有色合金,更显示它的优越性能,即能有效地防止金属液在浇注过程中产生氧化夹渣。 7.低压铸造对铸型材料没有特殊要求,凡可作为铸型的各种材料,都可以用作低压铸造的铸型材料。与重力铸造和特种铸造应用的铸型基本相同,如砂型(粘土砂、水玻璃砂、树脂砂等)、壳型、金属型、石墨型、熔模精铸壳型、陶瓷型等都可应用。总之,低压铸造对铸型材料要求没有严格限制。 第三节低压铸造工艺设计

阀门铸造工艺

阀门铸造工艺介绍 1

一、何为铸造:阀门铸造工艺*第一节铸造的概述及特点 将液体金属浇到具有与零件形状相适应的铸型空腔中,待其凝固后,以获 得一定形状尺寸和表面质量的零件的产品,称之为铸造。 二、铸造概述: 铸造具有悠久的历史,约在公元前三千年,人类已铸出多种精美的青铜器。但几千年来是靠手工用粘土、砂等天然材料制造的。铸件的产量很小,随着工 业革命的发展,机械化的增加,铸件需求量的提高,在20 世纪30 年代开始使用气动机器和人工合成造型的粘土砂工艺生产。随着时代的发展,各类造型方 法应运而生。例如:1933 年出现水泥砂型,1967 年出现水泥流态砂型;1944 年出现冷却覆膜树脂砂壳型;1955 年出现热法覆膜树脂砂壳型,1958 年出现呋喃树脂自硬砂型;1947 年出现CO2硬化水玻璃砂型,1968 年出现了有机硬化剂的水玻璃(有机脂水玻璃)工艺等。近年来,用物理手段制造铸型的新方法,如: 磁丸造型,真空密封造型法,失膜造型等。 铸造由于可选用多样成分、性能的铸造合金,加工基本建设投资小,工艺 灵活性大,生产周期短等优点,被广泛用于机械制造、矿山冶金、交通运输、 石化通用设备、农业机械、能源动力、轻工纺织、土建工程、电力电子、航天 航空、国际军工等国民经济各部门,是现代大机械工业的基础。 2

铸造在中国已有漫长的历史,但铸造技术长期处于停滞状态,改革开放以来,我国的铸造技术有了很大的发展,突出的表现在三个方面:造型、造芯的机械化、自动化程度明显提高;自硬性化学型砂取代干型粘土砂和油砂;铸造 工艺技术由凭经验走向科学化,如:计算机模拟设计。这一系列的改革对提高 生产效率,降低劳动强度,改善生产环境,提高铸件内在质量和外观质量,节 约原材料和能源起了重大的作用。 三、铸造特点: 1、铸造的适应性很广,灵活性很大,产品要求及所处各种工况,可制造多 种金属材料的产品,如:铁、碳素钢、低合金钢、铜、铜合金、铝、铝合 金、钛合金等等。与其他成型方式相比,铸造不受零件的重量、尺寸和形 状限制。重量可从几克到几百吨,壁厚由0.3mm 到1m,形状只要在铸造 工艺性范围内,是十分复杂的,还是机械加工困难的,甚至难以制得的零 件,都可通过铸造的方式获得。 2、铸造所用的原材料大多来源广,价格低廉,如废钢、砂等。但由于近期国 内铸造和钢铁业大量兴起,这些原材料价格出现上涨。 3、铸件可通过先进的铸造工艺方法,提高铸件的尺寸精度和表面质量,使零 件做到少切割和无切割。对产品制造达到省工省料的效果,节约总体的制 作成本。 3

《铸造工艺学》课后习题答案-董选普

《铸造工艺学》课后习题答案 湖南大学 1、什么是铸造工艺设计? 铸造工艺设计就是根据铸造零件的结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。 2、为什么在进行铸造工艺设计之前要弄清楚设计的依据,设计依据包括哪些内容? 在进行铸造工艺设计前设计者应该掌握生产任务和要求,熟悉工厂和车间的生产条件这些是铸造工艺设计的基本依据,还需要求设计者有一定的生产经验,设计经验并应对铸造先进技术有所了解具有经济观点发展观点,才能很好的完成设计任务 设计依据的内容 一、生产任务1)铸件零件图样提供的图样必须清晰无误有完整的尺寸,各种标记2)零件的技术要求金属材质牌号金相组织力学性能要求铸件尺寸及重量公差及其它特殊性能要求3)产品数量及生产期限产品数量是指批量大小。生产期限是指交货日期的长短。二、生产条件1)设备能力包括起重运输机的吨位,最大起重高度、熔炉的形式、吨位生产率、造型和制芯机种类、机械化程度、烘干炉和热处理炉的能力、地坑尺寸、厂房高度大门尺寸等。2)车间原料的应用情况和供应情况3)工人技术水平和生产经验4)模具等工艺装备制造车间的加工能力和生产经验 三、考虑经济性对各种原料、炉料等的价格、每吨金属液的成本、各级工种工时费用、设备每小时费用等、都应有所了解,以便考核该工艺的经济性。 3.铸造工艺设计的内容是什么? 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程。 4.选择造型方法时应考虑哪些原则? 1、优先采用湿型。当湿型不能满足要求时再考虑使用表干砂型、干砂型或其它砂型。 选用湿型应注意的几种情况1)铸件过高的技术静压力超过湿型的抗压强度时应考 虑使用干砂型,自硬砂型等。2)浇注位置上铸件有较大水平壁时,用湿型易引起 夹砂缺陷,应考虑使用其它砂型3)造型过程长或需长时间等待浇注的砂型不宜 选用湿型4)型内放置冷铁较多时,应避免使用湿型 2、造型造芯方法应和生产批量相适应 3、造型方法应适用工厂条件 4、要兼顾铸件的精度要求和生产成本 5-浇注位置的选择或确定为何受到铸造工艺人员的重视?应遵循哪些原则? 确定浇注位置是铸造工艺设计中重要的一环,关系到铸件的内在质量、铸件的尺寸精度铸造工艺过程中的难易,因此往往须制定出几种方案加以分析,对此择优选用。 应遵循的原则为:1、铸件的重要部分应尽量置于下部2、重要加工面应朝下或呈直立状态3、使铸件的大平面朝下,避免夹砂伤疤类缺陷4、应保证铸件能充满5、应有利于铸件的补缩6、避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验7、应使合箱位置,浇注位置和铸件冷却位置相一致 5为什么要设计分型面?怎样选择分型面? 分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。选择分型面的原则:1、应使铸件的全部或大部置于同一半型内2、应尽量减少分型面数目,分型面少,铸件精度容易保证3、分型面应尽量选用平面4、便于下芯,合箱,检查型腔尺寸。5、不使砂箱过高6、受力件的分型面的选择不应削弱铸件结构强度7、注意减轻铸件的清理和机

压铸生产工艺

压铸生产工艺知识 一.压铸生产的概念 ** 压铸(DIE CASTING) 就是将熔融合金在高压﹑高速条件下充满金属模并使其在高压下凝固冷却成型的精密铸造生产. 压铸制造出来的工件称为压铸件(DIE CASTINGS),压铸件主要特点尺寸公差很小(精密公差±0.08,一般公差±0.25),精密度高,表面不需经车削加工而只是经过整缘处理(如去批锋.抛光等)即可用于后工序如静电喷涂或装配生产. 二.压铸机(CASTING MACHINE) 压铸机为热料室压铸机,基本结构如图所示: 所用压铸机有两种型号:L.K.DC-80(3台)﹑L.K.DC-160(4台),机器制造商:力劲机械厂有限公司(L.K.MACHINERY CO.LTD). ***机器的主要工作参数列表如下供参考: 压铸机基本结构各部分作用; 固定机板----用以固定压铸模的静模(前模)部分; 移动机构----用以固定压铸模的动模(后模)部分; 顶出机构----用以顶出压铸件; 锁紧机构----实现在压射过程中可靠地锁紧模具; 配电及数显—电源供应﹑显示溶料温度﹑压铸程序及时间控制等; 操纵台------控制压铸操作的系列动作; 射料机构----将合金液推入模具型腔,进行充填成型; 熔料室------将铸绽熔化为合金液并维持恒温. ***压铸机工序流程步骤:

正常所采用的半自动生产操作,每个生产周期是靠开和关安全门来触发下一个局期,其流程可如图表达: 关门--→(顶针退回)锁模--→扣咀前--→一速身料--→二速射料 回錘喷(刷)说模剂←--顶针顶出/钻取啤件←--开模←--离咀 三.压铸用的锌(Zinc)合金材料 本公司所用皆为锌3#合金(EZDA 3PRESSURE KIECASTING ALLOY),其化学成份含量及作用如下表(见下页): 1.锌合金主要性能特点如下: a)熔点较低; b)压铸成型效果好; c)铸件表面可镀金属,可以进行(静电)喷涂装饰; d)缺点:铸件易老化,抗腐蚀能力差. 2.锌合金原料中掺入水口料对铸件的影响: 在锌合金压铸生产中,适当地在材料中掺入水口料可降低铸件成本,但水口料掺入也会引致某些质量问题: a)水口料中往往含有杂质,使材料机械性能变差,使铸件不能满足使用要求: b)水口料中的化学成份巳发生变化,铝镁成份的减少会使材料理化性能变 坏,从而会使铸 件花纹和气泡等问题增多. 如果通过化学鉴定及处理,在掺有水口料的锌合金(水口料一般不超过50%)中适当地加入铝和镁元素,并协同改善压铸模的排溢条件,选择适当的压铸参数,能够在一定程度上提高铸件质量,减少废品产生.

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

压铸机工艺参数

?压铸工艺参数分析(一) ? ? 为了便于分析压铸工艺参数,下面示出如图5-1和图5-2所示的卧式冷室压铸机压射过程图以及压射曲 线图。压射过程按三个阶段进行分析。 第一阶段(图5-1b):由0 -Ⅰ和Ⅰ-Ⅱ两段组成。0 -Ⅰ段是压射冲头以低速运动,封住浇料口,推动金属液在压射室内平稳上升,使压射室内空气慢慢排出,并防止金属液从浇口溅出;Ⅰ-Ⅱ段是压射冲头以较快的速度 运动,使金属液充满压射室前端并堆聚在内浇口前沿。 第二阶段(图5-1c):Ⅱ-Ⅲ段,压射冲头快速运动阶段,使金属液充满整个型腔与浇注系统。 第三阶段(图5-1d):Ⅲ-Ⅳ段,压射冲头终压阶段,压射冲头运动基本停止,速度逐渐降为0。 a)

图 5-1 卧式冷室压铸机压射过程图 图5-2 卧式冷室压铸机压射曲线图 s--冲头位移曲线P0--压力曲线v--速度曲线 1、压力参数 (1)压射力压射冲头在0-Ⅰ段,压射力是为了克服压射室与压射冲头和液压缸与活塞之间的摩擦阻力;Ⅰ-Ⅱ段,压射力上升,产生第一个压力峰,足以能达到突破内浇口阻力为止;Ⅱ-Ⅲ段,压射力继续上升,产生第二个压力峰;Ⅲ-Ⅳ段,压射力作用于正在凝固的金属液上,使之压实,此阶段有增压机构才能实现, 此阶段压射力也叫增压压射力。 (2)比压比压可分为压射比压和增压比压。 在压射运动过程中0-Ⅲ段,压射室内金属液单位面积上所受的压射力称为压射比压;在Ⅲ-Ⅳ段,压射室内金属液单位面积上所受的增压压射力称为增压比压。比压是确保铸件质量的重要参数之一,推荐选用的增

压比压如表5-1所示。 表5-1 增压比压选用值(单位:MPa) (3)胀型力压铸过程中,充填型腔的金属液将压射活塞的比压传递至型(模)具型腔壁面上的力称为胀型力。主胀型力的大小等于铸件在分型面上的投影面积(多腔模则为各腔投影面积之和),浇注系统、溢流、排气系统的面积(一般取总面积的30%)乘以比压,其计算公式如下 F主=APb/10 式中F主-主胀型力(KN); A-铸件在分型面上的投影面积(cm2); Pb-压射比压(MPa)。 分胀型力(F分)的大小是作用在斜销抽芯、斜滑块抽芯、液压抽芯锁紧面上的分力引起的胀型力之和。 (4)锁型(模)力锁型(模)力是表示压铸机的大小的最基本参数,其作用是克服压铸填充时的胀型力。在压铸机生产中应保证型(模)具在胀型力的作用下不致胀开。压铸机的锁型(模)力必须大于胀型力才是 可靠的,锁型(模)力和胀型力的关系如下: F锁≥K(F主+F分) 式中F锁--压铸机应有的锁型(模)力(KN); K--安全系数,一般取1.25; F主--主胀型力(KN); F分--分胀型力(KN)。 在压铸生产过程中,锁型(模)力大小的选择直接反映到压铸分型面处有否料液飞溅、铸件内组织的密度、有否气孔、成形是否完整、有否飞边及毛刺等。调整时,在保证铸件合格的前提下尽量减小锁型(模)力。 为简化选用压铸机时各参数的计算,可根据压铸机具体的工作性能作出“比压、投影面积与胀型力关系图”,参见图5-3。在已知型(模)具分型面上铸件总投影面积∑A和所选用的压射比压Pb后,能从图中直接查出 胀型力。

压力铸造“三要素”分析实

压力铸造“三要素”分析实 压铸模、压铸机、压铸工艺是压力铸造关键的“三要素”。这三要素是保证压铸件质量、提高压铸件生产效率、降低压铸生产成本的重要因素。三者之间的关系和作用如下所述:压铸模—是压力铸造中最重要的工具,它是三要素中最关键的要素。只要压铸模具备了合理的澆注系统,合理的模具结构,又有合理的模具制造精度,就具备了压力铸造的重要条件。它可以弥补压铸机的某些不足,也可以放宽对压铸工艺参数相应的调整范围,这就给压铸生产带来极大的方便,压铸工艺参数的调整就方便得多,这就加大了保证铸质量的可靠性。有人说压力铸造需要打造尽量多的傻瓜(非常方便调整工艺参数的)模具也就是此意思。有很多人说压铸模在压力铸造技术中的重要性占60%的比重,又有很多人说它在压力铸造中的重要性占70—80%的比重,不管是多少,这就反应出压铸模它在众多人心目中的重要性了。总之压铸模的重要性它占据了三要素之首。 压铸机—是在压力铸造中的一个重要设备。;是压力铸造成功的一个重要条件;它既是模具安装的场地;又是工艺参数调节处所,起到承上启下的重要作用。压铸机性能的好坏,直接影响到所生产的压铸件质量和生产效率高低。 压铸工艺参数—实际上是把压铸模具和压铸机联系起来的纽带。如果有了质量好的模具和性能较好的压铸机,压铸工艺参数的调节范围就放宽多了,工艺参数调整就很方便了。如果前述的某一个条件较差,工艺参数的调整就困难多,即是调整好了,一但某个工艺因素略有所变动,就直接影响到压铸件生产质量和生产效率,造成生产质量不稳定。所以压铸工艺参数一定要弥补前两者之不足。 前三者必须是密切配合的情况下,才能对提高压铸件质量,给压力铸造带来整体效益。每一个压铸工作者,应在实际生产实践中要认清三者的关系,来处理好生产中的实际问题。分析方法,可参考下述实例进行:

铸造工艺_特点及其应用

铸造(casting) 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代制造工业的基础工艺之一。把金属材料做成所需制品的工艺方法很多,如铸造、锻造、挤压、轧制、拉延、冲压、切削、粉末冶金等等。其中,铸造是最基本、最常用的工艺。 铸造种类很多,按造型方法习惯上分为: ①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。 ②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 铸造可按铸件的材料分为: 黑色金属铸造(包括铸铁、铸钢)和有色金属铸造(包括铝合金、铜合金、锌合金、镁合金等) 铸造有可按铸型的材料分为: 砂型铸造和金属型铸造。 按照金属液的浇注工艺可分为: 1、重力铸造:指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造、消失模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。 2、压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺,按照压力的大小,又分为高压铸造(压铸)和低压铸造。 补充知识: 1、精密铸造是相对于传统的铸造工艺而言的一种铸造方法。它能获得相对准确地形状和较高的铸造精度。较普遍的做法是:首先做出所需毛坯(可 留余量非常小或者不留余量)的电极,然后用电极腐蚀模具体,形成空腔。再用浇铸的方法铸蜡,获得原始的蜡模。在蜡模上一层层刷上耐高温的液体砂料。待获得足够的厚度之后晾干,再加温,使内部的蜡模溶化掉,获得与所需毛坯一致的型腔。再在型腔里浇铸铁水,固化之后将外壳剥掉,就能获得精密制造的成品 2、选择铸造方式时应考虑:a.优先采用砂型铸造b.铸造方法应和生产批量相适 c.造型方法应适合工厂条件d.要兼顾铸件的精度要求和成 3、金属材料的力学性能主要指:强度、刚度、硬度、塑性、韧性等。

铸造练习题及答案

铸造练习题 一、判断题(本大题共91小题,总计91分) 1.(1分)浇注温度过低,则金属液流动性差,铸件易产生气孔、缩孔、粘砂等缺陷。() 2.(1分)金属型铸造主要用于大批量生产形状简单的钢铁铸件。() 3.(1 () 4.(1 5.(1 6.(1() 7.(1 8.(1 9.(1 11.(1分)造型材料应具有高的耐火度,即型砂承受高温作用而不软化、不熔融的能力。若型砂耐火度差,易使铸件产生粘砂缺陷。() 12.(1分)造型材料应具有高的硬度、耐火度,还应有良好的透气性、流动性、退让性等。() 13.(1分)当铸件的最大截面不在端部,模样又不便分开,造型时常采用分模造

型。() 14.(1分)尺寸较大的铸件或体收缩较大的金属应设冒口,冒口可设在铸件的上部、中部或下部。() 15.(1分)在不增加壁厚的条件下,选择合理的截面形状和设置加强筋可提高铸件承载能力。() () () () () () 27.(1分)砂型铸造、金属型铸造、压力铸造、熔模铸造相比较,大批生产时,金属型铸造的生产率最高。() 28.(1分)铸造合金从液态凝固和冷却至室温过程中产生的体积和尺寸的缩减称为收缩。() 29.(1分)加工余量是铸件加工面上,在铸造工艺设计时,预先增加的,在机械

加工时需切除的金属层厚度。() 30.(1分)大批量生产铸件与小批量生产铸件相比,前者机械加工余量应小一些。() 31.(1分)离心铸造机按旋转轴的方位不同,可分为立式、卧式和倾斜式三种类型。() () () () 43.(1分)由于铸造是由液态金属成形,所以可铸造出形状很复杂的铸件。() 44.(1分)铸造是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得具有一定形状、尺寸和性能的金属零件或毛坯的成形方法。() 45.(1分)确定分型面时尽可能使分型面为一平面,尽量减少分型面。() 46.(1分)型砂和芯砂应具备一定的强度、塑性、硬度、冲击韧度和疲劳强度。

铸造工艺设计基础

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 合金种类铸件最大轮廓尺寸为下列值时/㎜ ﹤200200-400400-800800-12501250-2000﹥ 2000 碳素铸钢 低合金钢 高锰钢 不锈钢、耐热钢灰铸铁 孕育铸铁 (HT300以上)球墨铸铁8 8-9 8-9 8-11 3-4 5-6 3-4 9 9-10 10 10-12 4-5 6-8 4-8 11 12 12 12-16 5-6 8-10 8-10 14 16 16 16-20 6-8 10-12 10-12 16~18 20 20 20-25 8-10 12-16 12-14 20 25 25 - 10-12 16-20 14-16铸件最大轮廓为下列值时mm

压铸工艺流程图示

上海旭东压铸技术咨询培训资料 压铸工艺参数 一、压铸工艺流程图示 2,压铸模安装 17,终检验 5,涂料配制

上海旭东压铸技术咨询培训资料压铸工艺参数 二、压射压力 注:t1 金属液在压室中未承受压力的时间;P1为一级(慢速)t2 金属液于压室中在压射冲头的作用下,通过内浇口充填型腔的时间;P2为二级(快速) t3 充填刚刚结束时的舜间;P3为三级(增压) t4 最终静压力;P4为补充压实铸件 4P y P b= Лd2 式中:P b 比压(Mpa); Py 机器的压射力(N); (压射力=压射缸直径×蓄压器压射时间最小压力) d 压室(冲头)直径(MM) 选择比压考虑的的主要因素 上海旭东压铸技术咨询培训资料压铸工艺参数

比压 因素选择条件 高低 壁厚薄壁厚壁压铸件结构形状复杂简单 工艺性差些好些 结晶温度范围大小压铸合金特性流动性差好 密度大小 比强度大小 阻力大小浇注系统散热速度快慢 公布合理不太合理排溢系统截面积大小 内浇口速度快慢 温度合金与压铸模具温度大小 ●压铸各种合金常用比压表(Mpa) 铸件壁厚≤3(mm) 铸件壁厚>3(mm)合金结构简单结构复杂结构简单结构复杂 锌合金20-30 30-40 40-50 50-60 铝硅、铝铜合金25-35 35-45 45-60 60-70 铝、镁合金30-40 40-50 50-65 65-75 镁合金30-40 40-50 50-65 65-80 铜合金40-50 50-60 60-70 70-80 ●压力损失折算系数K 直浇道导入口截面F1, K值与内浇铸口截面F2之比>1 =1 <1 立式冷室压铸机 0.66-0.70 0.72-0.74 0.76-0.78 卧式冷室压铸机0.88

压力铸造“三要素”分析实

压力铸造“三要素”分析实 压力铸造“三要素”分析实 压铸模、压铸机、压铸工艺是压力铸造关键的“三要素”。这三要素是保证压铸件质量、提高 压铸件生产效率、降低压铸生产成本的重要因素。三者之间的关系和作用如下所述: 压铸模一是压力铸造中最重要的工具,它是三要素中最关键的要素。只要压铸模具备了合理的 澆注系统,合理的模具结构,又有合理的模具制造精度,就具备了压力铸造的重要条件。它可以弥补压铸机的某些不足,也可以放宽对压铸工艺参数相应的调整范围,这就给压铸生产带来极大的方便,压铸工艺参数的调整就方便得多,这就加大了保证铸质量的可靠性。有人说压力铸造需要打造尽量多的傻瓜(非常方便调整工艺参数的)模具也就是此意思。有很多人说压铸模在压力铸造技术中的重要性占60%的比重,又有很多人说它在压力铸造中的重要性占70—80%的比重,不管是多少, 这就反应出压铸模它在众多人心目中的重要性了。总之压铸模的重要性它占据了三要素之首。 压铸机一是在压力铸造中的一个重要设备。;是压力铸造成功的一个重要条件;它既是模具安 装的场地;又是工艺参数调节处所,起到承上启下的重要作用。压铸机性能的好坏,直接影响到所生产的压铸件质量和生产效率高低。

压铸工艺参数一实际上是把压铸模具和压铸机联系起来的纽带。如果有了质量好的模具和性能较好的压铸机,压铸工艺参数的调节范围就放宽多了,工艺参数调整就很方便了。如果前述的某一个条件较差,工艺参数的调整就困难多,即是调整好了,一但某个工艺因素略有所变动,就直接影响到压铸件生产质量和生产效率,造成生产质量不稳定。所以压铸工艺参数一定要弥补前两者之不 前三者必须是密切配合的情况下,才能对提高压铸件质量,给压力铸造带来整体效益。每一个 压铸工作者,应在实际生产实践中要认清三者的关系,来处理好生产中的实际问题。分析方法,可参考下述实例进行: 例一:成都卑县某公司,将原有800吨压铸机上生产的模具,放到新购的某厂生产的850吨压铸机上生产,所生产出来的压铸件经喷丸后表面多处起皮,尤在内浇口附近均有,生产出来的压铸 件质量满足不了铸件用户的要求。该用户认为:该台850吨压铸机有质量问题,不如原来的800吨 压铸机。经机器制造厂方对现场喷丸起皮状态及部位进行分析,并作了粗略的计算,认为:是用户工艺上调整不当所引起。是合金液在慢压射时进入了内浇口附近入的型腔,在此区域提前结晶而阻止了型腔在充填階段合金液的正常进入,并干扰了增压压力的传递而造成铸件表面疏松,导致压铸件在喷丸时表面起皮。经压铸机制造厂方对填充行程计算合理的调整,园满解决了此问题,机器得到了用户的认可例二;在浙江温州瑞安某公司购置了数台某厂制造的280吨压铸机,公司将在常州某厂制造的 280吨压铸机上正常生产的一铸件的模具放上去生产,结果生产不出合格的铸件。后来又新购买了一台另一公司制造的280吨压铸机来生产该铸件,其结果与前280吨压铸机一样,同样生产不出合格的该压铸件,用户又不愿意修改模具浇注系统来适应压铸机的性能。经现场观察分析;该压铸件壁偏厚、投影面积偏大,需低速填充。此两公司的提供的280吨压铸机调到常州压铸机这样低速填充时,压射速度产生爬行,严重影响铸件成型的效果。对此现象进行分析,估计是压铸机压射缸缸径常州压铸机的比该两厂家的大的原因。经调查,果然常州压铸机压射缸径较该两厂家的压铸机压射缸径大5毫米。在用户不同意修改模具浇注系统的情况下,该厂家又新制造了一台增大到同样缸径的同吨位压铸机,用于生产该铸件后迏到了常州压铸机同样的效果,该压铸机得到了用户的认可。这里要说明一点的是,并

压力铸造工艺

压力铸造工艺 一、压铸及特点 1. 压铸定义及特点 压力铸造(简称压铸)是在压铸机的压室内,浇入液态或半液态的金属或合金,使它在高压和高速下充填型腔,并且在高压下成型和结晶而获得铸件的一种铸造方法。 由于金属液受到很高比压的作用,因而流速很高,充型时间极短。高压力和高速度是压铸时液体金属充填成型过程的两大特点,也是压铸与其他铸造方法最根本区别之所在。 比如压射比压在几兆帕至几十兆帕范围内,甚至高达500MPa;充填速度为0.5—120m/s,充型时间很短,一般为0.01-0.2s,最短只有干分之几秒。 2. 压铸的优缺点 优点: 1) 产品质量好。由于压铸型导热快,金属冷却迅速,同时在压力下结晶,铸件具有细的晶粒组织,表面坚实,提高了铸件的强度和硬度,此外铸件尺寸稳定,互换性好,可生产出薄壁复杂零件; 2) 生产率高,压铸模使用次数多; 3) 经济效益良好。压铸件的加工余量小,一般只需精加工和铰孔便可使用,从而节省了大量的原材料、加工设备及工时。 缺点: 1) 压铸型结构复杂,制造费用高,准备周期长,所以,只适用于定型产品的大量生产; 2) 压铸速度高,型腔中的气体很难完全排出,加之金属型在型中凝固快,实际上不可能补缩,致使铸件容易产生细小的气孔和缩松,铸件壁越厚,这种缺陷越严重,因此,压铸一般只适合于壁厚在6mm以下的铸件; 3) 压铸件的塑性低,不宜在冲击载荷及有震动的情况下工作; 4) 另外,高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大应用。 综上所述,压力铸造适用于有色合金,小型、薄壁、复杂铸件的生产,考虑到压铸其它技术上的优点,铸件需要量为2000-3000件时,即可考虑采用压铸。 3.压铸的应用范围 压铸是近代金属加工工艺中发展较快的一种高效率、少无切削的金属成型精密铸造方法,是一种“好、快、省”高经济双效益的铸造方法。 压铸零件的形状大体可以分为六类: 1)圆盘类——号盘座等; 2)圆盖类——表盖、机盖、底盘等; 3)圆环类——接插件、轴承保持器、方向盘等; 4)筒体类——凸缘外套、导管、壳体形状的罩壳盖、上盖、仪表盖、探控仪表罩、 照像机壳与化油器等;

铸造及其特点

铸造是熔炼金属,制造铸型,并将金属液浇入铸型,凝固后获得一定形状和性能铸件的成形方法。铸造是获得零件毛坯的主要方法之一。与其它加工方法比较,铸造具有适应性广、生产成本低的优点,尤其在制造内腔复杂的构件时,更显其优越性。在机械产品中,铸件占有很大的比例,如机床中为 60%~80%。但是铸造存在着铸件质量不稳定、尺寸精度不高,工人劳动强度大,工作环境差等问题。铸造按其工艺特点分为砂型铸造和特种铸造两大类。砂型铸造是最基本和应用最广泛的铸造方法,它是以型砂制造铸型的。 锻造及其特点 锻造是在加压设备及工模具的作用下使坯料、铸锭产生局部或全部塑性变形,以获得一定几何尺寸、形状和质量的锻件的成形方法。锻造可分为自由锻、模锻、胎模锻。各类塑性良好的金属材料,如钢、铝、铜及其合金等都具有良好的锻造性能。锻件内部组织致密、均匀,力学性能优于相同化学成分的铸件,能承受较大的载荷和冲击,因此力学性能要求较高的重要零件一般都采用锻件毛坯,如主轴、传动轴、齿轮、凸轮、连杆等。锻造还可节省金属材料,节省切削加工工时,提高生产率。但锻件形状的复杂程度不如铸件,尤其是不能加工脆性材料(如铸铁)和难以锻出具有复杂内腔的零件毛坯, 焊接及其特点 焊接是通过加热或加压(或两者并用)、并且用(或不用)填充材料,使工件形成原子间结合的连接方法。焊接实现的连接是不可拆卸的永久性连接。与铆接相比,焊接具有节省金属材料、生产率高、连接质量优良、劳动条件好、易于实现自动化等优点。在机械制造工业中,焊接广泛用于制造各种金属结构件(如厂房屋架、桥梁、船舶、车辆、压力容器、管道等)及某些机械零件的毛坯,还常用于修补铸件、锻件的某些缺陷和局部受损坏的零件,在生产中有较大的经济意义。 热处理及其特点 热处理是采用适当的方式对金属材料或工件进行加热、保温和冷却以获得所预期的组织结构与性能的工艺。热处理能显着提高钢的力学性能,满足零件使用要求和延长寿命;还可改善钢的加工性能,提高加工质量和劳动生产率,因此热处理在机械制造中应用很广。如汽车、拖拉机中有 70%~80%的零件要进行热处理;各种刀具、量具、模具等几乎 100%要进行热处理。 热处理按目的与作用不同,分为以下三类: (1)整体热处理指对工件整体进行穿透加热的热处理。主要包括退火、正火、淬火和回火等。 (2)表面热处理指为改变工件表面的组织和性能,仅对其表面进行热处理的工艺。主要包括火焰淬火、感应淬火等。 (3)化学热处理指将工件置于适当的活性介质中加热、保温、使一种或几种元素渗入它的表层,以改变其化学成分、组织和性能的热处理。主要包括渗碳、渗氮、碳氮共渗等。

压铸操作工艺流程

班前准备事项一 1压铸工上班必须按规定穿戴劳保用品,包括:工作服、工作鞋、工作帽,严禁穿背心、短裤、赤膊。 2压铸工必须提前20 分钟到岗,进行上岗前准备,包括:查看交接班记录 查看上个班次本班及其它班产品质量情况 每班交接班前提前15 分钟。检查机床、模具状态是否正常。压铸操作规范二 生产准备验证: 生产前必须按《生产准备作业验证》进行验证,其中工艺验证包括:核对现场实际工艺和工艺卡是否一致;将没有输入的工艺逐项输入并核对。 压铸操作规范三 1机床启动。 2启动机床前,必须全面检查机床确保机床处于正常状态。 3启动机床前,手动润滑后再开机。 4点动启动机床并观察机床运转情况,如有异常立即停机。 5机床启动后,应开冷却水,以防油温升高。 6机床发生故障或报警信号响起,应立即查看原因后报修,严禁机床带病工作。 压铸操作工艺流程作步骤四 模具安装f调试T清理预热模具f喷刷涂料f合模f涂料准备f 涂料配制 f 压铸 f 冷却与凝固 f 开模 f 顶出铸件f质量检验T成

品T废品f合金熔化 一、模具安装 模具安装前,压铸工必须全面了解模具结构状况,包括: 1模具有无抽芯;动模抽芯,还是静模抽芯;滑块抽芯,还是液压抽芯。 2是否需要安装复位杆。 3浇口套大小,溶杯大小,结合尺寸是否一致。 5 是否中心浇口。 6 顶棒位置、大小、长短是否合适。 二、操作规范 1根据模具情况更换熔杯冲头,必要时调节压射升降机构。 2检查动静模板,确保表面无异物、无高点。 3正确安装吊具,在确定安全的情况下起吊,并确保模具进入机床前无摇动,以免撞伤机床。 4根据模具情况,正确安装模具。特别注意,带有液压抽芯的模具,必须将机床相对应抽芯状态调到“选择”并且抽芯在动模的,要调到“锁模前”插芯;抽芯在静模的,要调到“锁模后”插芯状态。 5压紧模具,接好油管及冷却水管完成模具安装。 三、模具调试 1安装完毕后进行模具调试,装有抽芯器的先调试抽芯器,调试时必须注意。

相关文档
最新文档