初中二次全等几何证明题
2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)

全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
沪教版八年级-几何证明综合(二),带答案

主题几何证明综合(二)教学内容1.掌握直角三角形判定定理,熟练运用直角三角形的判定定理进行几何证明;2.认识等腰直角三角形,熟练运用等腰直角三角形性质解决综合问题。
(以提问的形式回顾)等腰直角三角形具有哪些性质?请尽可能多的列举。
两个底角相等均为45°;两腰相等;斜边上的中线等于斜边的一半;“三线合一”:顶角的平分线,底边上的中线,底边上的高的重合;练习:1.如图,已知BD⊥AE于B,C是BD上一点,且BC=BE,要使Rt△ABC≌Rt△DBE,应补充的条件是.(填一个条件)2.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是.3.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是.答案:∠D=∠A或∠E=∠ACB或DE=AC或BD=AB;1;45°第2题图ABCDE第1题图第3题图(采用教师引导,学生轮流回答的形式)例1:我们知道在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,其证明全等的条件是“边边角”,那么符合“边边角”条件的两个三角形,是否可以全等呢? 为了解决案例1,我们先看看问题1;问题1:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为锐角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
问题2:△ABC 与△DEF 中,AB=DE ,AC=DF ,∠B=∠E ,且∠B 与∠E 均为钝角,是否有△ABC ≌△DEF 成立呢?若成立,说明理由;若不成立,请画出反例图形。
通过以上两个问题,概括出例1的结论。
答案:问题1:不成立;如下图所示问题2:成立;证明如下;分别过点A 、D 作AG ⊥CB 交CB 的延长线于点G ,DH ⊥FE 交FE 的延长线于点H . ∵∠ABC=∠DEF ∴∠ABG=∠DEH 而∠G=∠H=90°,AB=DE∴△ABG ≌△DEH (AAS ) ∴AG=DH ∴Rt △ACG ≌Rt △DFH (HL )∴∠C=∠F∴△ABC ≌△DEF (SAS )例1:当“边边角”中所给的相等角为直角或钝角时,可以证明两三角形全等; 当“边边角”中所给的相等角为锐角时,不可以证明两三角形全等例2:如图,Rt △ABC 中,AB=AC ,∠BAC=90°,O 为BC 中点,联结OA ; 问题1:如图1,OA=OB=OC 成立吗?请说明理由;问题2:如图2,如果点M 、N 分别在边AB 、AC 上移动,且保持AN=BM ;请判断△OMN 的形状,并说明理DE FH AB C DE FAB CG由;问题3:如图3,若点M,N分别在线段BA、AC的延长线上移动,仍保持AN=BM,请判断△OMN的形状,并说明理由。
初二数学证明题(精选多篇)

初二数学证明题(精选多篇)第一篇:初二数学证明题初二数学证明题1、如图,ab=ac,∠bac=90°,bd⊥ae于d,ce⊥ae于e.且bd>ce,证明bd=ec+ed.解答:证明:∵∠bac=90°,ce⊥ae,bd⊥ae,∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90°.∴∠abd=∠dac.又∵ab=ac,∴△abd≌△cae(aas).∴bd=ae,ec=ad.∵ae=ad+de,∴bd=ec+ed.2、△abc是等要直角三角形。
∠acb=90°,ad是bc边上的中线,过c 做ad的垂线,交ab于点e,交ad于点f,求证∠adc=∠bde解:作ch⊥ab于h交ad于p,∵在rt△abc中ac=cb,∠acb=90°,∴∠cab=∠cba=45°.∴∠hcb=90°-∠cba=45°=∠cba.又∵中点d,∴cd=bd.又∵ch⊥ab,∴ch=ah=bh.又∵∠pah+∠aph=90°,∠pcf+∠cpf=90°,∠aph=∠cpf,∴∠pah=∠pcf.又∵∠aph=∠ceh,在△aph与△ceh中∠pah=∠ech,ah=ch,∠pha=∠ehc,∴△aph≌△ceh(asa).∴ph=eh,又∵pc=ch-ph,be=bh-he,∴cp=eb.在△pdc与△edb中pc=eb,∠pcd=∠ebd,dc=db,∴△pdc≌△edb(sas).∴∠adc=∠bde.2证明:作oe⊥ab于e,of⊥ac于f,∵∠3=∠4,∴oe=of.(问题在这里。
理由是什么埃我有点不懂)∵∠1=∠2,∴ob=oc.∴rt△obe≌rt△ocf(hl).∴∠5=∠6.∴∠1+∠5=∠2+∠6.即∠abc=∠acb.∴ab=ac.∴△abc是等腰三角形过点o作od⊥ab于d过点o作oe⊥ac于e再证rt△aod≌rt△aoe(aas)得出od=oe就可以再证rt△dob≌rt△eoc(hl)得出∠abo=∠aco再因为∠obc=∠ocb得出∠abc=∠abc得出等腰△abc41.e是射线ab的一点,正方形abcd、正方形defg有公共顶点d,问当e在移动时,∠fbh的大小是一个定值吗?并验证(过f作fm⊥ah于m,△ade全等于△mef证好了)2.三角形abc,以ab、ac为边作正方形abmn、正方形acpq1)若de⊥bc,求证:e是nq的中点2)若d是bc的中点,∠bac=90°,求证:ae⊥nq3)若f是mp的中点,fg⊥bc于g,求证:2fg=bc3.已知ad是bc边上的高,be是∠abc的平分线,ef⊥bc于f,ad与be交于g求证:1)ae=ag(这个证好了)2)四边形aefg是菱形第二篇:初二数学证明题测试例1、如图,ab∥cd,且∠abe=120°,∠cde=110°,求∠bed的度数。
初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线APCDB AFGCEBODD 2C 2B 2A 2D 1C 1B1CBDAA 1交MN 于E 、F . 求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 求证:AP =AQ .(初二)F4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)经典题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
初二数学 几何证明初步经典练习题 含答案

几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°.推理过程:○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800. 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。
3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。
4. 已知,如图,AE5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°.反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。
求证:AB 与CD 必定相交。
8.2一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分ABC ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=,36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD=CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND .∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN .二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF=EF .求证:45EAF ∠=. C B ADE F D A B C B A E D NM B D A C分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE .分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B ADE ∠=∠.∵12B ADE ∠+∠=∠+∠,且12∠=∠.∴B ADE ∠=∠.又∵13∠=∠.∴BAC DAE ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE .14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90FAB BAE EAD BAE ∠+∠=∠+∠=.∴FBA EDA ∠=∠. 又∵90FBA EDA ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF. 平移第14题图 第15题图 第16题图 第17题图三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长. 分析:延长DC到E使得CE=AB.连接BE.可得ACEB .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为DCEF .∴DM=EM.线段中点的常见技巧 --倍长四、倍长17、已知,AD为ABC 的中线.求证:AB+AC>2AD.分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA .∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC . 分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB. ∵BAD CAD ∠=∠.∴E CAD ∠=∠.∴AC=EC=AB. 19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60ABD C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴CBE BAD ∠=∠.∴60BPQ PBA PAB PBA DBP ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60BPD ∠=.∴ΔBPF 为等边三角形.∴BP=2PQ.中位线五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点, 求证:1()2EF BC AD =-. 分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线. ∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2EF BC AD =-. 直角三角形斜边上的中线等于斜边的一半21、已知,在ABCD 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG. ∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG. 22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G.求证:(1)CG=EG.(2)2B BCE ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL).∴EG=CG.∵DE=BE.∴B BDE DEC BCE ∠=∠=∠+∠.∵DE=CD.∴DEC BCE ∠=∠.∴2B BCE ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分)1、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( )A .20°B .25°C .30°D .40°第2题图 第4题图 第6题图 第7题图3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( )A .有两个角是直角B .有两个角是钝角C .有两个角是锐角D .一个角是钝角,一个角是直角4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( ) A D B E F OC B E F ED G AA.∠2=45° B.∠1=∠3 C.∠AOD+∠1=180° D.∠EOD=75°30’5、下列说法中,正确的个数为()①三角形的三条高都在三角形内,且都相交于一点②三角形的中线都是过三角形的某一个顶点,且平分对边的直线③在△ABC中,若∠A=12∠B=13∠C,则△ABC是直角三角形④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18A.1个 B.2个 C.3个 D.4个6、如图,在AB=AC的△ABC中,D是BC边上任意一点,DF⊥AC于F,E在AB边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于()A、50°B、65°C、70°D、75°7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B.9、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为()A.仅小明对 B.仅小亮对 C.两人都对 D.两人都对第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确; B.仅①和②正确; C.仅②③正确; D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5 ⑤A.1 B.2 C.3 D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________ ,结论是___________ 。
全等三角形证明之二次全等,含详细参考答案

全等三角形之二次全等知识过关1. 回顾七年级上册学习的几何初步填空:遇到与角有关的计算和证明时,常见的思考角度:由平行想到_____________,____________,____________; 由垂直想到__________________,_____________________; 由外角想到_________________________________________. 2. 已知:如图,AB ,CD 相交于点O ,AO =BO ,CO =DO ,过点O 作EF 交AC 于点E ,交BD 于点F . 求证:△BOF ≌△AOE .精讲精练1. 已知:如图,点C 为线段AB 上一点,在△ACM ,△CBN 中,AC =CM ,BC =CN ,∠ACM =∠BCN =60°,连接AN 交CM 于点E ,连接BM 交CN 于点F .求证:①△CAN ≌△CMB ;②△CEN ≌△CFB .2. 已知:如图,在正方形ABCD 中,AD =AB ,∠D =∠ABC =∠BAD =90°,E ,F 分别为CD ,BC边上的点,且∠EAF =45°,延长CB 到点G ,使BG =DE ,连接EF ,AG . 求证:①△ADE ≌△ABG ;②EF =DE +BF .FCBO E DA GA BCEDFNMCFE A3. 已知:如图,∠A =∠D =90°,AC ,BD 相交于点E ,BE =CE .求证:△ABC ≌△DCB .4. 已知:如图,点A ,E ,F ,C 在同一直线上,AE =CF ,过点E ,F 分别作ED ⊥AC 于点E ,FB⊥AC 于点F ,连接AB ,CD ,BD ,BD 交AC 于点G ,AB =CD .求证:△DEG ≌△BFG .5. 已知:如图,AB =AC ,BD =CD ,AD 与BC 相交于点O .求证:AD ⊥BC .EDAFCBGEDAB O A6. 已知:如图,在Rt △ABE 和Rt △ACF 中,∠E =∠F =90°,BE =CF .BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB .求证:AM =AN .7. 已知:如图,在△ABC 中,AD 是∠BAC 的平分线,点D 是BC 的中点,DF ⊥AB 于F ,DE⊥AC 于E .试猜想AB 和AC 的数量关系,并证明你的猜想.【参考答案】知识过关1. 同位角;内错角;同旁内角;直角三角形两锐角互余;同角或等角的余角相等; 三角形的一个外角等于和它不相邻的两个内角的和. 2. 证明:如图,在△BOD 和△AOC 中,BO AOBOD AOCDO CO =⎧⎪∠=∠⎨⎪=⎩(已知)(对顶角相等)(已知) ∴△BOD ≌△AO C (SAS )∴∠B =∠A (全等三角形对应角相等) 在△BOF 和△AOE 中,B A BO AOBOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已知)(对顶角相等) ∴△BOF ≌△AOE (ASA )F BE DANF C BME DA精讲精练 1. 证明:如图,①∵∠ACM =∠BCN =60° ∴∠MCN =60° ∴∠ACN =∠MCB =120° 在△CAN 和△CMB 中,AC MC ACN MCB CN CB =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△CAN ≌△CMB (SAS ) ②∵△CAN ≌△CMB∴∠ANC =∠MBC (全等三角形对应角相等) ∵∠ECN =60°;∠FCB =60° ∴∠ECN =∠FCB 在△CEN 和△CFB 中,ECN FCB CN CB ENC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(已知)(已证) ∴△CEN ≌△CFB (ASA ) 2. 证明:如图,①∵∠D =∠ABC =90° ∴∠ABG =90° ∴∠D =∠ABG在△ADE 和△ABG 中,AD AB D ABG DE BG =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ADE ≌△ABG (SAS ) ②∵△ADE ≌△ABG (已证) ∴AE =AG (全等三角形对应边相等) ∠EAD =∠GAB (全等三角形对应角相等) ∵∠EAF =45°;∠BAD =90° ∴∠BAF +∠EAD =45° ∴∠BAF +∠GAB =45° 即∠GAF =∠45° ∴∠GAF =∠EAF 在△AFE 和△AFG 中,EAF GAFAF AF ⎪∠=∠⎨⎪=⎩(已证)(公共边) ∴△AFE ≌△AFG (SAS )∴EF =GF (全等三角形对应边相等) ∵GF =BG +BF ∴EF =DE +BF 3. 证明:如图,在△AEB 和△DEC 中,A D AEB DECBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(对顶角相等)(已知) ∴△AEB ≌△DEC (AAS )∴AB =DC (全等三角形对应边相等) 在Rt △ABC 和Rt △DCB 中,BC CBAB DC =⎧⎨=⎩(公共边)(已证) ∴△ABC ≌△DCB (HL ) 4. 证明:如图,∵AE =CF ∴AE+EF =CF+EF 即AF =CE∵DE ⊥AC ;BF ⊥AC ∴∠AFB =∠CED =90° 在Rt △ABF 和Rt △CDE 中,AB CDAF CE=⎧⎨=⎩(已知)(已证) ∴Rt △ABF ≌Rt △CDE (HL ) ∴BF =DE (全等三角形对应边相等) 在△DEG 和△BFG 中,DEG BFGEGD FGBDE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(对顶角相等)(已证) ∴△DEG ≌△BFG (AAS ) 5. 证明:如图,在△ABD 和△ACD 中,BD CDAD AD ⎪=⎨⎪=⎩(已知)(公共边) ∴△ABD ≌△ACD (SSS )∴∠BAD =∠CAD (全等三角形对应角相等) 在△BAO 和△CAO 中,AB AC BAO CAOAO AO =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△BAO ≌△CAO (SAS )∴∠AOB =∠AOC (全等三角形对应角相等) ∵∠AOB +∠AOC =180° ∴∠AOB =90° ∴AD ⊥BC 6. 证明:如图,∵∠EAC =∠FAB∴∠EAC +∠BAC =∠FAB +∠BAC 即∠BAE =∠CAF 在△ABE 和△ACF 中,BAE CAF E FBE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已知)(已知) ∴△ABE ≌△ACF (AAS )∴AE =AF (全等三角形对应边相等) 在△AEM 和△AFN 中;E F AE AFEAM FAN ∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已证)(已知) ∴△AEM ≌△AFN (ASA )∴AM = AN (全等三角形对应边相等) 7. AB =AC ,理由如下:证明:如图, ∵DF ⊥AB ;DE ⊥AC∴∠AFD =∠AED =∠BFD =∠CED =90° ∵AD 平分∠BAC ∴∠FAD =∠EAD在△AFD 和△AED 中;AFD AEDFAD EADAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△AFD ≌△AED (AAS )∴DF =DE ,AF =AE (全等三角形对应边相等) ∵点D 是BC 的中点 ∴BD =CD在Rt △BFD 和Rt △CED 中BD CDDF DE =⎧⎨=⎩(已证)(已证) ∴Rt △BFD ≌Rt △CED (HL ) ∴BF =CE (全等三角形对应边相等) ∴AF +BF =AE +CE 即AB =AC二次全等(当堂过关)1. 已知:如图,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,且BD =CD .求证:BE =CF .证明:如图,1. 证明:如图,∵AD 平分∠BAC ∴∠EAD =∠F AD ∵DE ⊥AB ,DF ⊥AC ∴∠AED =∠AFD =∠CFD =90° 在△AED 和△AFD 中,∴△AED ≌△AFD (AAS )AED AFDEAD FADAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边)F E DCB∴DE =DF (全等三角形对应边相等) 在Rt △BDE 和Rt △CDF 中,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF (全等三角形对应边相等)二次全等(习题)➢ 例题示范例1:已知:如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,且BD =CE ,BE 交CD 于点O .求证:AO 平分∠BAC . 【思路分析】 ① 读题标注:② 梳理思路:要证AO 平分∠BAC ,则需证明∠DAO =∠EAO . 要证∠DAO =∠EAO ,则需证明△AOD ≌△AOE .要证△AOD ≌△AOE ,需找三组条件,其中必须有一组边.分析发现,AO =AO ,∠ADO =∠AEO =90°,已经有了两组条件,还需要一组条件.从已知条件出发,发现BD =CE ,∠BDO =∠CEO =90°,又因为∠1=∠2,可证明△BOD ≌△COE . 由△BOD ≌△COE ,可为上面的全等准备一组条件OD =OE .至此,在△AOD 和△AOE 中三组条件找全,利用HL 可以证明全等,从而得出结论. 【过程书写】 证明:如图 ∵CD ⊥AB ,BE ⊥AC∴∠ADO =∠AEO =∠BDO =∠CEO =90° 在△BOD 和△COE 中BD CDDE DF =⎧⎨=⎩(已知)(已证)21O EDCBAABCDEO12BDO CEO BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)(已证)(已知) ∴△BOD ≌△COE (AAS )∴OD =OE (全等三角形对应边相等) 在Rt △AOD 和Rt △AOE 中AO AO OD OE=⎧⎨=⎩(公共边)(已证)∴Rt △AOD ≌Rt △AOE (HL )∴∠DAO =∠EAO (全等三角形对应角相等) ∴AO 平分∠BAC巩固练习1. 已知:如图,△ABC 是等边三角形,AB =BC =AC ,∠ABC =∠ACB =60°,点E ,F 分别在AB ,AC 边上,∠EDF =60°,BD =CD ,∠DBC =∠DCB =30°,∠BDC =120°,延长AC 到点G ,使CG =BE . 求证:①△EBD ≌△GCD ;②△EFD ≌△GFD .2. 已知:如图,AB =AC ,BD =CD ,E 是线段AD 延长线上一点.求证:△ABE ≌△ACE .GFED C BA E DCBA3. 已知:如图,∠ACB =∠ADB =90°,AD =BC ,CE ⊥AB 于点E ,DF ⊥AB 于点F .求证:CE =DF .4. 已知:如图,点C ,D 在线段BE 上,BD =EC ,CA ⊥AB 于点A ,DF ⊥EF 于点F ,且AB =EF .求证:CF =DA .5. 已知:如图,在△PBC 中,D 为PB 上一点,PD =PC ,延长PC到点A ,使得PA =PB ,连接AD ,交BC 于点O ,连接PO . 求证:OD =OC .FE DC BOBDCAFEDCBA【参考答案】1. 证明:如图,①∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30° ∴∠DBE =∠ABC+∠DBC =90°∠DCG =180°-∠ACB -∠DCB =90° ∴∠DBE =∠DCG在△EBD 和△GCD 中,B DBE DCD CD GBE CG ∠=∠=⎧⎪⎨⎪=⎩(已知)(已证)(已知) ∴△EBD ≌△GCD (SAS )②∵△EBD ≌△GCD (已证)∴DE =DG (全等三角形对应边相等) ∠EDB =∠GDC (全等三角形对应角相等) ∵∠BDC =120°,∠EDF =60°∴∠EDB +∠CDF =60°∴∠GDC +∠CDF =60°即∠GDF =60°∴∠EDF =∠GDF在△EFD 和△GFD 中,D DE DG EDF GDFF DF =∠=∠⎧⎪⎨⎪=⎩(已证)(已证)(公共边) ∴△EFD ≌△GFD (SAS )2. 证明:如图,在△ABD 和△ACD 中,AB AC BD CDAD AD ⎧⎪⎨⎪=⎩==(已知)(已知)(公共边) ∴△ABD ≌△ACD (SSS )∴∠BAD =∠CAD (全等三角形对应角相等) 在△ABE 和△ACE 中,A AB AC BAE CAEE AE =∠=∠⎧⎪⎨⎪=⎩(已知)(已证)(公共边) ∴△ABE ≌△ACE (SAS )3. 证明:如图,在Rt △ACB 和Rt △BDA 中,BC B BA AD A ==⎧⎨⎩(公共边)(已知) ∴Rt △ACB ≌Rt △BDA (HL )∴AC =BD (全等三角形对应边相等)∠CAB =∠DBA (全等三角形对应角相等) ∵CE ⊥AB ,DF ⊥AB∴∠CEA =∠DFB =90°在△ACE 和△BDF 中,CEA DFB CAE DBFAC BD ⎧⎪⎨∠=∠∠=⎪∠⎩=(已证)(已证)(已证) ∴△ACE ≌△BDF (AAS )∴CE =DF (全等三角形对应边相等)4. 证明:如图,∵CA ⊥AB ,DF ⊥EF∴∠CAB =∠DFE =90°∵BD =EC∴BD +DC =EC +DC即BC =ED在Rt △ABC 和Rt △FED 中,BC ED AB FE=⎧⎨=⎩(已证)(已知) ∴Rt △ABC ≌Rt △FED (HL )∴∠B =∠E (全等三角形对应角相等) 在△ABD 和△FEC 中,AB FE B EBD EC =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABD ≌△FEC (SAS )∴CF =DA (全等三角形对应边相等)5. 证明:如图,在△ADP 和△BCP 中,PD PC APD BPCPA PB =⎧⎪∠=∠⎨⎪=⎩(已知)(公共角)(已知) ∴△ADP ≌△BCP (SAS )∴∠A =∠B (全等三角形对应角相等)∵PD =PC ,PB =PA∴PD -PB =PA -PC即BD =AC在△BOD 和△AOC 中,BOD AOC B ABD AC ⎧⎪∠=∠⎪=∠⎩=⎨∠(对顶角相等)(已证)(已证) ∴△BOD ≌△AOC (AAS )∴OD =OC (全等三角形对应边相等)。
2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.已知正方形ABCD中,F为对角线BD上一点,过F 点作EF⊥BA于E,G为DF中点,连接EG,CG.求 证:EG=CG; 证明: 延长CG至M,使MG=CG, 连接MF,ME,EC, 在△DCG与△FMG中, ∵FG=DG,∠MGF=∠CGD,MG=CG, ∴△DCG≌△FMG. ∴MF=CD,∠FMG=∠DCG, ∴MF∥CD∥AB, ∴EF⊥MF. 在Rt△MFE与Rt△CBE中, ∵MF=CB,EF=BE, ∴△MFE≌△CBE ∴∠MEF=∠CEB. ∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°, ∴△MEC为直角三角形. ∵MG=CG, ∴EG= MC, ∴EG=CG.
1.如图,在直角梯形ABCD中, AD∥BC,∠A=90º ,AB=AD, DE⊥CD交AB于E,DF平分∠CDE 交BC于F,连接EF.证明:CF=EF
A
D
E
B
F
C
解: 过D作DG⊥BC于G. 由已知可得四边形ABGD为正方形, ∵DE⊥DC ∴∠ADE+∠EDG=90°=∠GDC+∠EDG, ∴∠ADE=∠GDC. 又∵∠A=∠DGC且AD=GD, ∴△ADE≌△GDC, ∴DE=DC且AE=GC. 在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边, ∴△EDF≌△CDF, ∴EF=CF
18.如图,在△ABC中,∠ABC=60°,AD、CE分 别平分∠BAC、∠ACB,求证:AC=AE+CD.
解:在AC上取AF=AE,连接OF, 则△AEO≌△AFO(SAS), ∴∠AOE=∠AOF; ∵AD、CE分别平分∠BAC、∠ACB, ∴∠ECA+∠DAC= (180°-∠B)=60° 则∠AOC=180°-∠ECA-∠DAC=120°; ∴∠AOC=∠DOE=120°, ∠AOE=∠COD=∠AOF=60°, 则∠COF=60°, ∴∠COD=∠COF, 又∵∠FCO=∠DCO,CO=CO, ∴△FOC≌△DOC(ASA), ∴DC=FC, ∵AC=AF+FC, ∴AC=AE+CD.
2.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点, AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
证明: 过点C作CG⊥CA交AF延长线于G ∴∠G+∠GAC=90°…………① 又∵AE⊥BD ∴∠BDA+∠GAC=90°…………② 综合①②,∠G=∠BDA 在△BDA与△AGC中, ∵ ∠G=∠BDA ∠BAD=∠ACG=90° BA=CA ∴△BDA≌△AGC ∴DA=GC ∵D是AC中点,∴DA=CD ∴GC=CD 由∠1=45°,∠ACG=90°,故∠2=45°=∠1 在△GCF与△DCF中, ∵ GC=CD ∠2=45°=∠1 CF=CF ∴△GCF≌△DCF ∴∠G=∠FDC,又∠G=∠BDA ∴∠ADB=∠FDC
9.如图,已知点D为等腰直角△ABC内一点, ∠CAD=∠CBD=15°.E为AD延长线上的一点,且 CE=CA,求证:AD+CD=DE; 证明:∵AC=BC,∠ACB=90°, ∴∠CAB=∠ABC=45°. ∵∠CAD=∠CBD=15°, ∴∠BAD=∠ABD=30°. ∴AD=BD. 在DE上截取DM=DC,连接CM, ∵AD=BD,AC=BC,DC=DC, ∴△ACD≌△BCD. ∴∠ACD=∠BCD=45°. ∵∠CAD=15°, ∴∠EDC=60°. ∵DM=DC, ∴△CMD是等边三角形. ∴∠CDA=∠CME=120°. ∵CE=CA, ∴∠E=∠CAD. ∴△CAD≌△CEM. ∴ME=AD. ∴DA+DC=ME+MD=DE. 即AD+CD=DE.
12.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平 分∠BCD,DF∥AB,BF的延长线交DC于点E. 求证:AD=DE. 证明:(1)∵CF平分∠BCD, ∴∠BCF=∠DCF. 在△BFC和△DFC中, ∴△BFC≌△DFC. ∴BF=DF,∴∠FBD=∠FDB. 连接BD. ∵DF∥AB, ∴∠ABD=∠FDB. ∴∠ABD=∠FBD. ∵AD∥BC, ∴∠BDA=∠DBC. ∵BC=DC, ∴∠DBC=∠BDC. ∴∠BDA=∠BDC. 又BD是公共边, ∴△BAD≌△BED. ∴AD=DE.
4.如图,在正方形ABCD的边BC上任取一点M,过点 C作CN⊥DM交AB于N,设正方形对角线交点为O, 试确定OM与ON之间的关系,并说明理由.
解:∵四边形ABCD是正方形, ∴DC=BC,∠DCM=∠NBC=90°, 又∵CN⊥DM交AB于N, ∴∠NCM+∠CMD=90°, 而∠CMD+∠CDM=90°, ∴∠NCM=∠CDM, ∴△DCM≌△CBN, ∴CM=BN, 再根据四边形ABCD是正方形可以得到 OC=OB,∠OCM=∠OBN=45°, ∴△OCM≌△OBN. ∴OM=ON,∠COM=∠BON,而 ∠COM+∠MOB=90°, ∴∠BON+∠MOB=90°. ∴∠MON=90°. ∴OM与ON之间的关系是OM=ON; OM⊥ON.
5.如图,正方形CGEF的对角线CE在正方形 ABCD的边BC的延长线上(CG>BC),M是 线段AE的中点,DM的延长线交CE于N. 探究:线段MD、MF的关系,并加以证明. 证明:根据题意,知AD∥BC. ∴∠EAD=∠AEN(内错角相等), ∵∠DMA=∠NME(对顶角相等), 又∵M是线段AE的中点, ∴AM=ME. ∴△ADM≌△ENM(ASA). ∴AD=NE,DM=MN.(对应边相等). 连接线段DF,线段FN, 线段CE是正方形的对角线, ∠DCF=∠NEF=45°, 根据上题可知线段AD=NE, 又∵四边形CGEF是正方形, ∴线段FC等于FE. ∴△DCF≌△NEF(SAS). ∴线段FD=FN. ∴△FDN是等腰三角形. ∴线段MD⊥线段MF.
7.如图,ABCD为正方形,E为BC边上一点,且 AE=DE,AE与对角线BD交于点F,连接CF,交ED 于点G.判断CF与ED的位置关系,并说明理由.
解:垂直. 理由:∵四边形ABCD为正方形, ∴∠ABD=∠CBD,AB=BC, ∵BF=BF, ∴△ABF≌△CBF, ∴∠BAF=∠BCF, ∵在RT△ABE和△DCE中,AE=DE, AB=DC, ∴RT△ABE≌△DCE, ∴∠BAE=∠CDE, ∴∠BCF=∠CDE, ∵∠CDE+∠DEC=90°, ∴∠BCF+∠DEC=90°, ∴DE⊥CF.
15.已知:如图,在直角梯形ABCD中,AD∥BC, ∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长 线于点E,且AE=AC.求证:BG=FG;
证明: ∵∠ABC=90°,DE⊥AC于点F, ∴∠ABC=∠AFE. ∵AC=AE,∠EAF=∠CAB, ∴△ABC≌△AFE ∴AB=AF. 连接AG, ∵AG=AG,AB=AF, ∴Rt△ABG≌Rt△AFG. ∴BG=FG
6.如图,△ABC是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以 D为顶点作一个60°角∠NDM,角的两 边分别交AB、AC边于M、N两点,连接 MN.试探究BM、MN、CN之间的数量 关系,并加以证明.
证明:BM+CN=NM 延长AC至E,使CE=BM,连接DE, ∵△BDC是顶角∠BDC=120°的等 腰三角形,△ABC是等边三角形, ∴∠BCD=30°, ∴∠ABD=∠ACD=90°, ∵DB=DC,CE=BM, ∴△DCE≌△BMD, ∵∠MDN=∠NDE=60° ∴DM=DE(上面已经全等) ∴DN=ND(公共边) ∴△DMN≌△DEN∴BM+CN=NM.
8.如图,梯形ABCD中,AD∥BC, ∠DCB=45°,BD⊥CD.过点C作 CE⊥AB于E,交对角线BD于F,点G为 BC中点,连接EG、AF. 求证:CF=AB+AF. 证明:在线段CF上截取CH=BA,连接DH, ∵BD⊥CD,BE⊥CE, ∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°, ∵∠EFB=∠DFC, ∴∠EBF=∠DCF, ∵DB=CD,BA=CH, ∴△ABD≌△HCD, ∴AD=DH,∠ADB=∠HDC, ∵AD∥BC, ∴∠ADB=∠DBC=45°, ∴∠HDC=45°,∴∠HDB=∠BDC— ∠HDC=45°, ∴∠ADB=∠HDB, ∵AD=HD,DF=DF, ∴△ADF≌△HDF, ∴AF=HF, ∴CF=CH+HF=AB+AF, ∴CF=AB+AF.
11.已知梯形ABCD中,AB∥CD,BD⊥AC 于E,AD=BC,AC=AB,DF⊥AB于F,AC、 DF相交于DF的中点O. 求证:AB+CD=2BE. 证明:过D作DM∥AC交BA的延长线于M. ∵梯形ABCS中,AD=BC, ∴BD=AC. 又∵CD∥AM,DM∥AC, ∴四边形CDMA为平行四边形. ∴DM=AC,CD=AM. ∵MD∥AC,又AC⊥BD,且AC=BD, ∴DM⊥BD,DM=BD, ∴△DMB为等腰直角三角形. 又∵DF⊥BM, ∴DF=BF. ∴BM=2DF=2BF ∴AM+AB=2BF. ∵CD=AM, ∴AB+CD=2BF. ∵AC=BD=AB, ∴在△BEA和△BFD中,△BEA≌△BFD. ∴BE=BF. ∵AB+CD=2BF, ∴AB+CD=2BE.
14.如图,已知P为∠AOB的平分线OP上一点, PC⊥OA于C,PA=PB,求证AO+BO=2CO
证明:过点P作PQ⊥OB于Q,则∠PQB=90° ∵OP平分∠AOB,且PC⊥OA,PQ⊥OB ∴PC=PQ 在Rt△POC与Rt△POQ中, ∵PC=PQ PO=PO ∴Rt△POC≌Rt△POQ(HL) ∴OC=OQ ∴2OC=OC+OQ=OC+OB+BQ 在Rt△PCA与Rt△PQB中, ∵PC=PQ PA=PB ∴Rt△PCA≌Rt△PQB(HL) ∴CA=QB 又2OC=OC+OB+BQ ∴2OC=OC+OB+CA=OA,AD⊥DC, AB∥DC,AB=BC,AD与BC延长线交于点F,G是 DC延长线上一点,AG⊥BC于E. 求证:CF=CG;