一种应用于VCO的自动频率校准电路

一种应用于VCO的自动频率校准电路
一种应用于VCO的自动频率校准电路

一种应用于VCO的自动频率校准电路

技术领域

本发明涉及一种频率校准电路(AFC),特别涉及一种应用于VCO的自动频率校准电路。

背景技术

在宽带VCO中普遍使用开关电容阵列的方式来实现宽的频率覆盖,不同的频段对应于不同的电容阵列开关,因此有必要根据VCO输出频率的需要来自动选择相应的电容阵列开关,也就是自动频率校准。目前,普遍采用的是闭环自动频率校准电路,它的工作方式是在锁相环闭环工作的前提下来完成的,每一次判断之前锁相环需重新锁定一次,所以这种频率校准方式将耗费很长时间来完成一次频率校准,这将对锁相环的锁定时间产生很大影响。本发明提及一种自动频率校准电路,是在锁相环开环工作下完成的,它将大大节省频率校准的时间。

发明内容

本发明的目的是实现一种能够适用于VCO的自动频率校准电路。

为了实现本发明的发明目的,通过采用如下技术方案来实现:

一种适用于VCO的自动频率校准电路,包括模拟部分的M分频器(1/M),以及数字部分的计数器,乘法器(×M),比较器,编码器和二分频器(1/2)。其中M分频器对VCO的输出F VCO进行M分频,然后计数器在REF/2的高电平时间内对M分频信号的上升沿进行计数,在REF/2的下降沿来临后,计数完成,计数器不再计数且保持输出;同时乘法器,比较器以及编码器开始工作,乘法器对计数器的输出进行乘M操作,然后通过比较器对乘法器的输出和频道设置值N进行比较,再将比较器的比较结果输入给编码器来得到编码器的输出C<3:0>,同时C<3:0>反馈给VCO,来选择VCO的开关电容阵列,进而改变VCO的输出F VCO;通过这样一种反馈机制最终得到稳定的自动频率校准输出C<3:0>,完成自动频率校准过程。

所述M分频器有一个输入,其与VCO的输出F VCO相连。

所述计数器有三个输入A1,EN1和RST,其中输入A1与M分频器的输出相连,输入EN1和RST与二分频器的输出相连。

所述乘法器有两个输入A2和EN2,其中输入A2与计数器的输出相连,输入EN2与二分频器的输出相连。

所述比较器有三个输入A3,EN3和B,其中输入A3与乘法器的输出相连,输入EN3与二分频器的输出相连,输入B是外部输入。

所述编码器有两个输入A4和EN4,其中输入A4与比较器的输出相连,输入EN4与二分频器的输出相连;编码器的输出C<3:0>为自动频率校准电路的最终输出,其与VCO模块的开关电容阵列控制端相连。

所述二分频器有一个输入,其与外部的输入信号REF相连。

本发明的有益效果在于:克服了由于工艺、电源电压和温度等影响而造成的手动校准频率的变化,防止了这种原因造成的VCO频率变化对整个锁相环电路的影响;同时,又克服了闭环自动频率校准电路较长的校准时间对整个锁相环电路锁定时间的影响。

附图说明

图1是本发明VCO的自动频率校准电路应用于锁相环的结构图;

图2是本发明VCO的自动频率校准电路应用于VCO的结构图;

图3是本发明VCO的自动频率校准电路的工作流程图。

具体实施方式

如图1所示,是本发明应用于VCO的自动频率校准电路应用于锁相环的结构示意图。REF信号与VCO信号Fvco经过N分频器分频后的信号通过鉴频鉴相器进行频率和相位的鉴别,产生输出以控制电荷泵对滤波器进行充放电,得到的电压输入给VCO来得到输出信号Fvco,而Fvco又反馈给N分频器进行N分频,由此形成了一个闭合的环路,这个环路最终稳定时,Fvco的频率f F vco=N* f REF。VCO 的输出频率由电容阵列开关控制位C<3:0>和滤波器的输出电压同时决定:开关电容阵列决定VCO的输出频段;滤波器的输出电压决定VCO的最终输出频率,这

个频率位于开关电容阵列所决定的频段内。

在整个AFC过程中,滤波器的输出电压不受电荷泵的控制,也即锁相环路是断开的,滤波器的输出电压为一个固定值,这个值为电源电压的一半,这样输出的频率处于所选择频段的中间;当AFC完成后,滤波器的输出开始受电荷泵的控制,此时锁相环路闭合,滤波器的输出电压将随着电荷泵的充放电而发生改变。

如图2所示,是本发明VCO的自动频率校准电路应用于VCO的结构示意图,方框内为本发明VCO的自动频率校准电路的结构示意图。其包括模拟部分的M 分频器,数字部分的计数器,乘法器,比较器,编码器以及二分频器。

所述M分频器有一个输入,其与VCO的输出F VCO相连。

所述计数器有三个输入A1,EN1和RST,其中输入A1与M分频器的输出相连,输入EN1和RST与二分频器的输出相连。

所述乘法器有两个输入A2和EN2,其中输入A2与计数器的输出相连,输入EN2与二分频器的输出相连。

所述比较器有三个输入A3,EN3和B,其中输入A3与乘法器的输出相连,输入EN3与二分频器的输出相连,输入B是外部输入。

所述编码器有两个输入A4和EN4,其中输入A4与比较器的输出相连,输入EN4与二分频器的输出相连;编码器的输出C<3:0>为自动频率校准电路的最终输出,其与VCO模块的开关电容阵列控制端相连。

所述二分频器有一个输入,其与外部的输入信号REF相连。

如图3所示,是本发明VCO的自动频率校准电路的工作流程示意图。具体的工作情况如下,在AFC开始工作时,C<3:0>处于中间值1000,VCO生成输出频率F VCO,然后通过模拟部分的M分频器对VCO的输出频率F VCO进行M分频,之所以进行M分频,是因为VCO的输出频率一般都很高,需要对其分频以后才能被后续的数字模块来实现。

在REF/2为高电平期间,计数器开始对分频后信号的上升沿进行计数,也就是在一个REF周期T REF时间内对F VCO/M的周期进行计数,计数完成后,这个计数结果输出给乘法器;在REF/2为低电平期间,后续的乘法器,比较器,编码器开始工作:首先,乘法器,对计数器的输出结果进行×M操作,这时乘法器的输出相当于在T REF时间内对F VCO的周期进行计数得到的结果,这个结果被输出给比较

器的输入A3,所以A3=T REF/T F VCO=f F vco/f REF,也即f F vco=A3*f REF;然后比较器将输入A3与输入B相比较,输入B=频道设置值N,这个比较结果有三种情况:即|A3-B|N1,B-A3>N1,其中N1为预先设置的比较器参考值。

第一种情况|A3-B|是合适的,因此这个值将保持不变,自动频率校准完成;第二种情况A3-B>N1时,表明现在的VCO工作频率f F vco比需要的VCO输出频率B*f REF高很多,需要将其频率往下降,所以编码器将AFC的输出C<3:0>往上加一位,此输出将输入给VCO调整VCO的开关电容阵列,使得更多的电容加入VCO的调谐网络,以降低VCO的输出频率,经过循环判断,最终在某个C<3:0>值下,|A3-B|N1时,表明现在的VCO工作频率f F vco比需要的VCO 输出频率B*F ref小很多,需要将其频率往上调,所以编码器将AFC的输出C<3:0>往下减一位,此输出将输入给VCO调整VCO的开关电容阵列,使得更少的电容加入VCO的调谐网络,以提高VCO的输出频率,经过循环判断,最终在某个C<3:0>值下,|A3-B|

说明书附图

F

图1

图2

图3

摘要

本发明公开了一种应用于VCO的自动频率校准电路,包括模拟部分的M分频器,以及数字部分的计数器,乘法器,比较器,编码器和二分频器。其中M分频器对输入的F VCO信号进行M分频,分频后的信号输入给计数器,计数器在REF信号周期T REF时间内对分频后信号的上升沿进行计数,这个计数的结果通过乘法器进行乘M操作后输入给比较器,然后比较器将这个值与外部输入的频道设置值N 进行比较,再将比较的结果输出给编码器,编码器根据这个结果来调整VCO开关电容阵列的控制信号,进而去调整VCO输出信号的频率,这样就形成了一个反馈,

实现对VCO频率的自动校准。其优点在于:克服了由于工艺、电源电压和温度等影响而造成的手动校准频率的变化,防止了这种原因造成的VCO频率变化对整个锁相环电路的影响。

权利要求书

1、一种应用于VCO的频率校准电路,其特征在与:包括模拟部分的M分频器,以及数字部分的计数器,乘法器,比较器,编码器以及二分频器。其中M 分频器对输入的F VCO信号进行M分频,分频后的信号输入给计数器,计数器在二分频器输出信号的高电平时间内对分频后信号的上升沿进行计数,这个计数的结果通过乘法器进行乘M操作后输入给比较器,然后比较器将这个值与外部输入的频道设置值N进行比较,再将比较的结果输出给编码器,编码器根据这个结果来调整VCO开关电容阵列的控制信号,进而去调整VCO输出信号的频率,这样就形成了一个反馈,实现对VCO频率的自动校准。

2、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述M 分频器有一个输入,其与VCO的输出F VCO相连。

3、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述计数器有三个输入A1,EN1和RST,其中输入A1与M分频器的输出相连,输入EN1和RST与二分频器的输出相连。

4、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述乘法器有两个输入A2和EN2,其中输入A2与计数器的输出相连,输入EN2与二分频器的输出相连。

5、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述比较器有三个输入A3,EN3和B,其中输入A3与乘法器的输出相连,输入EN3与二分频器的输出相连,输入B是外部输入。

6、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述编码器有两个输入A4和EN4,其中输入A4与比较器的输出相连,输入EN4与二分频器的输出相连;编码器的输出C<3:0>为自动频率校准电路的最终输出,其与VCO模块的开关电容阵列控制端相连。

7、如权利要求1所述的应用于VCO的频率校准电路,其特征在于:所述二

分频器有一个输入,其与外部的输入信号REF相连。

时钟电路基本原理

1时钟供电组成 时钟电路主要由时钟发生器(时钟芯片)、、、和等组成。 ● 时钟芯片时钟芯片主要有S. Winbond、 PhaseLink. C-Medi a、IC. IMI等几个品牌,主板上见得最多的是ICS和Winbond两种,如图6-1、图6-2所示。 ● 晶振 时钟芯片通常使用的晶振,如图6-3所示。 晶振与组成一个谐振回路,从晶振的两脚之问产生的输入到时钟芯片,如图6-4所示。 判断品振是否工作,可以用测量晶振两脚分别对地是否有(以上),这是晶振工作的前提条件,再用示波器测量晶振任意一脚是否有与标称频率相同的振荡正弦波输出(这是最准确的方法)。在没有示波器的情况下,可以直接更换新的晶振和谐振电容,用替换法来排除故障。 2 时钟电路工作原理 时钟电路的1=作原理图,如图6-5所示。 时钟芯片有电压输入后(有的时钟芯片还有一组电压),再有一个好信号,表示主板各部位所有的供电止常,于是时钟芯片开始工作。 晶振两脚产生的基本频率输入到时钟芯片内部的,从振荡器出来的基本频率经过“频率扩展锁相网路”进行频率扩展后输入到各个,

最后得到不同频率的时钟输出。 初始默认输出频率由频率选择锁存器输入引脚FS(4:0)设置,之后可以通过IIC总线再进行设置。 多数时钟芯片都支持IIC总线控制,通过一根双向的数据线(SD ATA)和一根时钟线( SCLK)对芯片的时钟输出频率进行设置。 图6-5中: 48MHz USB与48MHz DOT为固定48MHz时钟输出;3V66(3:1)共3组为的66MHz时钟输出: CPUCLKT (2:0)共3组为CPU时钟输出;CPUCLKC (2:0)共3组为CPU时钟输出,与CPUCLKT互为;CLK (6:0)共7组为 33MHz 的PCI时钟输出,输出到PCI插槽,有多少个PCI插槽就使用多少组。 主板的时钟分布如图6-6所示,内存总线时钟由北桥供给,部分主板电路设计有独立的内存时钟发生器,如图中虚线所示。 外频进入CPU后,乘以CPU的就是CPU实际的运行频率。例如外频是200MHz,CPU的倍频是14,那么CPU的实际运行频率是:200MHz ×14=。前端总线的频率是外频的整倍数。例如外频足133MHz,CPU 需要使用的前端总线频率是533MHz,那么就必须将133MHz外频4倍扩展,即133MHz×4=532MHz≈533MHz。 3 时钟电路故障检测 时钟电路故障通常足:全部无时钟,部分无时钟,时钟信号幅值(最高点电压)偏低。 其表现是开机无显示或不能开机。 诊断卡只能诊断PCI插槽或插槽有无时钟信号,并不代表主板其他部分的时钟就正常。最好使用示波器测量各个插槽的时钟输入脚或时钟芯片的各个时钟输出脚,看其频率和幅值是否符合,这是最准确的方法。 现在的CPU外频都已达到200MHz或更高,所以要测量CPU外频,要求示波器的带宽应在200MHz以上。

数字电子时钟设计

电子技术课程设计 数字电子时钟的设计 摘要: 设计一个周期为24小时,显示满刻度为23时59分59秒,具有校时功能和报时功能的电子钟。本系统的设计电路由时钟译码显示电路模块、脉冲逻辑电路模块、时钟脉冲模块、整电报时模块、校时模

块等部分组成。计数器采用异步双十进制计数器74LS90,发生器使用石英振荡器,分频器4060CD及双D触发器74LS74D,整电报时电路用门电路及扬声器构成。 一、设计的任务与要求 电子技术课程设计的主要任务是通过解决一,两个实际问题,巩固和加深在“模拟电子技术基础”和“数字电子技术基础”课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力,为以后从事生产和科研工作打下一定的基础。电子技术课程设计的主要内容包括理论设计、仿真实验、安装与调试及写出设计总结报告。衡量课程设计完成好坏的标准是:理论设计正确无误;产品工作稳定可靠,能达到所需要的性能指标。 本次课程设计的题目是“多功能数字电子钟电路设计”。要求学生运用数字电路,模拟电路等课程所学知识完成一个实际电子器件设计。 二、设计目的 1、让学生掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统 的设计、安装、测试方法; 2、进一步巩固所学的理论知识,提高运用所学知识分析和解决实 际问题的能力; 3、提高电路布局﹑布线及检查和排除故障的能力; 4、培养书写综合实验报告的能力。

三、原理方框图如下 1、图中晶体振荡电路由石英32.768KHZ及集成芯。 2、图中分频器4060BD芯片及D触发器构成分频器。 3、计数器由二——五——十73LS90芯片构成。 4、图中DCD_HEX显示器用七段数码显示器且本身带有译码器。 5、图中校时电路和报时电路用门电路构成。 四、单元电路的设计和元器件的选择 1、十进制计数电路的设计 74LS90集成芯片是二—五—十进制计数器,所以将INB与QA 相连;R0(1)、R0(2)、R9(1)、R9(2)接地(低电平);INA

基于单片机的时钟控制电路1

基于单片机的多功能时钟控制电路 0.引言 在日常生活、生产中,很多单位都需要一款灵活、稳定而又功能强大的自动定时控制系统,以规范本单位的作息时间或定时控制一些设备。现下,市面上出现的一些时控设备或功能单一,或使用烦琐,或价格昂贵,总有一些不尽如人意的地方。本时控系统可以控制八路(可由程序定制)执行设备,每路执行设备的起控时间可多时任意设定,完全能够满足人们所需要的时控要求。 1.方案总体设计 本系统主要包括:单片机主控电路、数码管显示电路、键盘电路、功能端口扩展电路、电源与复位电路等。系统框图如图一: 图一:系统框图主控电路选用美国ATMEL公司生产的与MCS—51系列单片机完全兼容的AT89C2051芯片作为电路核心。它是ATMEL微控制器家族中中廉价的成员,内部集成了2K字节的Flash闪存,不需外扩程序存储器,大大简化了电路结构。 电路采用六位共阳LED数码管作为系统的显示器件。每两位分别用来显示时钟的时、分、秒。 键盘电路由六个按键组成,分别用来进行系统复位、时间调整等。 由于AT89C2051端口资源较少(仅有P1、P3口),为了增加控制通道,本设计利用1片74HC374扩展了5个输出端口。 单片机时钟信号采用11.0592M晶振产生。电源电路由三端集成稳压块LM7805提供稳定的+5V电压。

2.系统硬件设计 基本电路的硬件原理图见附图二。整个电路由:主控电路、显示电路、键盘电路、接口电路、电源电路等组成。 图二:系统硬件原理图。 2.1.主控电路 U1、C1、C2、Y1、C3、R9、S6构成主控电路的最小系统。C1、C2、Y1是单片机时钟源产生电路,Y1选用11.0592M的晶振。C3、R9是系统上电复位电路。S6为电路硬复位按钮。 2.2.显示电路 显示电路由U2、U3、Q1—Q7和六位“共阳”数码管组成(二位一组分别显示时、分、秒)。其中U2为BCD-7段译码器(CD4511),通过单片机U1的P1.4—P1.7将要显示字符的BCD码输入至U2的四个输入端,经U2译码后,输出相应的笔段驱动LED数码管。LED数码管显示采用扫描方式显示,即:在某一时刻,只有一个数码管被点亮。由于扫描速度很快,看上去就象所有数码管同时点亮。采用扫描显示方式的优点是减少器件端口的数量。点亮数码管的位置信号由U3(74HC138)输出,U3为3一8译码器,来自单片机U1的3位数码管位置编码信号,通过U3输

数字电子时钟逻辑电路设计

《数字逻辑》 课程设计报告 设计题目:数字电子钟 组员:冯燕升、吴永涛、卓小林、蔡卿指导老师:麦山 日期:2013/12/27

摘要数字电子钟是一种用数字显示秒、分、时的计时装置,本次数字时钟电路设计采用GAL系列芯片来分别实现时、分、秒的24进制和60进制的循环电路,并支持手动校正的功能。 关键词数字电子钟;计数器;GAL 1设计任务及其工作原理 用集成电路设计一台能自动显示时、分、秒的数字电子钟,只要将开关置于手动位置,可分别对秒、分、时进行手动脉冲输入调整或连续脉冲输入的校正。 1.1工作原理 本数字电子钟的设计是根据时、分、秒各个部分的的功能的不同,分别用GAL16V8D 设计成六十进制计数器,个位设计成十进制计数器,十位设计成六进制进制计数器(计数从00到59时清零并向前进位)。分部分的设计与秒部分的设计完全相同;用GAL22V10D设计时的个位,设计成二进制计数器,十位设计为四进制计数器,当时钟计数到23时59分59秒时,使计数器的小时部分清零,进而实现整体循环计时的功能。 2电路的组成 2.1 计数器部分:利用GAL22V10和GAL16V8D芯片分别组成二十四进制计数器和六十进制计数器,它们采用同步连接,利用外接标准脉冲信号进行计数。 2.2 显示部分:将三片GAL芯片对应的引脚分别接到实验箱上的七段共阴数码显示管上,根据脉冲的个数显示时间。 3.3 分频器:由于实验箱上提供的时钟脉冲的时间间隔太小,所以使用GAL16V8D和CD4040芯片设计一个分频器,使连续输出脉冲信号时间间隔为0.5s 3设计步骤及方法 3.1 分和秒部分的设计: 分和秒部分的设计是采用GAL16V8D芯片来设计的60进制计数器,具体设计如图1示:

多功能数字钟电路设计

多功能数字钟电路设计 一、数字电子钟设计摘要 (2) 二、数字电子钟方案框图 (2) 三、单元电路设计及相关元器件的选择 (3) 1.6进制计数器电路的设计 (3) 2.10进制计数器电路的设计 (4) 3.60进制计数器电路的设计 (4) 4.时间计数器电路的设计 (5) 5.校正电路的设计 (6) 6.时钟电路的设计 (7) 7.整点报时电路设计 (8) 8. 译码驱动及单元显示电路 (9) 四、系统电路总图及原理 (9) 五、经验体会 (10) 六、参考文献 (10) 附录A:系统电路原理图 附录B:元器件清单

一、数字电子钟设计摘要 数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。 此次设计数字钟就是为了了解数字钟的原理,从而学会制作数字钟。而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法。且由于数字钟包括组合逻辑电路和时叙电路。通过它可以进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。 二、数字电子钟方案框图 图1 数字电子钟方案框图

三、单元电路设计和元器件的选择 1. 6进制计数器电路的设计 现要设计一个6进制的计数器,采用一片中规模集成电路74LS90N芯片,先接成十进制,再转换成6进制,利用“反馈清零”的方法即可实现6进制计数,如图2所示。 图2

2. 10进制电路设计 图3 3. 60 进数器电路的设计 “秒”计数器与“分”计数器都是六十进制,它由一级十进制计数器和一级六进制计数器连接而成,如图4所示,采用两片中规模集成电路74LS90N串接起来构成“秒”“分”计数器。

数字时钟电路图

多功能数字计时器设计 姓名:杨会章 学号: 1004220242 专业:通信工程 学院:电光学院 指导教师: 2021-9-15

目录 一、设计内容简介 (3) 二、电路功能设计要求 (3) 三、电路原理简介 (3) 四、各单元电路原理 1、脉冲发生电路 (3) 2、计时电路 (4) 3、译码显示电路 (4) 5、校分电路 (5) 4、清零电路 (6) 6、报时电路 (7) 7、基本电路原理图 (8) 8、动态显示原理 (9) 9、动态显示原理图 (10) 10、波形图 (11) 五、实验中问题及解决办法 (11) 六、附录 (12) 1、元件清单 (12) 2、芯片引脚图和功能表 (12) 3、参考文献 (15)

一、设计内容简介 实验采用中小规模集成电路设计一个数字计时器。数字计时器是由脉冲发生电路,计时电路,译码显示电路,和附加电路控制电路几部分组成。其中控制电路由清零电路,校分电路和报时电路组成。附加电路采用动态显示。 二、电路功能设计要求 1、设计制作一个0分00秒~9分59秒的多功能计时器,设计要求如下: 1)设计一个脉冲发生电路,为计时器提供秒脉冲(1HZ),为报时电路提供驱动蜂鸣器的高低脉冲信号(1KHZ、2KHZ); 2)设计计时电路:完成0分00秒~9分59秒的计时、译码、显示功能; 3)设计清零电路:具有开机自动清零功能,并且在任何时候,按动清零开关,可以对计时器进行手动清零。 4)设计校分电路:在任何时候,拨动校分开关,可进行快速校分。(校分隔秒) 5)设计报时电路:使数字计时器从9分53秒开始报时,每隔一秒发一声,共发三声低音,一声高音;即9分53秒、9分55秒、9分57秒发低音(频率1kHz),9分59秒发高音(频率2kHz); 6)系统级联。将以上电路进行级联完成计时器的所有功能。 7)可以增加数字计时器附加功能:定时、动态显示等。 三、电路原理简介 32678Hz石英晶体振荡器产生的稳定的高频脉冲信号,作为数字钟的时间基准,再经分频器、D触发器输出标准秒脉冲。秒计数器记满60后向分计数器进位。计数器的输出经译码器送显示器。记时出现误差时可以用校时电路进行校分,校秒。利用74153四选一数据选择器和128Hz、64Hz时钟信号控制选择秒位、秒十位、分位输出到译码器,并选通相应的数码管,实现动态显示。 四、各单元电路原理 1、秒脉冲发生电路 采用32678Hz的石英晶体多谐振荡器作为脉冲信号源。经分频器CD4060的分频,从Q14端输出的2Hz的脉冲信号经D触发器组成的二分频电路得到1Hz 的秒脉冲信号。原理图如下:

时钟控制器课程设计报告

时钟控制器课程设计任务书 一.设计要求 (一)基本功能 1.显示:可以显示时、分和秒 2. 调时功能:时(0-24)、分和秒(0-60)可以连续可调 (二)性能时间日误差< 2秒 (三)扩展功能 1.增加整点报时功能 2.增加闹钟任意设定功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。 三. 设计内容 1. 画出电路原理图,正确使用逻辑关系; 2. 确定元器件及元件参数; 3.进行电路模拟仿真; 4. SCH文件生成与打印输出; 四.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 五.答辩 在规定时间内,完成叙述并回答问题。

目录 1.引言 (1) 2.总体设计方案 (1) 2.1设计思路 (1) 2.2 总体设计方框图 (1) 3.设计原理分析 (2) 3.1单片机最小系统的设计 (2) 3.2整点报时电路 (3) 3.3显示电路设计 (3) 3.4时间调整电路 (4) 3.5系统软件设计 (4) 4.结束语 (6) 参考文献 (7) 附录(一) (8) 附录(二) (9) 附录(三) (10)

基于单片机控制的时钟控制器 应教091 王尊民 摘要:本设计多功能数字钟是以AT89S51单片机为核心控制器构成的电子时钟,数字电子钟是采用数字电路实现对“时”、“分”、“秒”数字显示的计时装置。由于数字集成电路的发展和石英振荡的广泛应用,使得数字钟的精度、稳定度远远超过了老式机械钟表。在数字显示方面目前已有集成的计数、译码电路,它可以直接驱动数码显示器件还可以直接采用CMOS-LED光点组合器件,构成模块式石英晶体数字钟。这些电路装置十分小巧,安装使用也方便。 关键词:AT89S51 数码管时钟 74LS164 1 引言 数字钟是采用数字电路实现对.时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。因此,研究数字钟及扩大其应用,有着非常现实的意义。 2 总体设计方案 2.1 设计思路 采用89S51为核心的时钟控制电路其设计思路有多种,其输出可以采用动态显示和静态显示两种方式,采用动态方式的电路比较复杂,采用静态方式输出可采用单片机串行口输出,电路相对较简单。改电路应该具有任意时间可调的功能,所以外围采用开关按键来实现。在软件设计方面,应完成时钟控制电路的各项要求整个系统工作时,秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。显示电路将“时”、“分”、“秒”计数器的输出,通过六个七段LED显示器显示出来。校时电路是直接加一个脉冲信号到时计数器或者分计数器或者秒计数器来对“时”、“分”、“秒”显示数字进行校对调整。 2.2设计方框图 时钟控制电路应该由六部分组成,单片机是其核心部件,要完成整点报时需要报警电路。对当前的时间修改需要对键盘的操作,所以还需要键盘电路。

基于单片机的时钟控制器设计

时钟控制器设计任务书 1.设计目的与要求 设计出一个用于数字时钟的控制器,准确地理解有关要求,独立完成系统设计,要求所设计的电路具有以下功能: (1)显示:可以显示时、分和秒 (2)调时功能:时(0-24)、分和秒(0-60)可以连续可调 (3)时间日误差< 2秒 (4)增加整点报时功能 (5)增加闹钟任意设定功能 2.设计内容 (1)画出电路原理图,正确使用逻辑关系; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; 3.编写设计报告 写出设计的全过程,附上有关资料和图纸,有心得体会。 4.答辩 在规定时间内,完成叙述并回答问题。 目录 1.引言 (1)

2 总体设计方案 (1) 2.1 设计思路 (1) 2.2 方案确立 (1) 2.3 设计方框图 (2) 3 设计原理分析 (2) 3.1 系统硬件电路设计 (2) 3.2 主控器件AT89S51 (2) 3.3 译码器74HC245 (3) 3.4 显示电路…………………………………………………………………3- 3.5 按键电路 (4) 3.6 复位电路 (4) 3.7 蜂鸣电路 (5) 3.8 时钟电路 (5) 3.9 总体原理图 (5) 3.10程序框图 (5) 4 结束语 (7) 参考文献 (8) 附录1 电路总原理图 (9) 附录2 总程序 (10) 基于单片机控制的时钟控制器 摘要:本设计以Atmel公司的AT89S51单片机为控制系统的核心,模型采用单片机作为主控制器,以汇编语言为程序设计的基础,设计的一个用两个四位一体数码管串口显示的时钟控制电路,包含了时钟控制电路的基本功能:数码显示,时间调整,闹钟设定,秒表显示等,按照二十四小时循环,具有调节方便,简单实用,可靠性强的优点,有很高的利用价值。

数字电子钟设计说明..

数字电子钟课程设计 一、设计任务与要求 (1)设计一个能显示时、分、秒的数字电子钟,显示时间从00: 00: 00到23: 59: 59; (2)设计的电路包括产生时钟信号,时、分、秒的计时电路和显示电路(3)电 路能实现校正 (5)整点报时 二、单元电路设计与参数计算 1. 振荡器 石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。它还具有压电效应,在晶体某一方向加一电场,则在与此垂直的方向产生机械振动,有 了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。这用压电谐振的频率即为晶体振荡器的固有频率。 2. 分频器 由于振荡器产生的频率很高,要得到秒脉冲需要分频,本实验采用一片74LS90 和两片74LS160实现,得到需要的秒脉冲信号。

3. 计数器 秒脉冲信号经过计数器,分别得到“秒”个位、十位、“分”个位、十位以及 “时”个位、十位的计时。“秒” “分”计数器为六十进制,小时为二十四进制。 (1)六十进制计数 由分频器来的秒脉冲信号,首先送到“秒”计数器进行累加计数,秒计数器应完 成一分钟之内秒数目的累加,并达到 60秒时产生一个进位信号。本作品选用一 片74LS161和一片74LS160采取同步置数的方式组成六十进制的计数器。 (2)二十四进制计数 “24翻1”小时计数器按照“ 00— 01—02,, 22—23— 00—01”规律计数。与生 活中计数规律相同。二十四进制计数同样选用74LS161和74LS160计数芯片。但 清零方式采用的是异步清零方式。 MMgM 加 EHagij Z 1 进位信号 脉冲

单片机数字钟电路图

数字钟设计 一、设计目的 1. 熟悉集成电路的引脚安排。 2. 掌握各芯片的逻辑功能及使用方法。 3. 了解面包板结构及其接线方法。 4. 了解数字钟的组成及工作原理。 5. 熟悉数字钟的设计与制作。 二、设计要求 1.设计指标 时间以24小时为一个周期; 显示时、分、秒; 有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点前5秒进行蜂鸣报时; 为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

2.设计要求 画出电路原理图(或仿真电路图); 元器件及参数选择; 电路仿真与调试; PCB文件生成与打印输出。 3.制作要求自行装配和调试,并能发现问题和解决问题。 4.编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 三、设计原理及其框图 1.数字钟的构成 数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。通常使用石英晶体振荡器电路构成数字钟。图3-1所示为数字钟的一般构成框图。 图3-1 数字钟的组成框图

⑴晶体振荡器电路 晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。 ⑵分频器电路 分频器电路将32768Hz的高频方波信号经32768()次分频后得到1Hz的方波信号供秒计数器进行计数。分频器实际上也就是计数器。 ⑶时间计数器电路 时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成,其中秒个位和秒十位计数器、分个位和分十位计数器为60进制计数器,而根据设计要求,时个位和时十位计数器为12进制计数器。

电子时钟课程设计_数电课程设计数字电子时钟的实现

电子时钟课程设计_数电课程设计数字电子 时钟的实现 课程设计报告设计题目:数字电子时钟的设计与实现班级: 学号: 姓名: 指导教师: 设计时间: 摘要钟表的数字化给人们生产生活带来了极大的方便,大大的扩展了原先钟表的报时。诸如,定时报警、按时自动打铃、时间程序自动控制等,这些,都是以钟表数字化为基础的。功能数字钟是一种用数字电路实现时、分、秒、计时的装置,与机械时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。从原理上讲,数字钟是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。 因此,此次设计与制作数字钟就是为了了解数字钟的原理,从而学会制作数字钟,而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及使用方法。通过此次课程设计可以进一步学习与各种组合逻辑电路与时序电路的原理与使用方法。通过仿真过程也进一步学会了Multisim 7的使用方法与注意事项。

本次所要设计的数字电子表可以满足使用者的一些特殊要求,输 出方式灵活,如可以随意设置时、分、秒的输出,定点报时。由于集 成电路技术的发展,,使数字电子钟具有体积小、耗电省、计时准确、 性能稳定、维护方便等优点。 关键词:数字钟,组合逻辑电路,时序电路,集成电路目 录摘要 (1) 第1章概述 (3) 第2章课程设计任务及要求 (4) 2.1设计任务 (4) 2.2设计要求 (4) 第3章系统设计 (6) 3.1方案论证 (6) 3.2系统设计 (6) 3.2.1 结构框图及说明 (6) 3.2.2 系统原理图及工作原理 (7) 3.3单元电路设计 (8) 3.3.1 单元电路工作原理 (8) 3.3.2 元件参数选择···································14 第 4章软件仿真 (15) 4.1仿真电路图 (15) 4.2仿真过程 (16)

数字时钟显示电路图

数字时钟显示电路图 发布: | 作者: | 来源: liuxianping | 查看:3663次 | 用户关注: 数字时钟以时、分、秒显示时刻,共用六个数码管,本例采用共阳极数码管,用三极管控制电源的通断。工作原理:6个数码管的字型段输入端(a、b、c、d、e、f,g)全部并接到译码器相应的输出端。电源控制开关管分别接到3~6译码器的六个输出端。时钟六个计数器输出端均采用四位,分别为xl【、xt£、 m x?X2n x2z、x2h x2‘,?,x 、x x 、x 相应的每一位都接到4个6选1的选择器上,选择器输出共4位接到 数字时钟以时、分、秒显示时刻,共用六个数码管,本例采用共阳极数码管,用三极管控制电源的通断。 工作原理:6个数码管的字型段输入端(a、b、c、d、e、f,g)全部并接到译码器相应的输出端。 电源控制开关管分别接到3~6译码器的六个输出端。时钟六个计数器输出端均采用四位,分 别为xl【、xt£、 m x? X2n x2z、x2h x2‘,?,x 、x x 、x 相应的每一位都接到 4个6选1的选择器上,选择器输出共4位接到译码器的输入端(y 、y 、y 、Y )上。数码管及与之对应要显示的计数器,由Q]、、的编码(BCD码)进行循环选择例如,当Q 、 1

、均为?0 时,则3~6译码器的输出端1为高电平,第一个数码管加上电源,与此同 时,六选一选择器对应的输出分别为Y y— y Xs—x X —x 。这时译码器的输 出a,b,??,g虽然接到所有数码管上,但由于只有第一个数码管加上电源,故只有该管点 亮,显示第一个计数器的状态(x 、x 。、xX )。同理,当Q 、Q Q 为001”时,第二 个数码管点亮,显示第二个计数器的状态。依此类推,到第六个数码管断电后,接着第一个又开始点亮。如此循环显示,循环周期为6ms,给人的感觉,就相当所有数码管都一直在同时 加电,实际上每次只有一个,消耗的功率只有静态显示的六分之一。由于数码管电流很大,一 般小型管各段全亮时,大约要150mA~200mA 采用静电显示,此例中就要大于1A的 电流。这对长期工作的时钟很不经济,对于大型数码管会更加严重。此外,采用动态显示,数 码管的寿命与静态相比也相应延长Ⅳ 倍(本例为6倍)。

时钟电路设计

时钟电路 时钟电路用于产生MCS-51单片机工作时所必须的时钟控制信号,MCS-51单片机的内部电路在时钟信号的控制下,严格的执行指令进行工作,在执行指令时,CPU 首先要到程序存储器中取出所需要的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。CPU 发出的时序信号有两类,一类用于片内对各个功能部件的控制,另一类用于对片外存储器或I/O 端口的控制。 MCS-51单片机各功能部件的运行都是以时钟信号为基准,有条不紊地一拍一拍地工作,因此时钟频率直接影响单片的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟设计电路有两种方式,一种是内部时钟方式,一种是外部时钟方式。 3.4.1 外部时钟方式 外部时钟方式是使用外部振荡器产生的脉冲信号,常用于多片单片机同时工作,以便于多片单片机之间的同步,一般为低于12 MHz 的方波,常见的89C51单片机的外部时钟方式接法如下:外部的时钟源直接连接到XTAL1端,XTAL2端 悬空 NC 外部振荡信号输入 3.4.2内部时钟方式 MCS-51单片机内部由一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为51单片机的引脚XTAL1,输出为XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成了一个稳定的自激振荡器。电路如下图10所示。 XTAL2 XTAL1 GND

图10 内部时钟电路 电路中的电容C1和C2的典型值通常取为30pF左右,对外接电容的值虽然没有严格的要求,但是电容的大小会影响石英晶体振荡器频率的高低,振荡器的稳定性和起振的快速性。晶振的振荡器的频率范围通常是在1.2 MHz-12 MHz之间,晶振的频率越高,则系统的时钟频率也就越高,单片机的运行速度也就越快,晶振和电容应该尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证振荡器稳定,可靠地工作,为了提高温度稳定性,应该采用温度稳定性能好的电容。 MCS-51单片机常选择振荡器的频率为6 MHz或是12 MHz的石英晶体。随着集成电路制造工艺的发展,单片机的时钟频率也在逐步提高,现在某些高速单片机芯片的时钟频率以达40 MHz。MCS-51内部时钟电路的内部时钟方式的振荡器

数字电子钟设计

目录 一、设计实验条件 (2) 二、设计任务及要求 (2) 1.设计任务 (2) 2.要求 (2) 三、设计报告内容 (2) 1.前言 (2) 2.总体方案设计 (3) 1)系统总体结构 (3) 2)芯片及其余部分选择 (3) 3.硬件电路设计 (4) 1)AT89S52单片机最小系统 (4) 2)显示电路与AT89S52单片机接口电路设计 (5) 4.软件设计 (5) 1)主程序框图 (5) 2)显示程序框图 (6) 5.调试与测试结果 (6) 1)实时显示 (6) 2)修改显示内容 (7) 3)闹钟功能 (8) 6.心得体会 (8) 四、附录 (9) 1)程序 (9) 2)系统电路图 (20)

一、设计实验条件 微机原理与接口实验室 二、设计任务及要求 1.设计任务 采用AT89S52单片机及显示电路完成小时、分钟、秒的实时显示; 2.要求 (1)总体方案设计 (2)硬件电路设计 (3)软件设计 (4)调试与测试结果 (5)程序清单和系统原理图 三、设计报告内容 1.前言 随着单片机技术的不断发展,单片机软硬件水平的不断提高,单片机已渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。更不用说自动控制领域的机器人、智能仪表、医疗器械了。因此,单片机的学习、开发与应用将产生非常重要的作用。 现在我们可以随意看到电子钟,电子钟是一种利用数字电路来显示秒、分、时的计时装置,与传统的机械钟相比,它具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛应用。随着人们生活环境的不断改善和美化,在许多场合需要数字电子钟,所以其极具有推广价值。

时钟电路设计0

O 时钟电路o 时钟电路用于产生MCS-51单片机工作时所必须的时钟控制信号,MCS-51单片机的内部电路在时钟信号的控制下,严格的执行指令进行工作,在执行指令时,CPU 首先要到程序存储器中取出所需要的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。CPU 发出的时序信号有两类,一类用于片内对各个功能部件的控制,另一类用于对片外存储器或I/O 端口的控制。 MCS-51单片机各功能部件的运行都是以时钟信号为基准,有条不紊地一拍一拍地工作,因此时钟频率直接影响单片的速度,时钟电路的质量也直接影响单片机系统的稳定性。常用的时钟设计电路有两种方式,一种是内部时钟方式,一种是外部时钟方式。 3.4.1 外部时钟方式 外部时钟方式是使用外部振荡器产生的脉冲信号,常用于多片单片机同时工作,以便于多片单片机之间的同步,一般为低于12 MHz 的方波,常见的89C51单片机的外部时钟方式接法如下:外部的时钟源直接连接到XTAL1端,XTAL2端 悬空 NC 外部振荡信号输入 3.4.2内部时钟方式 MCS-51单片机内部由一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为51单片机的引脚XTAL1,输出为XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成了一个稳定的自激振荡器。电路如下图10所示。 XTAL2 XTAL1 GND

图10 内部时钟电路 电路中的电容C1和C2的典型值通常取为30pF左右,对外接电容的值虽然没有严格的要求,但是电容的大小会影响石英晶体振荡器频率的高低,振荡器的稳定性和起振的快速性。晶振的振荡器的频率范围通常是在1.2 MHz-12 MHz之间,晶振的频率越高,则系统的时钟频率也就越高,单片机的运行速度也就越快,晶振和电容应该尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证振荡器稳定,可靠地工作,为了提高温度稳定性,应该采用温度稳定性能好的电容。 MCS-51单片机常选择振荡器的频率为6 MHz或是12 MHz的石英晶体。随着集成电路制造工艺的发展,单片机的时钟频率也在逐步提高,现在某些高速单片机芯片的时钟频率以达40 MHz。MCS-51内部时钟电路的内部时钟方式的振荡器

数字逻辑电路设计课程设计之数字电子钟

课程名称:数字电路逻辑设计课程设计设计项目:数字电子钟 学生姓名: 同组人:高爽

一.设计目的 1.掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法; 2.进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力; 3.提高电路布局﹑布线及检查和排除故障的能力; 4.培养书写综合实验报告的能力。 二 . 设计要求 1.设计一个具有时、分、秒显示的电子钟(23小时59分59秒); 2.应该具有手动校时校分的功能; 3.应该具有整点报时功能:从59分51秒起(含59分51秒),每隔2秒发出一次蜂鸣,连续5次; 4.使用中小规模集成电路组成电子钟,并在实验箱上进行组装、调试; 5.画出框图和逻辑电路图,写出设计、实验总结报告。 三 . 设计原理 1.数字电子钟基本原理 数字电子钟的逻辑框图如下图所示。它由555集成芯片构成的振荡电路、分频器、计数器、显示器和校时电路组成。555集成芯片构成的振荡电路产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器,计数结果通过“时”、“分”、“秒”译码器显示时间。

2.数字电子钟单元电路设计 时钟脉冲已经由实验箱提供,实验箱提供的是秒脉冲; 显示电路已经由实验箱提供。 (1)计数器电路 A.秒个位计数器,分个位计数器,时个位计数器均是十进制计数器; B.秒十位计数器,分十位计数器均是六进制计数器; C.时十位计数器为二进制计数器 因此,选择74LS90可以实现二-五-十进制异步计数器芯片实现上述计数功能。

时位计数器 分位计数器

秒位计数器 (2)手动校时电路 当数字钟走时出现误差时,需要校正时间。校时电路实现对“时”“分”“秒”的校准。在电路中设有正常计时和校对位置。本实验实现“时”“分”的校对。对校时的要求是:在小时校正时不影响分和秒的正常计数;在分钟校正时不影响秒和小时的正常计数。 手动校时电路图 (3)整点报时电路 整点报时功能:即从59分51秒起(含59分51秒),每隔2秒发出一次蜂鸣,连续5次。

时钟电路图

at89c51电子时钟电路图和程序 【字体:】

源程序: 3.系统板上硬件连线 (1)把“单片机系统”区域中的P1.0-P1.7端口用8芯排线连接到“动态数码显示”区域中的A-H端口上; (2)把“单片机系统:区域中的P3.0-P3.7端口用8芯排线连接到“动态数码显示”区域中的S1-S8端口上; (3)把“单片机系统”区域中的P0.0/AD0、P0.1/AD1、P0.2/AD2端口分别用导线连接到“独立式键盘”区域中的SP3、SP2、SP1端口上;

4. 汇编源程序 SECOND EQU 30H MINITE EQU 31H HOUR EQU 32H HOURK BIT P0.0 MINITEK BIT P0.1 SECONDK BIT P0.2 DISPBUF EQU 40H DISPBIT EQU 48H T2SCNTA EQU 49H T2SCNTB EQU 4AH TEMP EQU 4BH ORG 00H LJMP START ORG 0BH LJMP INT_T0 START: MOV SECOND,#00H MOV MINITE,#00H MOV HOUR,#12 MOV DISPBIT,#00H MOV T2SCNTA,#00H MOV T2SCNTB,#00H MOV TEMP,#0FEH LCALL DISP MOV TMOD,#01H MOV TH0,#(65536-2000) / 256 MOV TL0,#(65536-2000) MOD 256 SETB TR0

SETB ET0 SETB EA WT: JB SECONDK,NK1 LCALL DELY10MS JB SECONDK,NK1 INC SECOND MOV A,SECOND CJNE A,#60,NS60 MOV SECOND,#00H NS60: LCALL DISP JNB SECONDK,$ NK1: JB MINITEK,NK2 LCALL DELY10MS JB MINITEK,NK2 INC MINITE MOV A,MINITE CJNE A,#60,NM60 MOV MINITE,#00H NM60: LCALL DISP JNB MINITEK,$ NK2: JB HOURK,NK3 LCALL DELY10MS JB HOURK,NK3 INC HOUR MOV A,HOUR CJNE A,#24,NH24 MOV HOUR,#00H NH24: LCALL DISP JNB HOURK,$

DS1302实时时钟电路的原理及应用

DS1302实时时钟电路的原理及应用 1 DS1302的结构及工作原理 DS1302是美国DALLAS公司推出的一种高性能、低功耗、带RAM的实时时钟电路,它可以对年、月、日、周日、时、分、秒进行计时,具有闰年补偿功能,工作电压为 2.5V~5.5V。采用三线接口与CPU进行同步通信,并可采用突发方式一次传送多个字节的时钟信号或RAM 数据。DS1302内部有一个31×8的用于临时性存放数据的RAM寄存器。DS1302是DS1202的升级产品,与DS1202兼容,但增加了主电源/后背电源双电源引脚,同时提供了对后背电源进行涓细电流充电的能力。 1.1 引脚功能及结构 图1示出DS1302的引脚排列,其中V cc1为后备电源,V CC2为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302由V cc1或V cc2两者中的较大者供电。当V cc2大于V cc1+0. 2V时,V cc2给DS1302供电。当V cc2小于V cc1时,DS1302由V cc1供电。X1和X2是振荡源,外接32.768kHz晶振。RST是复位/片选线,通过把RST输入驱动置高电平来启动所有的数据传送。RST输入有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在V cc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),后面有详细说明。SCLK始终是输入端。 1.2 DS1302的控制字节 DS1302的控制字如图2所示。控制字节的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302中,位6如果为0,则表示存取日历时钟数据,为1表示存取RAM数据;位5至位1指示操作单元的地址;最低有效位(位0)如为0表示要进行写操作,为1表示进行读操作,控制字节总是从最低位开始输出。

数字电子钟逻辑电路设计

数字电子钟逻辑电路设计 计算机与信息工程学院 2012级通信31班 xxx 201211xxxx 指导教师 xxxx 教师 摘要本文提供了数字电子钟逻辑电路的设计思路,主要应用74LS160芯片的清零、、置数和进位端的进位输出等作用来实现数字钟的设置和运行。原理是用十进制和的加法计数器实现时钟的计时功能等。 关键词74LS160芯片;二十四进制;六十进制; 1. 设计任务及主要技术指标和要求 1.1 实验设计的任务: 使用中、小规模集成电路设计一台能显示时、分、秒的数字电子钟。 1.2 主要技术指标: 时间以24小时为一个周期;显示时,分,秒;有校时功能,可以分别对时、分、秒进行单独校时,使其校正到标准时间;计时过程具有报时功能,当时间到达整点时进行蜂鸣报时(我们使用的是流水灯). 1.3 实验要求: 1.由555定时器产生1Hz的标准秒信号。 2.秒、分为00~59 六十进制计数器。 3.时为00~23 二十四进制计数器。 4.可以手动校正:能分别进行秒、分、时的校正。只要将开关置于手动位置,可分别对秒、分、时进行手动脉冲输入调整或连续脉冲输入的校正。 2.工作原理和基本组成

数字电子钟由以下几部分组成:石英晶体振荡器和分频器组成的秒脉冲发生器;校时电路;六十进制秒、分计数器及二十四进制计时计数器,以及秒、分、时的译 码显示部分等。 “秒计数器”采用2片74LS160十进制芯片、1片74LS04非门芯片和1片74LS00与非门芯片组成60进制计数器,每累计60秒,发出一个“秒脉冲”信号。 “分计时器”与秒计时器相同,用2片74LS160十进制芯片、1片74LS04非门芯片和1片74LS00与非门芯片组成60进制计数器,每累计60分,发出一个“时脉冲”信号。从分计数器输出的该信号将被送到“时计数器”。 “时计数器”采用24进制计时器,也是由2片74LS160和1片74LS00芯片以及1片74LS04芯片采用清零法连接而成。 译码显示电路部分将“时”、“分”、“秒”、计数器的输出状态送到七段显示译码器译码,通过七段LED译码管显示出来的。 CP RD LD EP ET 工作状态 ?0 ???置零上升沿 1 0 ??预置数? 1 1 0 1 保持 ? 1 1 ?0 保持上升沿 1 1 1 1 计数 图2 74LS160管脚功能

相关文档
最新文档