锂离子电池基础科学问题(X)——全固态锂离子电池
高中化学选修4人教版复习:4.2锂离子电池的详细介绍

6.能量密度表示方法有两种,一为体积能量密度(Wh/l),另一 为重量能量密度(Wh/kg),用以表示单位体积或单位重量能取出的 能量。电池的能量密度越大,那么在同能量的情况下电池的尺寸/ 质量越小。
Li+变少
Li+的移动方向为从LixC6 Li+
放电时:
负极
Li1-xCoO2
正极
负极 LixC6 - xe- = xLi++ C6
正极 Li1-xCoO2 + xe- + xLi+ = LiCoO2
充电时: 正变阳,负变阴
充电时:
阴极 xLi+ + xe- + C6 = LixC6 阳极 LiCoO2 - xe- = Li1-xCoO2 + xLi+
锂离子电池工作原理图
schematic representation and operation principle of rechargeable
lithium ion battery
解题方法: 根据Li+的移动方向
钴酸锂电池放电
Li+变多
原电池正向正,负向负 电解池阳向阴,阴向阳
Li1-xCoO2 + LixC6 = LiCoO2 + C6 (x<1)。
目前锂离子电池负极材料多以石墨为主,石墨的理 论克容量372mAh/g。正极材料磷酸铁锂理论克容量只有 160mAh/g,而三元材料镍钴锰(NCM)约为200mAh/g。根据木 桶理论,锂离子电池的能量密度下限取决于正极材料,所 以当前能够达到的能量密度水平大约在100~200Wh/kg,这 一数值还是比较低的,在许多场合都成为锂离子电池应用 的瓶颈。这一问题同样出现在电动汽车领域,在体积和重 量都受到严格限制的情况下,电池的能量密度决定了电动 汽车的单次最大行驶里程,于是出现了“里程焦虑症”这 一特有的名词。如果要使得电动汽车的单次行驶里程达到 500公里(与传统燃油车相当),电池单体的能量密度必须达 到300Wh/kg以上。
锂离子电池固态电解质

锂离子电池固态电解质
锂离子电池的固态电解质是一种工程材料,由于具有高电压、高安全性、高容量、高温和耐冲击性能等优点,因此,越来越多的应用于家用电子、支持电力系统和新能源车辆的电池组件中。
固态电解质通常由二次电池中的三种组分组成,即锂离子电解质、正极和负极,它们与聚合物和有机溶剂相结合,形成一种能够容纳和存储锂离子的特定分子结构。
正极电解质主要是碳纳米管、金属氧化物或聚合物复合物,常用金属氧化物有锂钴酸和锂钛磷酸,它们可以有效地存储锂离子。
负极电解质主要是石墨烯、碳纳米管复合材料或碳量子点,它们可以有效地容纳锂离子电解质,并具有良好的电动势和抗冲击性能,使电池存储能力更强。
固态电解质为锂离子电池提供高安全、高容量和高温稳定性,是一种理想的固态终端产品。
随着新材料开发技术的不断深入,固态电解质也许能为锂离子电池的应用提供更多的可能性。
固态电池中锂离子传输动力学

固态电池中的锂离子传输动力学是一个复杂的过程,主要涉及锂离子在固体电解质中的迁移。
在固态电池中,锂离子通过固体电解质进行传输,不同于传统的液态电池中的传输机制。
固态电池中的锂离子传输主要依赖于空位机制,即锂离子在固态电解质中移动时,占据空位或创造新的空位。
在充电过程中,锂离子从负极移动到正极,在正极侧的固态电解质中产生空位。
这些空位随后向负极侧移动,并在负极侧被填充。
固态电池中的锂离子传输动力学还受到其他因素的影响,如固态电解质的晶体结构和缺陷密度。
这些因素可以影响锂离子的迁移路径和速度。
此外,固态电解质的离子电导率也是影响锂离子传输动力学的重要参数。
综上所述,固态电池中的锂离子传输动力学是一个复杂的过程,涉及多种因素和机制。
为了更好地理解这一过程,需要进一步研究固态电解质的物理和化学性质,以及它们与锂离子传输动力学之间的相互作用。
这些研究将有助于改进固态电池的设计和性能,并推动其在实际应用中的进一步发展。
锂离子电池基础科学问题(Ⅷ)——负极材料

万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据锂离子电池基础科学问题(Ⅷ)——负极材料作者:罗飞, 褚赓, 黄杰, 孙洋, 李泓, LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong作者单位:中国科学院物理研究所,北京,100190刊名:储能科学与技术英文刊名:Energy Storage Science and Technology年,卷(期):2014,3(2)1.Armand M;Murphy D;Broadhead J Materials for Advanced Batteries 19802.Garreau M;Thevenin J;Fekir M On the processes responsible for the degradation of the aluminum lithium electrode used as anode material in lithium aprotic electrolyte batteries 1983(3-4)3.Yazami R;Touzain P A reversible graphite-lithium negative electrode for electrochemical generators 1983(3)4.Tarascon J MorSe6:A new solid-state electrode for secondary lithium batteries 1985(9)5.Scrosati B Non aqueous lithium cells 1981(11)6.Abraham K Ambient temperature secondary lithium batteries using LiA1 lithium insertion anodes 19877.Hrold A Recherches sur les composes d'insertion du graphite 1955(7-8)8.Dey A;Sullivan B The electrochemical decomposition of propylene carbonate on graphite 1970(2)9.SONY Non-aqueous electrolyte secondary cell 198910.Nagaura T;Tozawa K Lithium ion rechargeable battery 199011.Endo M;Kim C;Nishimura K Recent development of carbon materials for Li ion batteries 2000(2)12.Mabuchi A A survey on the carbon anode materials for rechargeable lithiumbatteries 199413.Yamaura J;Ozaki Y;Morita A High voltage,rechargeable lithium batteries using newly-developed carbon for negative electrode material 1993(1)14.Tarascon J M;Armand M Issues and challenges facing rechargeable lithium battefies 2001(6861)15.Van S W;gcrosati B Advances in Lithium-Ion Batteries 200216.Kang B;Ceder G Battery materials for ultrafast charging and diseharging 2009(7235)17.Armand M;Tarascon J M Building better batteries 2008(7179)18.Jansen A;Kahaian A;Kepler K Development of a high-power lithium-ion battery 199919.Smith K;Wang C Y Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles 2006(1)20.Zhang X;Ross P;Kostecki R Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles 2001(5)21.Zhou H H;Ci L C;Liu C Y Progress in studies of the electrode materials for Li ion batteries 1998(1)22.Hao R R;Fang X Y;Niu S C Chemistry of the Elements (Ⅲ) 199823.Ohzuku T;Ueda A;Yamamoto N Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells 1995(5)24.Woo K C;Mertwoy H;Fischer J Experimental phase diagram of lithium-intercalated graphite 1983(12)25.Dahn J Phase diagram of LixC6 1991(17)26.Nalamova V;Guerard D;Lelaurain M X-ray investigation of highly saturated Li-graphite intercalation compound 1995(2)27.Feng Z Z;Song S Q Preparation and application of mesophase pitch 201328.Honda H;Yamada Y Meso-carbon microbeads 197329.Xu B;Chen E Intermediate development phase carbon microbeads (MCMB),properties and applications 1996(3)30.Niu Y J;Zhang H G;ZhouA M Non-Ferrous Progress:1996-2005 200731.Choi W C;Byun D;Lee J K Electrochemical characteristics of silver-and nickel-coated synthetic graphite preparedby a gas suspension spray coating method for the anode of lithium secondary batteries 2004(2)32.Lee H Y;Baek J K;Lee S M Effect of earbon coating on elevated temperature performance of graphite as lithium-ion battery anode material 2004(1)33.Tanaka H;Osawa T;Moriyoshi Y Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma 2004(1)34.Guoping W;Bolan Z;Min Y A modified graphite anode with high initial efficiency and excellent cycle life expectation 2005(9)35.Lee J H;Lee S;Paik U Aqueous processing of natural graphite particulates for lithium-ion battery anodes andtheir electrochemical performance 2005(1)36.Yamauchi Y;Hino T;Ohzeki K Gas desorption behavior of graphite anodes used for lithium ion secondary batteries 2005(6)37.Zhao X;Hayner C M;Kung M C In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries 2011(6)38.王广驹世界石墨生产,消费及国际贸易 2006(1)39.Jonker G H Magnetic compounds with perovskite structure Ⅳ conducting and non-conducting compounds 195640.Murphy D;Cava R;Zahurak S Ternary LixTiO2 phases from insertion reactions 198341.Ferg E;Gummow R;De K A Spinel anodes for lithium-ion batteries 1994(11)42.Robertson A;Trevino L;Tukamoto H New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries 199943.Peramunage D;Abraham K Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells 1998(8)44.Julien C;Massot M;Zaghib K Structural studies of Li4/3Me5/3O4 (Me=Ti,Mn) electrode materials:Local structure and electrochemical aspects 2004(1)45.Scharner S;Weppner W;Schmid B E Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel 1999(3)46.Zaghib K;Simoneau M;Armand M Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries 199947.Pecharroman C;Amarilla J Thermal evolution of infrared vibrational properties of Li4/3Ti5/3O4 measured by specular reflectance 2000(18)48.Guerfi A;Charest P;Kinoshita K Nano electronically conductive titanium-spinel as lithium ion storage negative electrode 2004(1)49.Gao L;Qiu W;Zhao H L Lithiated titanium complex oxide as negative electrode 2005(1)50.Bach S;Pereira R J;Baffier N Electrochemical properties of sol-gel Li4/3Ti5/3O4 199951.Kavan L;Grtzel M Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion 2002(2)52.Hao Y;Lai Q Y;Liu D Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery 2005(2-3)53.王虹微波法制备钛酸锂的方法 200854.白莹一种用于锂二次电池负极材料尖晶石钛酸锂的制各方法 200655.Li J;Tang Z;Zhang Z Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 2005(9)56.杨立一种应用于锂离子电池的钛酸锂负极材料的制备方法中国 200857.Huang S;Wen Z;Zhu X Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries 2007(1)58.Tian B;Xiang H;Zhang L Niobium doped lithium titanate as a high rate anode material for Li-ion batteries2010(19)59.Huang Y;Qi Y;Jia D Synthesis and electrochemical properties of spinel Li4Ti5Ol2-xClx anode materials forlithium-ion batteries 2012(5)60.Venkateswarlu M;Chen C;Do J Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy 2005(1)61.Cai R;Yu X;Liu X Li4Ti5O12/Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance 2010(24)62.Yuan T;Yu X;Cai R Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance 2010(15)63.Hu X;Lin Z;Yang K Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction 2011(14)64.Martha S K;Haik O;Borgel V Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application 2011(7)65.Huang K L;Wang Z X;Liu S Q Lithium-Ion Battery Technology and Key Principles 200866.Xu K;Wang X Y;Xiao L X Lithium Ion Battery 200267.Wang Q;Li H;Chen L Novel spherical microporous carbon as anode material for Li-ion batteries 200268.Li H;Wang Q;Shi L Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for aLi ion battery 2002(1)69.Hu J;Li H;Huang X Influence of micropore structure on Li-storage capacity in hard carbon spherules 2005(11)70.Fey G T K;Chen C L High-capacity carbons for lithium-ion batteries prepared from rice husk 200171.Yin G P;Zhou D R;Xia B J Preparation of phosphorus-doped carbon and its performance Lithium intercalation2000(4)72.Schnfelder H H;Kitoh K;Nemoto H Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons 1997(2)73.Buiel E;Dahn J Li-insertion in hard carbon anode materials for Li-ionbatteries 1999(1)74.Rosamaria F;Ulrich V S;Dahn J R Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells 1990(7)75.Stevens D;Dahn J The mechanisms of lithium and sodium insertion in carbon materials 2001(8)76.Bonino F;Brutti S;Piana M Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries 2006(17)77.Guo M;Wang J C;Wu L B Study of carbon nanofibers as negative materials for Li-ion batteries 2004(5)78.Sato Y;Kikuchi Y;Kawai T Characteristics of coke carbon modified with mesophase-pitch as a negative electrodefor lithium ion batteries 199979.Yoshio M;Tsumura T;Dimov N Electrochemical behaviors of silicon based anode material 2005(1)i S C Solid lithium-silicon electrode 197681.Sharma R A;Seefurth R N Thermodynamic properties of the lithium-silicon system 1976(12)82.Seefurth R N;Sharma R A Investigation of lithium utilization from a lithium-silicon electrode 1977(8)83.Seefurth R N;Sharma R A Dependence of lithium-silicon electrode potential and lithium utilization on reference electrode location 1980(5)84.Wen C J;Huggins R A Chemical diffusion in intermediate phases in the lithium-silicon system 1981(3)85.Boukamp B A;Lesh G C;Huggins R A All-solid lithium electrodes with mixed-conductor matrix 1981(4)86.Weydanz W J;Wohlfahrt M M;Huggins R A A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries 199987.Gao B;Sinha S;Fleming L Alloy formation in nanostructured silicon 2001(11)88.Li H;Huang X J;Chen L Q A high capacity nano-Si composite anode material for lithium rechargeable batteries 1999(11)89.Li H;Huang X J;Chen L Q The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature 2000(1-4)90.Limthongkul P;Jang Y I;Dudney N J Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage 2003(4)91.Hatchard T D;Dahn J R In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon 2004(6)92.Key B;Bhattacharyya R;Grey C P Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries 2009(26)93.Key B;Morcrette M;Grey C P Pair distribution function analysis and solid State NMR studies of silicon electrodes for lithium ion batteries:Understanding the (De) lithiation mechanisms 2011(3)94.Beaulieu L Y;Hatchard T D;Bonakdarpour A Reaction of Li with alloy thin films studied by in situ AFM 2003(11)95.Baggetto L;Danilov D;Notten P H L Honeycomb-structured silicon:Remarkable morphological changes induced by electrochemical (De)lithiation 2011(13)96.Lee S W;Mcdowell M T;Choi J W Anomalous shape changes of silicon nanopillars by electrochemical lithiation2011(7)97.Lee S W;Mcdowell M T;Berla L A Fracture of crystalline silicon nanopillars during electrochemical lithium insertion 2012(11)98.He Y;Yu X Q;Wang Y H Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic effficiency 2011(42)99.He Y;Wang Y H;Yu X Q Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries2012(12)100.He Y;Yu X Q;Li G Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction 2012101.Wang Y;He Y;Xiao R Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries 2012102.Notten P H L;Roozeboom F;Niessen R A H3-D integrated all-solid-state rechargeable batteries 2007(24)103.Baggetto L;Oudenhoven J F M;Van D T On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries 2009(1)104.Chan C K;Ruffo R;Hong S S Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes 2009(2)105.Zheng J Y;Zheng H;Wang R An investigation on the sold electrolyte interphase of silicon anode for Li-ion batteries through force curve method 2013(6)106.Zhang X W;Patil P K;Wang C S Electrochemical performance of lithium ion battery,nano-silicon-based,disordered carbon composite anodes with different microstructures 2004(2)107.Chan C K;Ruffo R;Hong S S Structural and electrochemical study of the reaction of lithium with silicon nanowires 2009(1)108.Cui L F;Ruffo R;Chan C K Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes 2009(1)109.Mcdowell M T;Lee S W;Ryu I Novel size and surface oxide effects in silicon nanowires as lithium battery anodes 2011(9)110.Ryu I;Choi J W;Cui Y Size-dependent fracture of Si nanowire battery anodes 2011(9)111.Xu W L;Vegunta S S S;Flake J C Surface-modified silicon nanowire anodes for lithium-ion batteries 2011(20) 112.Yue L;Wang S Q;Zhao X Y Nano-silicon composites using poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode 2012(3)113.Zang J L;Zhao Y P Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery 2012(1)114.Yoshio M;Wang H Y;Fukuda K Carbon-coated Si as a lithium-ion battery anode material 2002(12)115.Qu J;Li H Q;henry J J Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries 2012116.Jia H P;Gao P F;Yang J Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material 2011(6)117.Yao Y;Mcdowell M T;Ryu I Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life 2011(7)118.Fu K;Yildiz O;Bhanushali H Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexiblelithium ion battery electrodes 2013(36)119.Min J H;Bae Y S;Kim J Y Self-organized artificial SEI for improving the cycling ability of silicon-basedbattery anode materials 2013(4)120.Choi N S;Yew K H;Lww K Y Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode 2006(2)121.Chakrapani V;Rusli F;Filler M A Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery 2011(44)122.Etacheri V;Haik O;Goffer Y Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes 2011(1)123.Buddie M C High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries 2012(58)124.Profatilova I A;Stock C;Schmitz A Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate 2013125.Leung K;Rempe S B;Foster M E Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries 2014(3)126.Kovalenko I;Zdyrko B;Magasinski A A major constituent of brown algae for use in high-capacity Li-ion batteries 2011(6052)127.Ryou M H;Kim J;Lee I Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries 2012(11)128.Li J;Lewis R;Dahn J Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries 2007(2)129.Bridel J S;Azais T;Morcrette M Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries 2009(3)130.Mazouzi D;Lestriez B;Roue L Silicon composite electrode with high capacity and long cycle life 2009(11)131.Guo J C;Wang C S A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery 2010(9)132.Liu W R;Yang M H;Wu H C Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder 2005(2)133.Park H K;Kong B S;Oh E S Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ionbatteries 2011(10)134.Magasinski A;Zdyrko B;Kovalenko I Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid 2010(11)135.Yun J B;Soo K J;Tae L K Aphoto-cross-linkable polymeric binder for silicon anodes in lithium ion batteries 2013(31)136.Han Z J;Yabuuchi N;Hashimoto S Cross-linked poly (acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries 2013(2)137.Koo B;Kim H;Cho Y A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries 2012(35)138.Bae J;Cha S H;Park J A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery 2013(7)139.Yim C H;Abu L Y;Courtel F M High capacity silicon/graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders 2013(28)140.Erk C;Brezesinski T;Sommer H Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders 2013(15)141.Kim J S;Choi W;Cho K Y Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries 2013142.Li J;Christensen L;Obrovac M Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder 2008(3)143.Kim Y L;Sun Y K;Lee S M Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology 2008(13)144.Guo J C;Sun A;Wang C S A porous silicon-carbon anode with high overall capacity on carbon fiber current collector 2010(7)145.Choi J Y;Lee D J;Lee Y M Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes 2013(17)146.Hang T;Nara H;Yokoshima T Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries 2013147.Luais E;Sakai J;Desploban S Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector 2013148.Tang X X;Liu W;Ye B Y Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode 2013(6)149.Kim H;Han B;Choo J Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries 2008(52)150.Bang B M;Kim H;Song H K Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching 2011(12)151.Kasavajjula U;Wang C;Appleby A J Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells 2007(2)152.Magasinski A;Dixon P;Hertzberg B High-performance lithium-ion anodes using a hierarchical bottom-up approach 2010(4)153.Liu G;Xun S;Vukmirovic N Polymers with tailored electronic structure for high capacity lithium battery electrodes 2011(40)154.Chan C K;Peng H;Liu G High-performance lithium battery anodes using silicon nanowires 2007(1)155.Idota Y;Kubota T;Matsufiti A Tin-based amorphous oxide:A high-capacity lithium-ion-storage material 1997(5317)156.Courtney I A;Dahn J Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass 1997(9)157.Li H;Huang X J;Chen L Q Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries 1998(6)158.Liu W;Huang X J;Wang Z Studies of stannic oxide as an anode material for lithium-ion batteries 1998(1)159.Li H;Wang Z;Chen L Research on advanced materials for Li-ion batteries 2009(45)160.David M New materials extend Li-ion performance 2006(5)161.Ogisu K R&D activities & results for sony batteries 2005162.索尼公司索尼成功开发3.5 A·h高容量锂离子电池"Nexelion" 2011163.Dahn J;Mar R;Abouzeid A Combinatorial study of Sn1-xCox (0《x《 0.6) and (Sn0 55Co0 45)1-yCy (0《 y《 0 5)alloy negative electrode materials for Li-ion battaries 2006(2)164.Todd A;Mar R;Dahn J Tin-transition metal-carbon systems for lithium-ion battery negative electrodes 2007(6) 165.Ferguson P;Martine M;Dunlap R Structural and electrochemical studies of (SnxCo1-x)60C40 alloys prepared by mechanical attriting 2009(19)166.Ferguson P;Rajora M;Dunlap R(Sn0.5Co0 5)1-yCy alloy negative electrode materials prepared by mechanical attriting 2009(3)167.Ferguson P;ToddA;Dahn J Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries 2008(1)168.Hassoun J;Mulas G;Panero S Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling 2007(8)vela P;Nacimiento F;Ortiz G F Sn-Co-C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries 2010(1)170.Liu B;Abouimrane A;Ren Y New anode material based on SiO-SnxCoyCz for lithium batteries 2012(24)171.Zhong X C;Jiang F Q;Xin P A Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries 2009(1)172.Yang S;Li Q;Shen D Influence of Fe on electrochemical performance of SnxCoy/C anode materials 2011(2)173.Shaobin Y;Ding S;Qiang L Synthesis and electrochemical properties of Sno.35-0 5xCoo 35-0 5xZnxCo 3o composite 2010(1)174.YangSB;ShenD;WuXG Effects of Cu on structures and electrochemical properties of Sn-Co/C composite 2012(4)175.Cui W;Wang F;Wang J Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries 2011(13)176.Li M Y;Liu C L;Shi M R Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance 2011(8)177.Xin L;Jing Y X;Hai L Z Synthesis and properties of Sn30Co30C40 ternary alloy anode material for lithium ion battery 2013(7)178.Lee S I;Yoon S;Park C M Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anodefor Li-ion batteries 2008(2)179.Fauteux D;Koksbang R Rechargeable lithium battery anodes:Alternatives to metallic lithium 1993(1)180.Rahner D;Machill S;Schlorb H Intercalation materials for lithium rechargeable batteries 1996181.Besenhard J;Hess M;Komenda P Dimensionally stable Li-alloy electrodes for secondary batteries 1990182.Maxfield M;Jow T;Gould S Composite electrodes containing conducting polymers and Li alloys 1988(2)183.Winter M;Besenhard J O Electrochemical lithiation of tin and tin-based intermetallics and composites 1999(1) 184.Du C W;Chen Y B;Wu M S Advances in lithium-ion battery anode materials for non-carbon 2000185.Wu Y P;Wan C R Study on materials for lithium-ion batteries tin-based negative 1999(3)186.Kepler K D;Vaughey J T;Thackeray M M LixCu6Sn5(0《x《13):An intermetallic insertion electrode for rechargeable lithium batteries 1999(7)187.Mao O;Dunlap R;Dahn J Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries:Ⅰ.TheSn2Fe-C system 1999(2)rcher D;Beaulieu L;Macneil D In situ X-ray study of the electrochemical reaction of Li with η'-Cu6Sn52000(5)189.Li H;Zhu G;Huang X Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloyprepared by co-precipitation in alcohol solution at low temperature 2000(3)190.Kim H;Kim Y J;Kim D Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries 2001(1)191.Wang L;Kitamura S;Sonoda T Electroplated Sn-Zn alloy electrode for Li secondary batteries 2003(10)192.Yin J;Wada M;Yoshida S New Ag-Sn alloy anode materials for lithium-ion batteries 2003(8)193.Tamura N;Fujimoto M;Kamino M Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries2004(12)194.Wang L;Kitamura S;Obata K Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries 2005(2)195.Beauleiu L;Hewitt K;Turner R The electrochemical reaction of Li with amorphous Si-Sn alloys 2003(2)196.Besenhard J;Yang J;Winter M Will advanced lithium-alloy anodes have a chance in lithium-ion batteries 1997(1) 197.Yang J;Winter M;Besenhard J Small particle size multiphase Li-alloy anodes for lithium-ionbatteries 1996(1) 198.Mukaibo H;Sumi T;Yokoshima T Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries 2003(10)199.Photo F Nonaqueous secondary battery 1995200.Photo F Nonaqueous secondary battery 1995201.Goodenough J;Manthiram A;James A Lithium insertion compounds 1988202.Aydinol M;Kohan A;Ceder G Abinitio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries 1997(2)203.三星SDI株式会社用于非水电解液电池的负极活性材料,其制备方法和非水电解液电池 2005204.Song J H;Park H J;Kim K J Electrochemical characteristics of lithium vanadate,Li1+xVO2,new anode materials for lithium ion batteries 2010(18)205.Chang J J Synthesis and electrochemical:Properties of lithium-ion battery anode material Li1+xVO2 2012206.Armstrong A R;Lyness C;Panchmatia P M The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 2011(3)207.Chen H;Xiang K X;Hu Z L Synthesis and electrochemical performance of new anode materials Li1.1V0 9O2 forlithium ion batteries 2012(5)208.Choi N S;Kim J S;Yin R Z Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery 2009(2)zzari M;Scrosati B A cyclable lithium organic electrolyte cell based on two intercalation electrodes 1980(3) 210.Dipietro B;Patriarco M;Scrosati B On the use of rocking chair configurations for cyelabte lithium organic electrolyte batteries 1982(2)211.Ktakata H O;Meri T;Koshita N Procedures of the symposium onprimary and secondary lithium batteries 1988212.Poizot P;Laurelle S;Grugeon S Nano-sized ttansition-metal oxides as negative-electrode materials for lithium-ion batteries 2000(6803)213.Debart A;Dupont L;Poizot P A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium 2001(11)214.Dedryvere R;Laruelle S;Grugeon S Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium 2004(6)215.Xin C;Naiqing Z;Kening S3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries 2011(10)216.Li H;Richter G;Maier J Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries 2003(9)217.Badway F;Mansour A;Pereira N Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices 2007(17)218.Dbart A;Dupont L;Patrice R Reactivity of transition metal (Co,Ni,Cu) sulphides versus lithium:The intriguing case of the copper sulphide 2006(6)219.Gillot F;Boyanov S;Dupont L Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries 2005(25)220.Pereira N;Dupont L;Tarascon J Electrochemistry of Cu3N with lithium a complex system with parallel processes 2003(9)221.Zhang W M;Wu X L;Hu J S Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries 2008(24)222.Rahman M;Chou S L;Zhong C Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention 2010(40)223.Wang Y;Zhang H J;Lu L Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites 2010(8)224.Zhou G;Wang D W;Li F Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclicstability for lithium ion batteries 2010(18)225.Wang Y;Zhang L Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance 2012226.Zhang P;Guo Z;Kang S Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure forlithium-ion batteries 2009(1)227.Zhu X J;Guo Z P;Zhang P Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries 2009(44)228.Wang C;Wang D;Wang Q Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery 2010(21)229.Xia Y;Zhang W;Xiao Z Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries 2012(18)230.Yu Y;Chen C H;Shi Y A tin-based amorphous oxide composite with a porous,spherical,multideck-cage morphology as a highly reversible anode material for lithium-ion batteries 2007(7)231.Li F;Zou Q Q;Xia Y Y Co-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery 2008(2)232.Wu Z S;Ren W;Wen L Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance 2010(6)引用本文格式:罗飞.褚赓.黄杰.孙洋.李泓.LUO Fei.CHU Geng.HUANG Jie.SUN Yang.LI Hong锂离子电池基础科学问题(Ⅷ)——负。
LiPON固态电解质与全固态薄膜锂离子电池制备及特性研究

LiPON固态电解质与全固态薄膜锂离子电池制备及特性探究随着电池技术的不息进步,人们对能源存储设备的要求也越来越高。
传统液态电池电解液存在燃烧和泄漏等安全隐患,同时液态电解质也会造成电池体积较大、能量密度低等问题。
因此,探究人员开始将目光聚焦于全固态电池,其中LiPON固态电解质作为最重要的组成部分之一,具有重要的探究意义。
LiPON (lithium phosphorus oxynitride)是一种典型的固态电解质,它被广泛应用于锂离子电池、全固态薄膜电池等多种能源存储装置中。
LiPON的导电性能优异,能够保证电荷的快速传输,同时能够有效隔离阳极和阴极,提高电池的安全性能。
此外,LiPON还具有较高的化学稳定性和热稳定性,能够在高温环境下保持良好的电化学性能,延长电池的寿命。
制备全固态薄膜锂离子电池的关键是制备优质的LiPON固态电解质。
目前,制备LiPON固态电解质主要有物理气相沉积法、离子束沉积法、溅射法等。
这些方法能够获得具有较高导电性能和较好化学稳定性的LiPON薄膜。
物理气相沉积法是一种常用的制备LiPON薄膜的方法。
该方法通过将固态源材料加热,使其蒸发,然后沉积在衬底上形成薄膜。
离子束沉积法是一种较新的制备技术,该方法利用离子束在材料表面产生化学反应,生成所需的LiPON薄膜。
溅射法是一种常用的制备薄膜的方法,该方法通过将固态材料溅射到衬底上,形成所需的薄膜。
制备过程中的关键参数如沉积温度、沉积速率等也对最终的LiPON薄膜性能有显著影响。
因此,探究人员需要进一步优化制备过程,以获得更高质量的LiPON固态电解质。
除了制备LiPON固态电解质,探究人员还对全固态薄膜锂离子电池的性能进行了探究。
试验结果表明,全固态薄膜锂离子电池具有较高的能量密度、良好的循环性能和较长的使用寿命。
与传统液态电池相比,全固态薄膜锂离子电池具有更低的内阻、更快的充放电速率和更低的自放电率。
然而,全固态薄膜锂离子电池仍面临着一些挑战。
全固态电池表界面化学基础研究

全固态电池表界面化学基础研究一、引言全固态电池是一种新型的电池技术,具有高能量密度、快速充电、长寿命等优点。
表界面化学是全固态电池研究中的重要领域,涉及到固体电解质特性、界面反应机制、锂离子传输动力学等方面的研究。
本文将就全固态电池表界面化学基础研究进行深入探讨。
二、固体电解质特性固体电解质是全固态电池的重要组成部分,其特性直接影响到电池的电化学性能。
固体电解质需要具备高离子电导率、宽电化学稳定窗口、高机械强度等特点。
目前常用的固体电解质有聚合物电解质和无机固体电解质两大类,其研究主要涉及到材料的组成、晶体结构、离子传输机制等方面。
三、界面反应机制界面反应是全固态电池中一个重要现象,涉及到电极与固体电解质之间的相互作用。
界面反应机制的研究对于理解电池性能衰减的原因以及提高电池寿命具有重要意义。
目前对于界面反应机制的研究主要涉及到微观结构、化学组成、反应动力学等方面的研究。
四、锂离子传输动力学锂离子传输动力学是全固态电池中另一个重要的研究方向。
锂离子在固体电解质中的传输速率直接影响着电池的充放电性能。
锂离子传输动力学的研究主要涉及到离子在固体电解质中的迁移过程、扩散系数、传输通道等方面的研究。
五、界面稳定性及寿命界面稳定性及寿命是全固态电池实用化需要解决的重要问题之一。
全固态电池在充放电过程中,电极与固体电解质之间的界面会发生变化,导致电池性能衰减。
因此,研究界面的稳定性及寿命对于提高全固态电池的寿命具有重要意义。
六、影响因素及调控方法影响全固态电池表界面性能的因素有很多,如材料类型、制备工艺、使用环境等。
了解这些影响因素有助于优化材料的选择和制备工艺,从而提高电池的性能。
同时,针对影响因素提出有效的调控方法也是提高全固态电池性能的关键。
常见的调控方法包括表面处理、掺杂改性、复合电极等。
这些方法可以有效改善固体电解质和电极表面的物理和化学性质,从而提高锂离子的传输效率和界面的稳定性。
七、性能优化及提高为了满足实际应用的需求,全固态电池的性能还需要进一步的优化和提高。
0000全固态锂离子电池用PEO基聚合物电解质的研究进展_赵旭东

全固态锂离子电池用PEO基聚合物电解质的研究进展*赵旭东,朱 文,李镜人,贾迎宾(华中科技大学材料成型与模具技术国家重点实验室,武汉430074)摘要 锂离子电池作为重要的能量储存元件在消费类电子产品、电动汽车和可再生能源存储等领域具有广泛的应用。
传统液态电解质锂离子电池受到能量密度低、安全性差等诸多缺陷的限制,采用固态电解质替代液态电解质制备新型固态锂离子电池目前备受关注。
PEO基固态聚合物电解质由于其设计简单、易于制造、使用安全等优点已被认为是替代传统液体电解质的首选。
介绍了当前PEO基聚合物电解质的主要研究种类、特点和性能;阐述了锂离子在PEO基聚合物电解质中的导电机制;分析了与PEO络合的锂盐种类对聚合物电解质的电导率的影响规律;在此基础上提出了几种改善PEO基聚合物电解质性能的措施和方法。
关键词 固态锂离子电池 PEO 聚合物电解质 固态电解质中图分类号:TM911 文献标识码:AResearch Progress in PEO Based Polymer Electrolytes of AllSolid State Lithium Ion BatteryZHAO Xudong,ZHU Wen,LI Jingren,JIA Yingbin(State Key Laboratory of Material Processing and Die &Mould Technology,Huazhong University of Science andTechnology,Wuhan 430074)Abstract As an important component of energy storage,lithium-ion battery has been widely used in consumerelectronics products,electric vehicles and renewable energy storage.Because the traditional lithium-ion battery whichused liquid electrolyte has limitations on energy density and security,using solid state electrolyte instead of liquid elec-trolyte to develop novel all solid state lithium-ion battery is becoming more and more attractive.PEO-based solid poly-mer electrolyte has been considered as a preferred alternative to the conventional liquid electrolyte because of its advan-tages in terms of simplicity of design,easy production and operational safety.The current research about major types,characteristics and performances of PEO-based polymer electrolytes are presented.The conduction mechanism of li-thium ion in PEO-based polymer electrolytes is described,and the effects of the kinds of lithium salts having the comp-lexation with PEO on the conductivity of resultant polymer electrolytes are analysed.Based on these,several measuresand methods for improving performance of PEO-based polymer electrolytes are proposed.Key words solid state lithium ion battery,PEO,polymer electrolytes,solid eletrolytes *国家自然科学基金(21173090);深圳市战略性新兴产业发展专项资金(JCYJ20120618100557119) 赵旭东:男,1992年生,硕士生,主要从事固体电解质研究 E-mail:micalun@gmail.com 朱文:通讯作者,男,1971年生,教授,博士生导师,从事新能源研究 Tel:027-87558476 E-mail:wennar@hust.edu.cn 当前锂离子电池对人们日常生活以及国民经济所产生的影响巨大,其应用涵盖商业化电子产品(如手机、电脑等)、汽车动力装置以及可再生能源发电站的能量存储(如风能和太阳能)等。
全固态锂电池的电极制备与组装方法

含 4 个阶段:概念开发和产品规划阶段(调研)、详
不论其化学组分如何,晶粒电导率高低,宏观尺寸
细设计阶段(实验室)、小规模生产阶段(小试)、增
下的电解质块体或片材需要将氧化物粉体颗粒烧结
量生产阶段(中试),全固态锂电池也不例外。而实
成陶瓷坯才能够达到室温电导率超过 10−4 S/cm 数
验室中的基础研发是为首要阶段,正是对以上问题
锂离子电池已难以同时提升安全性及能量密度,一
方法进行了较为详尽的综述,希望对广大科研人员
定程度上制约了上述领域的发展。归功于固体电解
具有一定的借鉴意义。
质高的化学及电化学稳定性、高热稳定性和高机械
强度,全固态锂电池有望实现高能量正极与金属锂
1
负极的匹配使用,兼顾高能量密度与高安全性,已
成为新型电化学储能器件的热点研究方向。
solid-state lithium batteries are quite different from those of existing liquid lithium batteries.
Here we summarize the typical assembly approaches of prototype all-solid-state batteries
位对电极脱、嵌锂时的体积变化在可接受范围,最
紧密接触的正极层。丝网印刷的目的是为了得到较
终使得该全固态锂电池具有媲美液态电池的倍率
薄的正极层,而共烧结过程可以去除黏结剂中的有
corresponding performance characteristics of several typical all-solid-state lithium batteries
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3卷第4期 2014年7月 储能科学与技术
Energy Storage Science and Technology V01.3 No.4
Ju1.2Ol4
锂离子电池基础科学问题(X)——全固态锂离子电池 张舒,王少飞,凌仕刚,高健,吴娇杨,肖睿娟,李 泓,陈立泉 (中国科学院物理研究所,北京100190)
摘要:商用锂离子电池由于采用含有易燃有机溶剂的液体电解质,存在着安全隐患。发展全固态锂离子电池 是提升电池安全性的可行技术途径之一。目前全固态锂离子电池的应用还需要解决一些科学与技术问题,包括: 开发能在宽温度范围使用,兼顾高电导率与电化学稳定性的固体电解质材料;减小电解质相与电极相界面间离 子输运电阻的技术;适合全固态电池使用的正负极材料;相关材料与电池的设计与规模化制造技术。本文从固 体电解质材料的研究开发进展,高通量计算用于固体电解质材料的筛选以及电极材料与固体电解质界面问题等 方面进行了小结。 关键词:储能;全固态锂离子电池;固体电解质;高通量计算;界面 doi:10.3969/j.issn.2095-4239.2014.04.012 中图分类号:O 646.21 文献标志码:A 文章编号:2095.4239(2014)04.376.19
Fundamental scientific aspects of lithium ion batteries AJI1.sofid.state fithium-ion batteries
ZHANG Shu,WANG Shaofei,LING Shigang,GAOJian,WUJiaoyang, XIAO Ruijuan,LIHong,CHENLiquan (Institute ofPhysics,Chinese Academy of Sciences,Beijing 100190,China)
Abstract:Commercial lithium ion batteries using flammable nonaqueous electrolytes have that hidden safety problems.A11一solid-state lithium ion batteries iS one of the possible technologic approaches to address this problem.For practical applications some scientific and technological barriers need to be overcome,including exploring solid electrolyte material with high conductivity and electrochemical stability;decreasing interface ionic transport resistance between solid electrolyte and electrode phase; suitable anode and cathode materials for all—solid batteries;production technologies for materials:design and manufacturing of batteries.ThiS Paper summarizes briefly the status of solid electrolyte materials, efforts of high—throughput calculation on solid electrolyte materials and the interface issues between electrode material and solid electrolyte. Key words:energy storage;all・-solid—-state lithium--ion battery;solid electrolyte;high--throughput calculation:interface
近年来随着电动汽车的发展以及电网储能及小型 储能需求的发展,开发能够在宽的温度范围使用,具 有高安全性、高能量密度及功率密度的电池十分必要。 收稿日期:2014。06—01;修改稿日期:2014—06 05。 基金项目:北京市科委项目(Z131 1 1000340000),国家重点基础研究 发展计划(973)(2012CB932900)及国家自然科学基金杰出青年基金 (51325206)项目。 第一作者:张舒(199O一),女,博士研究生,研究方向为无机固态电 解质及全固态电池,E.mail:cuteshu@163.corn;通讯联系人:李泓,研 究员,研究方向为固体离子学与锂电池材料,E.mail:hli@iphy ac.cn。 在各种商业化可充放电化学储能装置中,锂离 子电池拥有最高的能量密度。现有的商用锂离子电 池主要包含两种类型:一种是采用液态电解质的锂 离子电池;另外一种是采用凝胶电解质的锂离子电 池。液态电解质的锂盐溶于有机溶液中,并包含多 种功能添加剂。锂盐为LiPF6、LiFSI等;有机溶剂 为环状碳酸酯(EC、PC)、链状碳酸酯(DEC、DMC、 EDC)、羧酸酯类(MF、MA、EA、MP等)。凝胶 电解质是在多孔的聚合物基体中吸附电解液形成的 第4期 张舒等:锂离子电池基础科学问题(x)——全固态锂离子电池 377 电解质。与液体电解液相同,凝胶电解质中的电解 液起到离子传导及在负极表面形成稳定的固体电解 质膜(SEI)的作用。 液态电解质与凝胶电解质拥有较高的室温离 子电导率,电解液能够有效地浸润电极颗粒,并 能够在正负极活性材料的表面形成稳定的固体电 解质膜,因此现有商用锂离子电池在室温附近具 有低的电池内阻及较好的循环稳定性。但有机液 体电解质在低温下发生液固转化,离子电导率显 著下降,导致温度降低时(一20℃以下)电池内 阻显著增大,无法满足低温应用要求。当电池外 部温度升高或大电流充放电或短路导致电池内部 温度升高时,电解液与电极之间的化学反应速度 加剧,进一步产生热量,可以导致热失控。这一 过程产生气体,最终导致电池密封失效,可燃的 气体与有机溶剂在高温下遇到氧气起火燃烧爆 炸。凝胶型电解质中电解液的含量相对较少,安 全性能有所提高,但无法从根本上解决安全性问 题。此外,液体电解液在低电位会被还原,在负 极表面形成固体电解质膜;在高电位会发生氧化 分解,造成电池充放电库仑效率降低。另外,目 前,商用锂离子电池电解液体系中一般采用LiPF6 作为电解质盐,LiPF6热稳定性差,与水反应生成 HF,进攻正负极表面,造成电池性能恶化。目前 常用有机电解液体系电化学窗口一般小于4.5 V, 限制了高电压正极材料的使用,影响了高能量密 度锂离子电池的发展。 电动汽车期望电池寿命达到15年,大规模工业 储能需要储能器件服役寿命能满足25-30年的使用 要求,从而显著降低系统的全寿命周期成本。含有 液态有机溶剂的锂离子电池,由于液体电解质与电 极材料、封装材料缓慢地相互作用和反应,长期服 役时溶剂容易干涸、挥发、泄露,电极材料容易被 腐蚀,影响电池寿命。电池的循环寿命与材料中的 杂质含量密切相关。杂质的存在,可以催化液体电 解质在电极表面发生副反应,导致表面膜不断生长, 活性物质不可逆消耗、电解液逐渐耗尽、电池内阻 不断增大。目前,为了应对动力电池、储能电池对 循环性、一致性的要求,高水平的材料制造企业尽 可能做到电池材料杂质含量低于10 pg/g。多数企业 生产的电池材料杂质含量在100 ̄200 Pg/g。杂质含 量的减少,可以显著延长电池的循环寿命,但同时 带来的问题是在所有的制造环节必须考虑防止杂质 的引入,导致制造成本显著提高,电池的可靠性无 法从根本上保障。如果采用固体电解质,则可以避 开液体电解液带来的副反应、泄露、腐蚀问题,从 而有望显著延长服役寿命、降低电池整体制造成本、 降低电池制造技术门槛,有利于大规模推广 使用。 近年来,大容量锂离子电池在电动汽车、飞机 辅助电源方面出现了严重的安全事故,这些问题的 起因与锂离子电池中采用可燃的有机溶剂有关。虽 然通过添加阻燃剂、采用耐高温陶瓷隔膜、正负极 材料表面修饰、优化电池结构设计、优化BMS、 在电芯外表面涂覆相变阻燃材料、改善冷却系统等 措施,能在相当程度上提高现有锂离子电池的安全 性,但这些措施无法从根本上保证大容量电池系统 的安全性,特别是在电池极端使用条件下、在局部 电池单元出现安全性问题时。而采用完全不燃的无 机固体电解质,则能从根本上保证锂离子电池的安 全性。
1全固态锂离子电池概述
为了克服现有商业液态锂离子电池所面临的问 题,科研人员正在大力发展基于固体电解质的锂离 子电池,它具有显著的优点:①相对于液体电解质, 固体电解质不挥发,一般不可燃,因此采用固体电 解质的固态电池会具有优异的安全性;②由于固体 电解质能在宽的温度范围内保持稳定,因此全固态 电池能够在宽的温度范围内工作,特别是高温下; ⑧一些固体电解质对水分不敏感,能够在空气中长 时间保持良好的化学稳定性,因此固态电池的制造 全流程不一定需要惰性气氛的保护,会在一定程度 上降低电池的制造成本;④有些固体电解质材料具 有很宽的电化学窗口,这使得高电压电极材料有望 应用,从而提高电池能量密度;⑤相对于多孔的凝 胶电解质及浸润液体电解液的多孔隔膜,固体电解 质致密,并具有较高的强度及硬度,能够有效地阻 止锂枝晶的刺穿,因此提高了电池的安全性,同时 也使得金属Li作为负极的使用成为可能。综上所 述,从基本的特性分析考虑,如果寻找到合适的材 料体系,采用固体电解质的全固态锂电池,可以具 有优异的安全特性、循环特性、高的能量密度和低 的成本。 固体电解质包括聚合物固体电解质、无机固体 电解质以及复合电解质。不含液态有机溶剂的全固