数模和模数转换习题解答

数模和模数转换习题解答
数模和模数转换习题解答

思考题与习题

8-1 选择题

1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R

V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2

1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。

A.成正比

B. 成反比

C. 无

4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。

A.0.5 S

B. 1 S

C. S

D. 2 S

5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。

A.电源电压

B. 0

C. 基准电压

6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。

A.越稳定

B. 越弱

C. 越强

7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。

A.成正比

B. 成反比

C. 无

8)集成ADC0809可以锁存 8 模拟信号。

路 B. 8路 C. 10路 D. 16路

5)双积分型ADC 的缺点是 a 。

A.转换速度较慢

B. 转换时间不固定

C. 对元件稳定性要求较高

D. 电路较复杂

8-2 填空题

1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。

2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。

3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。

4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 。

5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。

6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。

8-3 要求某DAC 电路输出的最小分辨电压LSB V 约为5m V,最大满度输出电压m U =10V,试求该电路输入二进制数字量的位数N应是多少

解: V V LSB 005.010231101211010≈?=-?=

2000005.01012==-N

20002≈N

11≈N

所以,该电路输入二进制数字量的位数N应是11。

8-4 已知某DAC 电路输入10位二进制数,最大满度输出电压m U =5V,试求分辨率和最小分辨电压。

解:其分辨率为0.1%=≈=-001.010********因为最大满度输出电压为5V,

所以,10位DAC 能分辨的最小电压为:

mV V V LSB 5005.0102315121510=≈?=-?=

8-5 设REF V =+5V,试计算当DAC0832的数字输入量分别为7FH ,81H ,F3H 时(后缀H 的含义是指该数为十六进制数)的模拟输出电压值。

解:若采用内部反馈电阻,当DAC0832的数字输入量为7FH 时,因为7FH 的数值为127,所以模拟输出电压值为:

V D V D R R V R i u REF f

REF f o o 48.21272565228

8-≈?-=?-=???-=-= 当DAC0832的数字输入量为81H 时,因为81H 的数值为129,所以模拟输出电压值为:

V D V D R R V R i u REF f

REF f o o 52.212925652

288-≈?-=?-=???-=-= 当DAC0832的数字输入量为F3H 时,因为F3H 的数值为243,所以模拟输出电压值为:

V D V D R R V R i u REF f REF f o o 75.424325652

288-≈?-=?-=???-

=-=

8-6 在AD7520电路中,若DD V =10V,输入十位二进制数为()1011010101

2,

试求:1)其输出模拟电流o i 为何值(已知k Ω10=R )

2)当k Ω10F ==R R 时,外接运放A后,输出电压应为何值

解:1)其输出模拟电流o i 为

o i =??V R D REF 210mA 708.01024725)141664128512(2

101010≈=+++++??= 2)当Ω==k R R f 10时,外接运放A后,输出电压应为

f o o R i u -=V 08.710708.0-=?-=

8-7 用DAC0832和4位二进制计数器74LS161,设计一个阶梯脉冲发生器。要求有15个阶梯,每个阶梯高V。请选择基准电源电压REF V ,并画出电路图。

解:要求设计的阶梯波脉冲有15个阶梯,也即需要将参考电源分为16等分,所以参考电源的大小应为VREF=16*=-8V 。

将74LS 的4位输出连接到DAC 的D7-D4上,而D3-D0接地,这样通过计数器输出的16个计数状态,就可以从DAC 的输出端得到16个等间隔大小的模拟量输出。它们之间的关系如下所示

01234051627385.044(2222(2

8Q Q Q Q Q Q Q Q u O +++=?+?+?+?--=

8-8 某8位D/A 转换器,试问:

1)若最小输出电压增量为V,当输入二进制01001101时,输出电压位多少伏

2)若其分辨率用百分数表示,则为多少

3)若某一系统中要求的精度由于%,则该D/A 转换器能否使用

解:1)最小输出电压增量为V,即Omin u =V,则输出电压i n i i O D u u 211Omin ??

=∑-= 当输入二进制码01001101时输出电压54.17702.0=?=O u V

2)分辨率用百分数表示为

%39.0%100255

02.002.0%100Omax Omin =??=?u u 3)不能。

8-9 已知10位R-2R 倒T 型电阻网络DAC 的R R =F ,REF V =10V ,试分别求出数字量为0000000001和11时,输出电压o u 。

解:输入数字量为0000000001时的输出电压:

V R R V V o 0049.0210F REF min ==

输入数字量为11时的输出电压为: V R R V V F REF o 995.41023210max =?=

8-10 如图图8-20所示电路为由AD7520和计数器74LS161组成的波形发生电路。已知V V 10REF -=,试画出输出电压o u 的波形,并标出波形图上各点电压的幅度。

图8-20 图题

解:由图可知,74LS161组成的十六进制计数器,其输出在时钟CLK 作用下,从0000~1111循环输出,故AD7520的03d d ~也从0000~1111循环输入。

当9d 、8d 、7d 、6d 分别为1,其他位为0时,有

19=d 时,O u =5V ;8d =1时,O u =;7d =1时,O u =;6d =1时,O u =,由此可以画出O u 波形如下图所示。

8-11 设5REF =V V ,当ADC0809的输出分别为80H 和F0H 时,求ADC0809的输入电压

21i i u u 和。

解:

由x D =I REF I Imax max 255u V u u D ?=?可知

当x D =80H=时,128I V

5255u ?=

,得到V 5.2I =u ; 当x D =FFH=时,240I V 5255u ?=,得到V 7.4I =u ;

8-12 已知在逐次渐近型A/D 转换器中的10位D/A 转换器的最大输出电压V 322.14Omax =V ,时钟频率Z MH 1=C f 。当输入电压V 45.9I =u 时,求电路此时转换输出的数字状态及完成转换所需要的时间。

解:1)求转换的数字输出状态

因其D/A 转换器的最大输出电压Omax u 已知,而且知道此DAC 为10位,故其最低位为“1”时输出为

V 014.01

214.322V 1210max Omin =-=-=n O V u 故当输入电压V 45.9I =u 时的数字输出状态为

210)1010100011()675(V

014.09.45V == 即09d d ~=11

2)求完成此次转换所需的时间t

由逐次渐近型A/D 的过程可知,无论输入信号I u 的大小,其最后的数字输出状态都必须在第n+2个时钟脉冲到后才能输出,所以转换时间与输入信号的大小无关,只与转换的位数有关,故

μs 1210

11)210(1)2(6=??+=+=s f n t C

8-13 某8位ADC 输入电压范围为0~+10V,当输入电压为V和V时,其输出二进制数各是多少该ADC 能分辨的最小电压变化量为多少m V 解:因为N V u N REF i ?=2n REF i V u 2?=n REF

i V u 2?= 所以,当输入电压为V时,

1157.114256448.0210

48.482≈≈?=?=N (采用四舍五入法) 转换成二进制数为01110011。

当输入电压为V时,

2009.199256781.0210

81.782≈≈?=?=N (采用四舍五入法) 转换成二进制数为。

8-14 双积分型ADC 中的计数器若做成十进制的,其最大计数容量N 1101019992000=≈()(),时钟脉冲频率10=C f KHZ ,则完成一次转换最长需要多长时间若已知计数器的计数值N 210369=(),基准电压V V REF 6-=-,此时输入电压i u 有多大 解:双积分型ADC 完成一次转换最长需要的时间是第一次积分时间T 1的二倍,而C NT T =1(式中,T C 为时钟脉冲的周期,N为计数器的最大容量)。 因为mS f T c C 1.010

11===,所以完成一次转换最长需要的时间 S mS NT T T C 4.04001.020002221max ==??===

因为C REF

i T N V u T ??=2,T N T C 22=,所以 N V u N REF

i ?=2 V N N V u REF i 107.13692000

62=?=?= 可见完成一次转换最长需要的时间为秒;若已知计数器的计数值102)369(=N ,基准电压V V REF 6-=-,此时输入电压i u 为伏。

8-15 在双积分型ADC 中,若计数器为8位二进制计数器,CP 脉冲的频率Z kH 10=C f ,10REF -=-V V 。

1)计算第一次积分的时间;

2)计算i u =V时,转换完成后,计数器的状态;

3)计算i u =V时,转换完成后,计数器的状态。

解:1)第一次积分时间C NT T =1(式中,C T 为时钟脉冲的周期,N为计数器的最大容量)。所以,mS f NT T C C 6.2510

12561281=?=?==。 2)因为N V u N REF i ?=2n REF i V u 2?=n REF

i V u 2?=,所以当i u =V时,转换完成后,计数器的状态为: 96256375.0210

75.3282=?=?=?=n REF i V u N 转换成二进制数为01100000。

3)当i u =V时,转换完成后,计数器的状态为: 6425625.0210

5.2282=?=?=?=n REF i V u N 转换成二进制数为01000000。

模数与数模转换

3. 模数转换器 (1) 模/数(A/D )转换器 A/D 转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D 转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D 转换器 逐次逼近型A/D 转换器又称逐次渐近型A/D 转换器,是一种反馈比较型A/D 转换器。逐次逼近型A/D 转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。 表7.1 逐次逼近法称重物体过程表 图7.7 逐次逼近型A/D 转换器方框图 利用上述天平称物体重量的原理可构成逐次逼近型A/D 转换器。 逐次逼近型A/D 转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A 转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D 转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D /A 转换器的数字量为0,三个输出门G 7、G 8、G 9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A 转换器转换成相应的模拟电压U o ,送到比较器与待转换的输入模拟电压U i 进行比较。若U o >U i ,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若U o ≤U i ,说明寄存器输出数码还不够大,则应将这一位的1 保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D 转换器 并联比较型A/D 转换器是一种高速A/D 转换器。图8-9所示是3位并联型A/D 转换器,

数模及模数转换器习题解答

数模及模数转换器习题解答

————————————————————————————————作者: ————————————————————————————————日期: ?

自我检测题 1.就实质而言,D/A转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A /D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D转换器两个最重要的指标是分辨率和转换速度。 6.8位D /A 转换器当输入数字量只有最低位为1时,输出电压为0.02V ,若输入数字量只有最高位为1时,则输出电压为 V 。 A.0.039 B .2.56 C .1.27 D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D.参考电压 8.图T7.8所示R-2R网络型D/A 转换器的转换公式为 。 R R R I V REF 2R 2R 2R 2R 2R S 3 S 2 S 1 S 0 D 3 D 2 D 1 D 0 R F =R A + -v O i ∑ 图T 7.8 A .∑ =?- =3 3 REF o 22 i i i D V v ??B .∑=?- =3 4 REF o 2 232i i i D V v ??C .∑=?- =3 4 REF o 2 2 i i i D V v ??D .∑=?= 3 4 REF o 2 2 i i i D V v 9.D/A 转换器可能存在哪几种转换误差?试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。 10.比较权电阻型、R -2R 网络型、权电流型等D/A 转换器的特点,结合制造工

第九章:数模和模数转换器

第九章:数模和模数转换器 一、单选题 1:想选一个中等速度,价格低廉的A/D转换器,下面符合条件的是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 2:下面抑制电网公频干扰能力强的A/D转换器是()。 A 逐次逼近型 B 双积分型 C 并联比较型 D 不能确定 3:不适合对高频信号进行A/D转换的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 4:四位DAC和八位DAC的输出最小电压一样大,那么他们的最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 5:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下最大输出电压()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 6:四位权电阻DAC和四位R—2R倒T型DAC在参数一样的条件下分辨率()。 A 一样大 B 前者大于后者 C 后者大于前者 D 不确定 7:下列A/D转换器类型中,相同转换位数转换速度最高的是()。 A 并联比较型 B 逐次逼近型 C 双积分型 D 不能确定 8.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 9.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题 1:D/A转换器的建立时间等于数字信号由全零变全1或由全1变全0所需要的时间。()2:D/A转换器的转换精度等于D/A转换器的分辨率。() 3:采用四舍五入量化误差分析时,A/D转换过程中最小量化单位与量化误差是相等的。() 4:在A/D转换过程中量化误差是可以避免的。() 5:由于R-2R 倒T 型D/A转换器自身的优点,其应用比权电阻DAC广泛。() 6:倒T型网络D/A转换器由于支路电流不变,所以不需要建立时间。() 7:A/D转换的分辨率是指输出数字量中只有最低有效位为1时所需的模拟电压输入值。() 8.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。()9.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。()

第8章-数模和模数转换习题解答

思考题与习题 8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. 1.5 S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 A.4路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 0.5s 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。

数模及模数转换器习题解答

数模及模数转换器习题 解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

自我检测题 1.就实质而言,D/A 转换器类似于译码器,A/D 转换器类似于编码器。 2.电压比较器相当于1位A/D 转换器。 3.A/D 转换的过程可分为 采样 、保持、量化、编码4个步骤。 4.就逐次逼近型和双积分型两种A/D 转换器而言, 双积分型 的抗干扰能力强, 逐次逼近型 的转换速度快。 5.A/D 6.8位D/A 1时,输出电压为,若输入数字量只有最高位为1时,则输出电压为 V 。 A . B .2.56 C . D .都不是 7.D/A 转换器的主要参数有 、转换精度和转换速度。 A .分辨率 B .输入电阻 C .输出电阻 D .参考电压 8.图所示R-2R 网络型D/A 转换器的转换公式为 。 V REF v O 图 A .∑=?- =3 3 REF o 2 2 i i i D V v B .∑=?- =3 4 REF o 2 232i i i D V v D .∑=?= 3 4 REF o 2 2i i i D V v 9.D/A 转换器可能存在哪几种转换误差试分析误差的特点及其产生误差的原因。 解:D/A 转换器的转换误差是一个综合性的静态性能指标,通常以偏移误差、增益误差、非线性误差等内容来描述转换误差。 偏移误差是指D/A 转换器输出模拟量的实际起始数值与理想起始数值之差。 增益误差是指实际转换特性曲线的斜率与理想特性曲线的斜率的偏差。 D/A 转换器实际的包络线与两端点间的直线比较仍可能存在误差,这种误差称为非线性误差。

数模模数转换实验报告材料

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压围为04.98V。 四、实验容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下: 输入 00 0.001 4.959 08 0.145 4.636

数模与模数转换器 习题与参考答案

第11章 数模与模数转换器 习题与参考答案 【题11-1】 反相运算放大器如图题11-1所示,其输入电压为10mV ,试计算其输出电压V O 。 图题11-1 解:输出电压为: mV mV V R R V IN F O 10010101 =?=-= 【题11-2】 同相运算放大器如图题11-2所示,其输入电压为10 mV ,试计算其输出电压V O 。 图题11-2 解:mV mV V R R V IN F O 110101111 =?=+=)( 【题11-3】 图题11-3所示的是权电阻D/A 转换器与其输入数字信号列表,若数字1代表5V ,数字0代表0V ,试计算D/A 转换器输出电压V O 。 11-3 【题11-4】 试计算图题11-4所示电路的输出电压V O 。 图题11-4 解:由图可知,D 3~D 0=0101 因此输出电压为:V V V V O 5625.151650101254 === )( 【题11-5】 8位输出电压型R/2R 电阻网络D/A 转换器的参考电压为5V ,若数字输入为,该转换器输出电压V O 是多少?

解:V V V V O 988.21532565100110012 58≈== )( 【题11-6】 试计算图题11-6所示电路的输出电压V O 。 图题11-6 解:V V V D D V V n n REF O 5625.1516501012 5~240==-=-=)()( 【题11-7】 试分析图题11-7所示电路的工作原理。若是输入电压V IN =,D 3~D 0是多少? 图题11-7 解:D3=1时,V V V O 6221234== ,D3=0时,V O =0。 D2=1时,V V V O 3221224== ,D2=0时,V O =0。 D1=1时,V V V O 5.1221214== ,D1=0时,V O =0。 D0=1时,V V V O 75.0221204 ==,D0=0时,V O =0 由此可知:输入电压为,D3~D0=1101,这时V O =6V++=,大于输入电压V IN =,比较器输出低电平,使与非门74LS00封锁时钟脉冲CLK ,74LS293停止计数。 【题11-8】 满度电压为5V 的8位D/A 转换器,其台阶电压是多少?分辨率是多少? 解:台阶电压为mV mV V STEP 5.192/50008== 分辨率为:%39.00039.05000/5.195000/===mV V STEP

模数(A/D)和数模(D/A)转换

模数(A/D)和数模(D/A)转换 11.1 模数转换和数模转换概述 11.1.1 一个典型的计算机自动控制系统 一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。 图11.1 典型的计算机自动控制系统 在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。 一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。 在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。 若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。 在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。

287 第11章 模数(A/D )和数模(D/A )转换 11.1.2 模/数转换器(ADC )的主要性能参数 1. 分辨率 它表明A/D 对模拟信号的分辨能力,由它确定能被A/D 辨别的最小模拟量变化。一般来说,A/D 转换器的位数越多,其分辨率则越高。实际的A/D 转换器,通常为8,10,12,16位等。 2. 量化误差 在A/D 转换中由于整量化产生的固有误差。量化误差在±1/2LSB (最低有效位)之间。 例如:一个8位的A/D 转换器,它把输入电压信号分成28=256层,若它的量程为0~5V ,那么,量化单位q 为: q = 2电压量程范围 = 2560.5V ≈0.0195V=19.5mV q 正好是A/D 输出的数字量中最低位LSB=1时所对应的电压值。因而,这个量化误差的绝对值是转换器的分辨率和满量程范围的函数。 3. 转换时间 转换时间是A/D 完成一次转换所需要的时间。一般转换速度越快越好,常见有高速(转换时间<1us )、中速(转换时间<1ms )和低速(转换时间<1s )等。 4. 绝对精度 对于A/D ,指的是对应于一个给定量,A/D 转换器的误差,其误差大小由实际模拟量输入值与理论值之差来度量。 5. 相对精度 对于A/D ,指的是满度值校准以后,任一数字输出所对应的实际模拟输入值(中间值)与理论值(中间值)之差。例如,对于一个8位0~+5V 的A/D 转换器,如果其相对误差为1LSB ,则其绝对误差为19.5mV ,相对误差为0.39%。 11.1.3 数/模转换器(DAC )的主要性能参数 1. 分辨率 分辨率表明DAC 对模拟量的分辨能力,它是最低有效位(LSB )所对应的模拟量,它确定了能由D/A 产生的最小模拟量的变化。通常用二进制数的位数表示DAC 的分辨率,如分辨率为8位的D/A 能给出满量程电压的1/28的分辨能力,显然DAC 的位数越多,则分辨率越高。 2. 线性误差 D/A 的实际转换值偏离理想转换特性的最大偏差与满量程之间的百分比称为线性误差。 n

数模转换器和模数转换器实验报告

实验报告 课程名称微机原理与接口技术 实验项目实验五 数/模转换器和模/数转换器实验实验仪器 TPC-USB通用微机接口实验系统 系别计算机系 专业网络工程 班级/学号 学生 _ 实验日期 成绩_______________________ 指导教师王欣

实验五数/模转换器和模/数转换器实验 一、实验目的 1. 了解数/模转换器的基本原理,掌握DAC0832芯片的使用方法。 2. 了解模/数转换器的基本原理,掌握ADC0809的使用方法。 二.实验设备 1.PC微机系统一套 2.TPC-USB通用微机接口实验系统一套 三.实验要求 1.实验前要作好充分准备,包括程序框图、源程序清单、调试步骤、测试方法、对运行结果的分析等。 2.熟悉与实验有关的系统软件(如编辑程序、汇编程序、连接程序和调试程序等)使用方法。在程序调试过程中,有意识地了解并掌握TPC-USB通用微机接口实验系统的软硬件环境及使用,掌握程序的调试及运行的方法技巧。 3.实验前仔细阅读理解教材相关章节的相关容,实验时必须携带教材及实验讲义。 四.实验容及步骤 (一)数/模转换器实验 1.实验电路原理如图1,DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),编程产生以下锯齿波(从Ua和Ub输出,用示波器观察) 图1 实验连接参考电路图之一 编程提示: 1. 8位D/A转换器DAC0832的口地址为290H,输入数据与输出电压的关系为:

(UREF表示参考电压,N表示数数据),这里的参考电压为PC机的+5V电源。 2. 产生锯齿波只须将输出到DAC0832的数据由0循环递增。 3. 参考流程图(见图2): 图2 实验参考流程图之一 (二)模/数转换器 1. 实验电路原理图如图3。将实验(一)的DAC的输出Ua,送入ADC0809通道1(IN1)。 图3 实验连接参考电路图之二 2. 编程采集IN1输入的电压,在屏幕上显示出转换后的数据(用16进制数)。编程提示: 1. ADC0809的IN0口地址为298H,IN1口地址为299H。 2. IN0单极性输入电压与转换后数字的关系为:

数模转换与模数转换

第六章数模转换与模数转换 授课题目: 6.1 D/A转换器 教学目标: 1、掌握数模、模数转换的概念。 2、理解数模转换的原理。 3、熟悉D/A转换器集成芯片的性能,学习其使用方法。 教学内容(包括重点、难点): 教学重点:1、数模转换的基本原理。 2、D/A转换器集成芯片的使用。 教学难点:1、转换电路的分析计算。 2、知识的综合复习应用。 教学过程设计 ●复习并导入新课 问题:回忆二进制转换为十进制的加权和公式和电阻的串联、并联。 ●就新课内容提出问题 1、什么是模拟量? 2、什么是电模拟量? ●讲授新课 计算机对生产进行实时控制的过程如下: 模拟量:温度、压力、湿度、流量、速度等 电模拟量:电压、电流 6.1 D/A转换器

D/A 转换—从数字信号到模拟信号的转换。 D/A 转换器(简称DAC )—完成D/A 转换的电路。 一、D/A 转换电路原理图 数据锁存器:暂时存放输入的数字量; 模拟电子开关:这些数字量控制模拟电子开关,将参考电压源UREF 按位切换到电阻译码网络中变成加权电流。 集成运放:加权电流经运放求和,输出相应的模拟电压,完成D/A 转换过程。 二、倒 T 形电阻网络DAC 1、电路图 2、工作原理—电流分流形成加权值。 3、转换公式 4、特点 电阻值一致。倒T 形电阻网络支路电流恒定,电路转换速度高。 举例1:若U R=10V ,求对应D3D2D1D0分别为1010、0110和1100时输出电压值。 三、主要性能指标 1、分辨率 分辨率:说明DAC 输出最小电压的能力。它是指最小输出电压(对应的输入数字量仅最低位为1)与最大输出电压(对应的输入数字量各有效位全为1)之比: 分辨率= n :表示输入数字量的位数。n 越大,分辨最小输出电压的能力也越强。 举例2:n=8, DAC 的分辨率为 分辨率= =0.0039 数据锁存器 … D 0D 1 D n -1 … 模拟电子开关 … 电阻译码网络 … 求和运放 参考电压源 模拟输出 U )2...22(2 0022101?++?+?- =----D D D U U n n n n REF n 1 21-n 1 21 -n

数模和模数转换习题解答

8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. S D. 2 S 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,量化误差是 不可 消除的。 8-3 要求某DAC 电路输出的最小分辨电压LSB V 约为5m V,最大满度输出电压m U =10V,试求该电路输入二进制数字量的位数N应是多少?

数模与模数转换

第8章数模与模数转换 随着科学技术的迅速发展,尤其是在自动控制、自动检测通信等领域中,广泛采用数字电子计算机处理各种模拟信号,这样,必须先把这些模拟信号转换成相应的数字信号,计算机系统才能进行分析、处理,处理后的数字信号还需再转换为模拟信号才能实现对执行机构的控制。从模拟信号到数字信号的转换称为模—数转换,简写为A/D。把能完成A/D转换功能的电路称为模数转换器,简称为ADC(Analog to Digital Converter)。从数字信号到模拟信号的转换称为数—模转换,简写为D/A,把能完成D/A转换功能的电路称为数模转换器,简称DAC(Digital to Analog Converter)。模拟信号和数字信号之间的转换可用图8-1所示,由此可见,ADC和DAC就是连接模拟系统和数字系统的“桥梁”—接口电路。 图8-1 模拟信号与数字信号的转换过程 8.1 数模转换 数模转换的基本思想是,把数字量中的每一位代码按对应权的大小转换成相应的模拟量,这些模拟量之和与数字量成正比。 数模转换器由输入寄存器、电子模拟开关、解码网络、基准电压源和求和电路组成,其组成的方框图如图8-2所示。 图8-2 DAC构成框图 DAC电路的工作过程为:数字量以并行或串行方式输入并存储在输入寄存器中,寄存器输出的每位数码驱动对应数位上的电子模拟开关,解码网络就能获得相应的模拟量,再将这些模拟量送到求和电路相加即得到与数字量相对应的模拟量。 数模转换器按解码网络结构分为T形及倒T形电阻网络D/A转换器,权电阻网络D/A 转换器,权电流D/A转换器等。按模拟开关电路的不同可分为CMOS开关型和双极开关型D/A转换器,下面介绍常见的两种即倒T形电阻网络型和权电流型D/A转换器。 8.1.1 倒T形电阻网络D/A转换器

数模和模数转换

一、选择题 1.一个无符号8位数字量输入的DAC,其分辨率为位。 A.1 B.3 C.4 D.8 2.一个无符号10位数字输入的DAC,其输出电平的级数为。 10 A.4 B.10 C.1024 D.2 3.一个无符号4位权电阻DAC,最低位处的电阻为40KΩ,则最高位处电阻为。 A.4KΩ B.5KΩ C.10KΩ D.20KΩ 4.4位倒T型电阻网络DAC的电阻网络的电阻取值有种。 A.1 B.2 C.4 D.8 5.为使采样输出信号不失真地代表输入模拟信号,采样频率≥ B. ≤ C. ≥2 D. ≤2 和输入模拟信号的最高频率的关系是。 A. 6.将一个时间上连续变化的模拟量转换为时间上断续(离散)的模拟量的过程称为。 A.采样 B.量化 C.保持 D.编码 7.用二进制码表示指定离散电平的过程称为。 A.采样 B.量化 C.保持 D.编码 8.将幅值上、时间上离散的阶梯电平统一归并到最邻近的指定电平的过程称为。 A.采样 B.量化 C.保持 D.编码 9.若某ADC取量化单位△=,并规定对于输入电压,在0≤<时,认为输入的模拟电压为0V,输出的二进制数为000,则≤<时,输出的二进制数为。 A.001 B.101 C.110 D.111 10.以下四种转换器,是A/D转换器且转换速度最高。 A.并联比较型 B.逐次逼近型 C.双积分型 D.施密特触发器 二、判断题(正确打√,错误的打×)

1.权电阻网络D/A转换器的电路简单且便于集成工艺制造,因此被广泛使用。() 2.D/A转换器的最大输出电压的绝对值可达到基准电压V REF。() 3.D/A转换器的位数越多,能够分辨的最小输出电压变化量就越小。() 4.D/A转换器的位数越多,转换精度越高。() 5.A/D转换器的二进制数的位数越多,量化单位△越小。()6.A/D转换过程中,必然会出现量化误差。() 7.A/D转换器的二进制数的位数越多,量化级分得越多,量化误差就可以减小到0。() 8.一个N位逐次逼近型A/D转换器完成一次转换要进行N次比较,需要N+2个时钟脉冲。() 9.双积分型A/D转换器的转换精度高、抗干扰能力强,因此常用于数字式仪表中。() 10.采样定理的规定,是为了能不失真地恢复原模拟信号,而又不使电路过于复杂。() 三、填空题 1.将模拟信号转换为数字信号,需要经过、、、四个过程。 答案: 一、选择题 1. D 2. CD 3. B 4. B 5. C 6. A 7. D 8. B

第8章 数模和模数转换习题解答

思考题与习题 8-1 选择题 1)一输入为十位二进制(n=10)的倒T 型电阻网络DAC 电路中,基准电压REF V 提供电流为 b 。 A. R V 10REF 2 B. R V 10REF 22? C. R V REF D. R V i )2(REF ∑ 2)权电阻网络DAC 电路最小输出电压是 b 。 A. LSB 21V B. LSB V C. MSB V D. MSB 2 1V 3)在D/A 转换电路中,输出模拟电压数值与输入的数字量之间 a 关系。 A.成正比 B. 成反比 C. 无 4)ADC 的量化单位为S ,用舍尾取整法对采样值量化,则其量化误差m ax ε= b 。 A.0.5 S B. 1 S C. S D. 2 S ] 5)在D/A 转换电路中,当输入全部为“0”时,输出电压等于 b 。 A.电源电压 B. 0 C. 基准电压 6)在D/A 转换电路中,数字量的位数越多,分辨输出最小电压的能力 c 。 A.越稳定 B. 越弱 C. 越强 7)在A/D 转换电路中,输出数字量与输入的模拟电压之间 a 关系。 A.成正比 B. 成反比 C. 无 8)集成ADC0809可以锁存 8 模拟信号。 路 B. 8路 C. 10路 D. 16路 5)双积分型ADC 的缺点是 a 。 A.转换速度较慢 B. 转换时间不固定 < C. 对元件稳定性要求较高 D. 电路较复杂 8-2 填空题 1)理想的DAC 转换特性应是使输出模拟量与输入数字量成__正比__。转换精度是指DAC 输出的实际值和理论值__之差_。 2)将模拟量转换为数字量,采用 __A/D__ 转换器,将数字量转换为模拟量,采用__D/A_____ 转换器。 3)A/D 转换器的转换过程,可分为采样、保持及 量化 和 编码 4个步骤。 4)A/D 转换电路的量化单位位S ,用四舍五入法对采样值量化,则其m ax ε= 。 5)在D/A 转换器的分辨率越高,分辨 最小输出模拟量 的能力越强;A/D 转换器的分辨率越高,分辨 最小输入模拟量 的能力越强。 6)A/D 转换过程中,量化误差是指 1个LSB 的输出变所对应的模拟量的范围 ,

模数和数模转换器类型及原理介绍

QQ:460209698 模数模数//数模数模转换转换转换器器类型及原理类型及原理简介简介简介 (AD 详解详解((连载连载之之一)) https://www.360docs.net/doc/c218758006.html,/open_hard/blog/item/1cc0a8f36f633f53342acccd.html AD:模数转换,将模拟信号转换为数字信号,便于数字设备处理。 DA:数模转换,将数字信号转换为模拟信号,与外部世界接口。 具体可以看看下面的资料,了解一下工作原理: 1. 1. AD AD 转换器的分类 下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型逐次逼近型逐次逼近型、并行并行比较型比较型//串并行型串并行型((流水线型流水线型))、∑∑-Δ调制型 调制型、电容阵列逐次比较型及压频变换型。【【重点理解重点理解加粗的加粗的加粗的三种三种三种】】 1)积分型(如TLC7135) AD 连载之二-----双积分型 AD 转换器 积分型AD 工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率, 但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD 转换器大多采用积分型,现在逐次比较型已逐步成为主流。 2)逐次比较型(如TLC0831) AD 连载之三-----逐次逼近 AD 转换器的工作原理 逐次比较型AD 由一个比较器和DA 转换器通过逐次比较逻辑构成,从MSB 开始,顺序地对每一位将输入电压与内置DA 转换器输出进行比较,经n 次比较而输出 数字值。其电路规模属于中等,其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。 3)并行比较型/串并行比较型(如TLC5510) AD 连载之四-----并行比较型A/D 转换器 并行比较型AD 采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n 位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD 转换器等速度特别高的领域。 串并行比较型AD 结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD 转换器配合DA 转换器组成,用两次比较实行转换,所以称为 Half flash(半快速)型。还有分成三步或多步实现AD 转换的叫做分级 (Multistep/Subrangling)型AD,而从转换时序角度又可称为又可称为 又可称为流水线(Pipelined)型AD,现代的分级型AD 中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD 速度比逐次比较型高,电路规模比并行型小。 7)流水线型A/D 转换器(串并行比较型,特例) (先理解理解并行并行并行比较比较 比较型型A D 转换转换器器原理原理!!!!) 为兼顾高速率和高精度的要求,流水线结构的A/D 转换器应运而生。这种A/D 转换器如图11-6所示,它结合了串行和闪烁[Flash]型ADC 的特点,采用基于

相关文档
最新文档