数字地和模拟地处理的基本原则
电路设计为什么要分数字地和模拟地?如何对模拟地与数字地隔离?

电路设计为什么要分数字地和模拟地?如何对模拟地与数字地隔离? 做过电路设计的同学都会知道,电路设计中对于数字地,模拟地和电源地的区分在某些应⽤中要求是⼗分严格的。
有的同学就会不明⽩:那么这些地有什么区别呢,为什么要区分这些地呢? ⾸先要明确数字(DIGTAL)和模拟(ANALOG)的概念。
所谓数字,即0和1、真(TRUE)和假(FALSE)、低(LOW)和⾼(HIGH)。
也就是说在数字电路⾥,1代表着⾼电平,0代表着低电平在不同的数字电路中,这些⾼电平代表的范围也不同。
现在我们参考常⽤的TTL电平,在TTL电平中+5V代表⾼电平即1,0V代表低电平即0。
但是实际中⾼低电平是有⼀个范围的,例如0~0.8V都是低电平,当这个范围内的电压输⼊到数字器件⾥,⽐如我输⼊0.2V就会被识别为低电平,⾼电平也是同理。
通过这个例⼦可以看出来数字电路对于噪声是有⼀定的容忍能⼒的。
所谓模拟,就是线性的量,只要是线性变化的就可以看做是模拟量。
例如电压、电流就是典型的模拟量。
很多模拟器件输出都是电压。
模拟量不同于数字,它对于噪声是零容忍,对于模拟量来说,噪声越低越好,对于数字量⽽⾔0.2V的噪声可能不会带来什么影响,但是对于模拟量来说,0.2V的噪声就会对结果造成⼗分巨⼤的误差。
例如我使⽤STM32的ADC来读取光强传感器的数值,STM32ADC的读取范围是0~3.3V,假设本来我读出来的光强转换为电压为0.4V,这个时候来⼀个0.2V的噪声,就变成了0.2V或者0.6V,相⽐0.4V来说就产⽣了50%的误差,最终我转换出来的光强值就相差了50%。
从这个例字就可以看出来,模拟量对噪声是不可容忍的。
既然明⽩了模拟和数字,那么为什么他们要隔离呢?既然都知道数字是⽆数的0和1组成的,那么也以将数字量看成⽆数脉冲。
根据信号与系统中学习的傅⾥叶变换,这些脉冲是可以分解成⽆数频率不同的正弦/余弦曲线的,也就是噪声。
如果将数字地与模拟地直接相连,这些噪声将会进⼊模拟端,对模拟量产⽣影响。
数字地与模拟地区别

很多人分不清模拟地与信号地的区别,有时候也就不区分数字地与模拟地,但这样就使得电路质量下降,影响了电路的性能:模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些.既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地.对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰.而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式.另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线.不要有无用的大面积铜箔.地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流.但如果只是低频电路,则应避免地线环路.数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地.低频中没有多大影响,但建议模拟和数字一点接地.高频时,可通过磁珠把模拟和数字地一点共地.如果把模拟地和数字地大面积直接相连,会导致互相干扰.不短接又不妥,理由如上有四种方法解决此问题:1,用磁珠连接;2,用电容连接;3,用电感连接;4,用0欧姆电阻连接.磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号.对于频率不确定或无法预知的情况,磁珠不合.电容隔直通交,造成浮地.电感体积大,杂散参数多,不稳定.0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制.电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强.在具体的电路PCB设计中,必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面.相反,如果系统存在两个参考面,就可能形成一个偶极天线(注:小型偶极天线的辐射大小与线的长度,流过的电流大小以及频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线的辐射大小与环路面积,流过环路的电流大小以及频率的平方成正比).在设计中要尽可能避免这两种情况.复杂混合信号PCB设计是一个复杂的过程,设计过程要注意以下几点:1. 将PCB分区为独立的模拟部分和数字部分.2.合适的元器件布局.3.A/D转换器跨分区放置.4.不要对地进行分割.在电路板的模拟部分和数字部分下面敷设统一地.5.在电路板的所有层中,数字信号只能在电路板的数字部分布线.6.在电路板的所有层中,模拟信号只能在电路板的模拟部分布线.7.实现模拟和数字电源分割.8.布线不能跨越分割电源面之间的间隙.9.必须跨越分割电源之间间隙的信号线要位于紧邻大面积地的布线层上.10.分析返回地电流实际流过的路径和方式.11.采用正确的布线规则.首先说IO standard:这个是用于支持对应不同的电平标准。
关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
关于电路中各种接地的方法:数字地、模拟地、信号地等等

关于接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
机壳地、数字地与模拟地的关系

机壳地、数字地与模拟地的关系在电子设备中,接地是抑制噪声的重要方法。
如能将接地和屏蔽正确结合起来使用,可解决大部分噪声问题。
电子设备中地线结构大致分为:系统地,机壳地(屏蔽地),数字地(逻辑地)和电源模拟地等。
在地线设计中应注意以下几点:A、正确选择单点接地与多点接地在低频电路中,信号的工作频率小于1MHz,它的布线和组件间的电感影响较小,而接地电路形成的环流对噪声影响较大,因而应采用一点接地。
当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。
当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
B、将数字电路与电源模拟电路分开如果电路板上有高速逻辑电路,又有线性模拟电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连(???)。
要尽量加大线性电路的接地面积。
C、尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。
因此应将接地线尽量加粗,使它能通过三位于印刷电路板的允许电流。
如有可能,接地线的宽度应大于3mm。
D、将接地线构成死循环路设计只由数字电路组成的印刷电路板的地线系统时,将接地线做成死循环路可以明显的提高抗噪声能力。
其原因在于:印刷电路板上有很多集成电路组件,尤其遇有耗电多的组件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。
这是几个不同的问题:模拟地和数字地,顾名思意也就是模拟电路和数字电路接地。
1.数字地和模拟地应分开;在高要求电路中,数字地与模拟地必需分开。
即使是对于A/D、D/A转换器同一芯片上两种“地”最好也要分开,仅在系统一点上把两种“地”连接起来。
2.浮地与接地;系统浮地,是将系统电路的各部分的地线浮置起来,不与大地相连。
这种接法,有一定抗干扰能力。
图解PCB布线数字地、模拟地、电源地,单点接地抗干扰

图解PCB布线数字地、模拟地、电源地,单点接地抗干扰
我们在进行pcb布线时总会面临一块板上有两种、三种地的情况,傻瓜式的做法当然是不管三七二十一,只要是地就整块敷铜了。
这种对于低速板或者对干扰不敏感的板子来讲还是没问题的,否则可能导致板子就没法正常工作了。
当然若碰到一块板子上有多种地时,即使板子没什么要求,但从做事严谨认真的角度来讲,咱们也还是有必要采用本文即将讲到的方法去布线,以将整个系统最优化,使其性能发挥到极致!当然关于这些地的一些基础概念、为什么要将它们分开,本文就不讲了,不懂的同学自己查哈!
最后,关于本问题的探讨网上也有不少帖子,但大都是文字描述,没有图解,让人看了总有种知其然但不知其所以然的感觉,故本人在此大胆的图解下自己的思想,不对的地方还望高人指教,同时希望有不同意见的朋友留言。
感谢~
一、对于板子上有数字地、模拟地、电源地这种情况:
从这个图可以看出:模拟地和数字地是完全分开的,最后都单点接到了电源地,这样可以防止地信号的相互串扰而影响某些敏感元件,众所周知数字元件对干扰的容忍度要强于模拟元件,而数字地上的噪声一般比较大所以将它们的地分开就可以降低这种影响了。
还有单点接地的位置应该尽量靠近板子电源地的入口(起始位置),这样利用电流总是按最短路径流回的原理可将干扰降到最小。
二、对于板子上只有数字地、电源地这种情况:
从此图可以看出:只在电源地和数字地之间用一个0欧电阻或磁珠之类的单点接地就行了,同样单点接地的位置应该尽量靠近板子电源地的入口(起始位置)。
三、将本人画的pcb系统展示一下(属于第二种情况):
1、地线分区
2、0欧电阻单点接地
3、板子正面图
也可参考!。
将数字地和模拟地分开的方法
将数字地和模拟地分开的方法
将数字地和模拟地分开的方法主要是为了避免两者之间的相互干扰,从而提高电路的稳定性和性能。
以下是实现这一目标的一些常见方法:
1.使用独立的地线:为数字电路和模拟电路分别设置独立的地线,这样可以确保它们
之间的干扰最小化。
这种方法在电路板设计中很常见,通过合理规划布线,使数字地和模拟地分别连接到不同的接地点。
2.使用磁珠或电感:在数字地和模拟地之间加入磁珠或电感,可以减小两者之间的干
扰。
磁珠和电感具有抑制高频噪声的作用,通过将它们连接在数字地和模拟地之间,可以降低噪声对模拟电路的影响。
3.使用地线隔离器:地线隔离器是一种专门用于隔离数字地和模拟地的设备。
它可以
通过电容耦合或变压器耦合等方式,将数字地和模拟地隔离开来,从而减小它们之间的干扰。
4.优化布线设计:在电路板布线时,要注意避免数字地和模拟地之间的交叉布线,以
减少它们之间的耦合。
此外,还可以采用地线加粗、地线敷铜等措施,提高地线的导电性能,降低电阻和电感,从而减小干扰。
需要注意的是,虽然将数字地和模拟地分开可以降低干扰,但并不能完全消除干扰。
因此,在实际应用中,还需要根据具体需求和电路设计情况,采取其他措施来进一步减小干扰,提高电路的稳定性和性能。
模拟地数字地连接方法
模拟地数字地连接方法随着科技的不断进步和网络的深入发展,模拟地数字地连接方法成为一种重要的通信方式。
本文将从模拟地数字地连接方法的定义、原理、应用以及使用中的注意事项等方面进行详细介绍。
模拟地数字地连接方法是指将模拟信号转换为数字信号,通过数字地方式进行传输和接收的一种通信方法。
在传输过程中,通过采样和量化将连续的模拟信号离散化,然后利用调制和解调技术,在传输介质上传输数字信号,最后通过解调和重构过程将数字信号还原为模拟信号。
1. 采样:模拟信号是连续变化的,为了进行数字化处理,需要对模拟信号进行采样。
采样是指在一段时间内对模拟信号进行周期性的测量,将其离散化。
2. 量化:采样得到的离散信号仍然是连续的,为了将其转换为离散的数字信号,需要对其进行量化处理。
量化是指将连续的模拟信号离散化为一组离散的数值。
3. 编码:将量化后的信号进行编码,以便在传输过程中能够正确识别和恢复。
4. 调制:在传输介质上传输数字信号时,需要通过调制技术将数字信号转换为适合传输的模拟信号。
常用的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。
5. 传输:通过传输介质将调制后的信号传输到接收端。
6. 解调:接收端接收到传输的模拟信号后,需通过解调技术将其转换为数字信号。
7. 重构:将解调后的数字信号进行重新构建,还原为模拟信号。
模拟地数字地连接方法广泛应用于各个领域,包括通信、音视频传输、数据存储等。
1. 通信:模拟地数字地连接方法在通信领域中扮演着重要的角色。
通过模拟地数字地连接,可以将模拟声音、图像等信息转换为数字信号进行传输,提高了通信的质量和可靠性。
2. 音视频传输:在音视频传输领域,模拟地数字地连接方法常用于将模拟音频和视频信号转换为数字信号进行传输和存储。
例如,通过模拟地数字地连接方法,可以将模拟音频信号转换为数字音频信号,并通过数字信号传输介质进行传输,实现高质量的音频传输。
3. 数据存储:在数据存储领域,模拟地数字地连接方法被广泛使用。
接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地
接地:数字地、模拟地、信号地、交流地、直流地、屏蔽地、浮地除了正确进行接地设计、安装,还要正确进行各种不同信号的接地处理。
控制系统中,大致有以下几种地线:(1)数字地:也叫逻辑地,是各种开关量(数字量)信号的零电位。
(2)模拟地:是各种模拟量信号的零电位。
(3)信号地:通常为传感器的地。
(4)交流地:交流供电电源的地线,这种地通常是产生噪声的地。
(5)直流地:直流供电电源的地。
(6)屏蔽地:也叫机壳地,为防止静电感应和磁场感应而设。
以上这些地线处理是系统设计、安装、调试中的一个重要问题。
下面就接地问题提出一些看法:(1)控制系统宜采用一点接地。
一般情况下,高频电路应就近多点接地,低频电路应一点接地。
在低频电路中,布线和元件间的电感并不是什么大问题,然而接地形成的环路的干扰影响很大,因此,常以一点作为接地点;但一点接地不适用于高频,因为高频时,地线上具有电感因而增加了地线阻抗,同时各地线之间又产生电感耦合。
一般来说,频率在1MHz以下,可用一点接地;高于10MHz时,采用多点接地;在1~10MHz之间可用一点接地,也可用多点接地。
(2)交流地与信号地不能共用。
由于在一段电源地线的两点间会有数mV甚至几V电压,对低电平信号电路来说,这是一个非常重要的干扰,因此必须加以隔离和防止。
(3)浮地与接地的比较。
全机浮空即系统各个部分与大地浮置起来,这种方法简单,但整个系统与大地绝缘电阻不能小于50MΩ。
这种方法具有一定的抗干扰能力,但一旦绝缘下降就会带来干扰。
还有一种方法,就是将机壳接地,其余部分浮空。
这种方法抗干扰能力强,安全可靠,但实现起来比较复杂。
(4)模拟地。
模拟地的接法十分重要。
为了提高抗共模干扰能力,对于模拟信号可采用屏蔽浮技术。
对于具体模拟量信号的接地处理要严格按照操作手册上的要求设计。
(5)屏蔽地。
在控制系统中为了减少信号中电容耦合噪声、准确检测和控制,对信号采用屏蔽措施是十分必要的。
根据屏蔽目的不同,屏蔽地的接法也不一样。
模拟地和数字地的区别
很多人分不清模拟地与信号地的区别,有时候也就不区分数字地与模拟地,但这样就使得电路质量下降,影响了电路的性能:模拟电路涉及弱小信号,但是数字电路门限电平较高,对电源的要求就比模拟电路低些。
既有数字电路又有模拟电路的系统中,数字电路产生的噪声会影响模拟电路,使模拟电路的小信号指标变差,克服的办法是分开模拟地和数字地。
对于低频模拟电路,除了加粗和缩短地线之外,电路各部分采用一点接地是抑制地线干扰的最佳选择,主要可以防止由于地线公共阻抗而导致的部件之间的互相干扰。
而对于高频电路和数字电路,由于这时地线的电感效应影响会更大,一点接地会导致实际地线加长而带来不利影响,这时应采取分开接地和一点接地相结合的方式。
另外对于高频电路还要考虑如何抑制高频辐射噪声,方法是:尽量加粗地线,以降低噪声对地阻抗;满接地,即除传输信号的印制线以外,其他部分全作为地线。
不要有无用的大面积铜箔。
地线应构成环路,以防止产生高频辐射噪声,但环路所包围面积不可过大,以免仪器处于强磁场中时,产生感应电流。
但如果只是低频电路,则应避免地线环路。
数字电源和模拟电源最好隔离,地线分开布置,如果有A/D,则只在此处单点共地。
低频中没有多大影响,但建议模拟和数字一点接地。
高频时,可通过磁珠把模拟和数字地一点共地。
如果把模拟地和数字地大面积直接相连,会导致互相干扰。
不短接又不妥,理由如上有四种方法解决此问题∶1、用磁珠连接;2、用电容连接;3、用电感连接;4、用0欧姆电阻连接。
磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。
对于频率不确定或无法预知的情况,磁珠不合。
电容隔直通交,造成浮地。
电感体积大,杂散参数多,不稳定。
0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。
电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。
在具体的电路PCB设计中,必须了解电磁兼容(EMC)的两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★数字地和模拟地处理的基本原则如下: 1模拟地和数字地之间链接 (1)模拟地和数字地间串接电感一般取值多大? 一般用几uH到数十uH。 (2)用0欧电阻是最佳选择 (1)可保证直流电位相等、(2)单点接地(限制噪声)、(3)对所有频率的噪声都有衰减作用(0欧也有阻抗,而且电流路径狭窄,可以限制噪声电流通过)。 磁珠相当于带阻陷波器,只对某个频点的噪声有抑制作用,如果不能预知噪点,如何选择型号,况且,噪点频率也不一定固定,故磁珠不是一个好的选择。 电容不通直流,会导致压差和静电积累,摸机壳会麻手。如果把电容和磁珠并联,就是画蛇添足,因为磁珠通直,电容将失效。串联的话就显得不伦不类。 电感特性不稳定,离散分布参数不好控制,体积大。电感也是陷波,LC谐振(分布电容),对噪点有特效。 总之,关键是模拟地和数字地要一点接地。 建议,不同种类地之间用0欧电阻相连;电源引入高频器件时用磁珠;高频信号线耦合用小电容;电感用在大功率低频上。 2 磁珠
采用在高频段具有良好阻抗特性的铁氧体材料烧结面成,专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。
主要参数: 标称值:因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆 .一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。
额定电流:额定电流是指能保证电路正常工作允许通过电流.
3 电感与磁珠的区别: 有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠; 电感是储能元件,而磁珠是能量转换(消耗)器件; 电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策; 磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰.两者都可用于处理EMC、EMI问题; 电感一般用于电路的匹配和信号质量的控制上.在模拟地和数字地结合的地方用磁珠. 磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。 他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果。 作为电源滤波,可以使用电感。磁珠的电路符号就是电感但是型号上可以看出使用的是磁珠在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了 磁珠由氧磁体组成,电感由磁心和线圈组成,磁珠把交流信号转化为热能,电感把交流存储起来,缓慢的释放出去。 磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ ,它在低频时电阻比电感小得多。 铁氧体磁珠 (Ferrite Bead) 是目前应用发展很快的一种抗干扰组件,廉价、易用,滤除高频噪声效果显着。 在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个组件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。 有的磁珠上有多个孔洞,用导线穿过可增加组件阻抗(穿过磁珠次数的平方),不过在高频时所增加的抑制噪声能力不可能如预期的多,而用多串联几个磁珠的办法会好些。 铁氧体是磁性材料,会因通过电流过大而产生磁饱和,导磁率急剧下降。大电流滤波应采用结构上专门设计的磁珠,还要注意其散热措施。 铁氧体磁珠不仅可用于电源电路中滤除高频噪声(可用于直流和交流输出),还可广泛应用于其它电路,其体积可以做得很小。特别是在数字电路中,由于脉冲信号含有频率很高的高次谐波,也是电路高频辐射的主要根源,所以可在这种场合发挥磁珠的作用。 铁氧体磁珠还广泛应用于信号电缆的噪声滤除。 以常用于电源滤波的HH-1H3216-500为例,其型号各字段含义依次为: HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列; 1 表示一个组件封装了一个磁珠,若为4则是并排封装四个的; H 表示组成物质,H、C、M为中频应用(50-200MHz), T低频应用(50MHz),S高频应用(200MHz); 3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装; 500 阻抗(一般为100MHz时),50 ohm。 其产品参数主要有三项: 阻抗[Z]@100MHz (ohm) : Typical 50, Minimum 37; 直流电阻DC Resistance (m ohm): Maximum 20; 额定电流Rated Current (mA): 2500.
电感和磁珠的什么联系与区别 电感是储能元件,而磁珠是能量转换(消耗)器件 电感多用于电源滤波回路,磁珠多用于信号回路,用于EMC对策 磁珠主要用于抑制电磁辐射干扰,而电感用于这方面则侧重于抑制传导性干扰。两者都可用于处理EMC、EMI问题。
磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDR SDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过错50MHZ。
★地的连接一般用电感,电源的连接也用电感,而对信号线则采用磁珠? 但实际上磁珠应该也能达到吸收高频干扰的目的啊?而且电感在高频谐振以后都不能再起电感的作用了……
先必需明白EMI的两个途径,即:辐射和传导,不同的途径采用不同的抑制方法。前者用磁珠,后者用电感。
对于扳子的IO部分,是不是基于EMC的目的可以用电感将IO部分和扳子的地进行隔离,比如将USB的地和扳子的地用10uH的电感隔离可以防止插拔的噪声干扰地平面?
电感一般用于电路的匹配和信号质量的控制上。在模拟地和数字地结合的地方用磁珠。 在模拟地和数字地结合的地方用磁珠。数字地和模拟地之间的磁珠用多大 磁珠的大小(确切的说应该是磁珠的特性曲线) 取决于你需要磁珠吸收的干扰波的频率
为什么磁珠的单位和电阻是一样的呢??都是欧姆!! 磁珠就是阻高频嘛,对直流电阻低,对高频电阻高,不就好理解了吗, 比如1000R@100Mhz就是说对100M频率的信号有1000欧姆的电阻
因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的datasheet上一般会附有频率和阻抗的特性曲线图。一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的Impedance为600欧姆。
在很多产品中,交换机的两个地用电容连接起来,为什么不用电感? 你说的两个地,其中一个是不是机壳的? 我估计(以下全部估计,有错请指点) 如果用磁珠或者直接相连的话, 人体静电等意外电平会轻易进入交换机的地, 这样交换机工作就不正常了。
但如果它们之间断开,那么遭受雷击或者其他高压的时候,两个地之间的电火花引起起火…… 加电容则避免这种情况。 对于加电容的解释我也觉得很勉强呵呵, 请高手指教! 交换机的地,是通过两个地之间的之间的电容去消除谐波。就像高阻抗的变压器一样,他附加了一个消除谐波的通路!我自己认为!请指正!
铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。
线圈,磁珠 有一匝以上的线圈习惯称为电感线圈,少于一匝(导线直通磁环)的线圈习惯称之为磁珠。用途由起所需电感量决定。
请教:对于骅讯的USB声卡方案中,在UBS电源端与地端也分别接有一个磁珠,不知是否有人清楚,但是在实际生产中也有些工程把磁珠用电感去代替了,请问这样可以吗?
那里的磁珠是起什么作用哟? 作为电源滤波,可以使用电感。 磁珠的电路符号就是电感 但是型号上可以看出使用的是磁珠 在电路功能上,磁珠和电感是原理相同的,只是频率特性不同罢了
★数字地和模拟地处理的基本原则如下: 1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。
2)、高频电路还应考虑如何抑制高频辐射噪声。方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。 3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。注意若为低频电路,则应避免地线环路。
4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。
1)、若为低频模拟电路,加粗和缩短地线;单点接地,可有效防止由于地线公共阻抗而导致的部件之间的互相干扰。而高频电路和数字电路,地线的电感效应较严重,单点接地会导致实际地线加长,故应多点接地和单点接地相结合。
2)、高频电路还应考虑如何抑制高频辐射噪声。方法如下:应尽量加粗地线,以降低噪声对地阻抗;大面积(满)接地,即除传输信号及电源的印制线以外,其余部分全覆铜作为地线,但不要留有死的无用大面积铜箔。
3)、地线应构成环路,以防止产生高频辐射噪声,但环路面积不可过大,以免产生较大的感应电流。注意若为低频电路,则应避免地线环路。
4)、数字电源和模拟电源最好隔离,地线分开布置,如果有A/D转换电路,则只在尽量靠近该器件处单点接地。
问题: 数字地和模地低之间应该想一些办法进行隔离噪声,我搜到的方法有接0电阻,电感,电容和磁珠,不知道哪种方法比较好,各是针对什么情况使用的?另外,我的电路有器件正好数字地和模拟地在一起,那该怎么办?谢谢各位高手指点! 回答:
磁珠的等效电路相当于带阻限波器,只对某个频点的噪声有显着抑制作用,使用时需要预先估计噪点频率,以便选用适当型号。对于频率不确定或无法预知的情况,磁珠不合。 电容隔直通交,造成浮地(模拟地和数字地没有接在一起,存在压差,容易积累电荷,造成静电)。电感体积大,杂散参数多,不稳定。 0欧电阻相当于很窄的电流通路,能够有效地限制环路电流,使噪声得到抑制。电阻在所有频带上都有衰减作用(0欧电阻也有阻抗),这点比磁珠强。