2011年全国高考文科数学试题及答案-全国
2012年全国I卷文科数学高考试卷(原卷 答案)

绝密★启用前2012年普通高等学校招生全国统一考试(全国I 卷)(适用地区:河南、吉林、黑龙江、山西、新疆、宁夏、河北、云南、内蒙古)文科数学本试卷共24题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i 3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
2011年高考试题——(浙江卷文)

2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)姓名 准考证号 本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页,满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给也的四个选项中,只有一项是符合题目要求的。
(1) 若{1},{1}P x x Q x x =<>,则(A )P Q ⊆ (B )Q P ⊆(C )R C P Q ⊆ (D )R Q C P ⊆ (2)若复数1z i =+,i 为虚数单位,则(1)i z +⋅=(A )13i + (B )33i + (C )3i - (D )3 X +2y -5≥0(3)若实数x ,y 满足不等式组 2x +y -7≥0,则3x +4y 的最小值是x ≥0,y ≥0(A)13 (B)15 (C)20 (D)28(4)若直线l 不平行于平面a ,且l a ∉,则(A) a 内存在直线与异面 (B) a 内不存在与l 平行的直线(C) a 内存在唯一的直线与l 平行 (D) a 内的直线与l 都相交(5)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=(A)- 12 (B) 12(C) -1 (D) 1 (6)若,a b 为实数,则“01ab ∠∠”是“1b a ∠”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(7)几何体的三视图如图所示,则这个几何体的直观图可以是(8)从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(A )110 (B )310 (C )35 (D )910(9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线222:14y C x -=有公共的焦点,C 2的一条渐近线与C 1C 2的长度为直径的圆相交于,A B 两点.若C 1恰好将线段AB 三等分,则(A )a 2 =132 (B )a 2=13 (C )b 2=12(D)b 2=2 (10)设函数()()2,,f x ax bx c a b c R =++∈,若1x =-为函数()2f x e 的一个极值点,则下列图象不可能为()y f x =的图象是非选择题部分 (共100分)考生注意事项请用0.5毫米黑色墨水签字笔或钢笔将答案写在答题纸上,不能答在试题卷上........若需在答题纸上作图,可先使用铅笔作图,确定后必须使用黑色字迹的签字笔或钢笔描黑二、填空题:本大题共7小题,每小题4分,共28分。
2011江西数学高考试题及答案

2011年普通高等学校夏季招生全国统一考试数学(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 参考公式(理科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性相关系数()()()()niii nni ii i x x y y r x x y y 2=12=1=1--=--∑∑∑其中,n nx x x y y y x y n n1212++++==L L锥体体积公式 V Sh 1=3,其中S 为底面积,h 为高参考公式(文科):样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程ˆya bx =+ 其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-1212,n nx x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==锥体体积公式 13V Sh =,其中S 为底面积,h 为高第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若1+2iiz =,则复数z = ( ) A .-2-iB .-2+iC .2-iD .2+i2.若集合{},{}x A x x B x x-2=-1≤2+1≤3=≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}3.若()log ()f x x 121=2+1,则f (x )的定义域为 …( )A .(,)1-02 B .(,]1-02C .(,)1-+∞2D .(0,+∞)4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为 …( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)5.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1.那么a 10=( ) A .1 B .9 C .10 D .556.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则() A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r17.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为() A.3125 B.5625 C.0625 D.81258.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是()A.(33-,33) B.(33-,0)∪(0,33)C.[33-,33] D.(-∞,33-)∪(33,+∞)10.如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是()第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.11.已知|a|=|b|=2,(a+2b)·(a-b)=-2,则a与b的夹角为________.12.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.13.下图是某算法的程序框图,则程序运行后输出的结果是________.14.若椭圆22221x ya b+=的焦点在x轴上,过点(1,12)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.三、选做题:请考生在下列两题中任选一题作答.若两题都做,则按所做的第一题评阅计分.本题共5分.15.(1)(坐标系与参数方程选做题)若曲线的极坐标方程为ρ=2sinθ+4cosθ,以极点为原点,极轴为x轴正半轴建立直角坐标系,则该曲线的直角坐标方程为______________.(2)(不等式选做题)对于实数x,y,若|x-1|≤1,|y-2|≤1,则|x-2y+1|的最大值为________.四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望.17.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin cos sinC C C +=1-2. (1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值.18.已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.19.设()f x x x ax 3211=-++232. (1)若f (x )在(,2+∞3)上存在单调递增区间,求a 的取值范围; (2)当0<a <2时,f (x )在[1,4]上的最小值为16-3,求f (x )在该区间上的最大值. 20.P (x 0,y 0)(x 0≠±a )是()2222:10,0x y E a b a b-=>>上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15.(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足OC OA OB λ=+,求λ的值.21.(1)如图,对于任一给定的四面体A 1A 2A 3A 4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi (i =1,2,3,4),且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离都为1,若一个正四面体A 1A 2A 3A 4的四个顶点满足:A i ∈αi (i =1,2,3,4),求该正四面体A 1A 2A 3A 4的体积.参考答案1.D 2.B 3.A 4.C 5.A 6.C 7.D 8.C 9.B 10.A11.答案:π312.答案:131613.答案:1014.答案:22=154x y + 15.(1)答案:x 2+y 2-4x -2y =0(2)答案:516.解:(1)X 的所有可能取值为:0,1,2,3,4,14-4445C C ()(0,1,2,3,4)C i P X i i ===, 即X 01234P170 1670 3670 1670 170(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,1(3500)(4)708(2800)(3)3553(2100)(2)70116533500280021002280.707070P Y P X P Y P X P Y P X EY ==========≤==⨯+⨯+⨯=则所以新录用员工月工资的期望为2 280元. 17.解:(1)由已知得sin sin 1cos ,2CC C +=- 即2sin(2cos 1)2sin 222C C C +=, 由1sin 02cos 12sin ,sin cos 222222C C C C C ≠+=-=得即,两边平方得3sin 4C =.(2)由1ππsin cos 0222422C C C -=><<得,即π37π,sin cos 244C C C <<==-则由,得. 由a 2+b 2=4(a +b )-8,得(a -2)2+(b -2)2=0,则a =2,b =2.由余弦定理得2222cos 827,7 1.c a b ab C c =+-=+=+所以.18.解:(1)设{a n }的公比为q ,则b 1=1+a =2,b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2. 由b 1,b 2,b 3成等比数列,得(2+q )2=2(3+q 2), 即212420,22,22q q q q -+==+=-解得.所以{a n }的通项公式为11(22)(22).n n n n a a --=+=-或.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*). 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根. 由{a n }唯一,知方程(*)必有一根为0,代入(*)得1.3a =19.解:(1)由2211()2()224f x x x a x a '=-++=--++,当222[,),()()2;339x f x f a ''∈+∞=+时的最大值为;令2120,99a a +>>-得, 所以,当12,()(,)93a f x >-+∞时在上存在单调递增区间.(2)令12118118()0,,.22a af x x x -+++'===得两根.所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 当0<a <2时,有x 1<1<x 2<4,所以f (x )在[1,4]上的最大值为f (x 2).又27(4)(1)60,(4)(1)2f f a f f -=-+<<即, 所以f (x )在[1,4]上的最小值为4016(4)833f a =-=-, 得a =1,x 2=2,从而f (x )在[1,4]上的最大值为10(2).3f =. 20.解:(1)点P (x 0,y 0)(x 0≠±a )在双曲线22221x y a b -=上,有2200221x y a b-=,由题意又有00001,5y y x a x a ⋅=-+可得222222305,6,5c a b c a b b e a ==+===则. (2)联立2222255,410350,x y b x cx b y x c ⎧-=-+=⎨=-⎩得设A (x 1,y 1),B (x 2,y 2),则122125,2354c x x b x x ⎧+=⎪⎪⎨⎪=⎪⎩① 设31211312(,),,x x x OC x y OC OA OB y y y λλλ=+⎧==+⎨=+⎩ 即又C 为双曲线上一点,即2223355,x y b -=,有(λx 1+x 2)2-5(λy 1+y 2)2=5b 2,化简得22222211221212(5)(5)2(5)5x y x y x x y y b λλ-+-+-=.②又A (x 1,y 1),B (x 2,y 2)在双曲线上,所以222222112255,55x y b x y b -=-=. 由①式又有x 1x 2-5y 1y 2=x 1x 2-5(x 1-c )(x 2-c )=-4x 1x 2+5c (x 1+x 2)-5c 2=10b 2, 得λ2+4λ=0,解出λ=0,或λ=-4. 21.解:(1)如图所示,取A 1A 4的三等分点P 2,P 3,A 1A 3的中点M ,A 2A 4的中点N ,过三点A 2,P 2,M 作平面α2,过三点A 3,P 3,N 作平面α3,因为A 2P 2∥NP 3,A 3P 3∥MP 2,所以平面α2∥平面α3,再过点A 1,A 4分别作平面α1,α4与平面α2平行,那么四个平面α1,α2,α3,α4依次相互平行,由线段A 1A 4被平行平面α1,α2,α3,α4截得的线段相等知,其中每相邻两个平面间的距离相等,故α1,α2,α3,α4为所求平面.(2)解法一:当(1)中的四面体为正四面体,若所得的四个平行平面,每相邻两平面之间的距离为1,则正四面体A 1A 2A 3A 4就是满足题意的正四面体.设正四面体的棱长为a ,以△A 2A 3A 4的中心O 为坐标原点,以直线A 4O 为y 轴,直线OA 1为z 轴建立如(1)中图的右手直角坐标系,则12346333(0,0,),(,,0),(,,0),(0,,0)326263a a A a A a A a A a --则. 令P 2,P 3为A 1A 4的三等分点,N 为A 2A 4的中点,有33342363(0,,),(,,0)9941253633,(,,),(,,0)43694413(,,0)44a P a a N a a P N a a NA a a A N a a ---=--==- 所以.设平面A 3P 3N 的法向量n =(x ,y ,z ),有330953460,0330P N x y z NA x y ⎧⎧⋅=-+=⎪⎪⎨⎨⋅=+=⎪⎪⎩⎩即n n 所以(1,3,6).=--n 因为α1,α2,α3,α4相邻平面之间的距离为1,所以点A 4到平面A 3P 3N 的距离为223|()1(3)0(6)|4411(3)(6)a a -⨯+⨯-+⨯-=+-+-,解得10a =.由此可得,边长为10的正四面体A 1A 2A 3A 4满足条件. 所以所求正四面体的体积23113625 5.3343123V Sh a a a ==⨯⨯==. 解法二:如图,现将此正四面体A 1A 2A 3A 4置于一个正方体ABCD —A 1B 1C 1D 1中(或者说,在正四面体的四个面外侧各镶嵌一个直角正三棱锥,得到一个正方体),E 1,F 1分别是A 1B 1,C 1D 1的中点,EE 1D 1D 和BB 1F 1F 是两个平行平面,若其距离为1,则四面体A 1A 2A 3A 4即为满足条件的正四面体.如图是正方体的上底面,现设正方体的棱长为a ,若A 1M =MN =1,则有1122111111,252a A E D E A D A E a ==+=.据A 1D 1×A 1E 1=A 1M ×D 1E 1,得5a =, 于是正四面体的棱长210,d a ==,其体积33311554.633V a a a =-⨯==.(即等于一个棱长为a 的正方体割去四个直角正三棱锥后的体积)。
2010-2015高考 全国卷1卷 文科数学试题及答案

2010年普通高等学校招生全国统一考试文科数学参考公式: 样本数据12,n x x x 的标准差 锥体体积公式其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式 其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合2,,4,|A x x x R B x x Z =≤∈=∈,则A B = (A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2| (2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =i = (A)14 (B )12(C )1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A ) (B (C(D (6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54 (B )45(C )65(D )56(9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若sin a = -45,a 是第一象限的角,则sin()4a π+= (A )-10 (B)10 (C) -10 (D)10(11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是 (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。
2023年高考文科数学(全国乙卷)及答案

2023年高考文科数学试卷(全国乙卷)一、选择题1.232i 2i ++=()A.1B.2C.D.52.设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则U M N ⋃=ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B.26C.28D.304.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c -=,且5C π=,则B ∠=()A.10π B.5π C.310π D.25π5.已知e ()e 1xaxx f x =-是偶函数,则=a ()A.2- B.1- C.1 D.26.正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=()A.B.3C. D.57.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.128.函数()32f x x ax =++存在3个零点,则a 的取值范围是()A.(),2-∞- B.(),3-∞- C.()4,1-- D.()3,0-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.1310.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32B.12-C.12D.3211.已知实数,x y 满足224240x y x y +---=,则x y -的最大值是()A.3212+B.4C.1+D.712.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ-=________.15.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.16.已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==.(1)求{}n a 的通项公式;(2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥-P ABC 的体积.20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,f x 处的切线方程.(2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+-≤⎩所确定的平面区域的面积.2023年高考文科数学试卷(全国乙卷)答案一、选择题【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】D【11题答案】【答案】C【12题答案】【答案】D二、填空题【13题答案】【答案】94【14题答案】【答案】5-【15题答案】【答案】8【16题答案】【答案】2三、解答题【17题答案】【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【18题答案】【答案】(1)152n a n=-(2)2214,71498,8n n n n T n n n ⎧-≤=⎨-+≥⎩【19题答案】【答案】(1)证明见解析(2)3【20题答案】【答案】(1)()ln 2ln 20x y +-=;(2)1|2a a ⎧⎫≥⎨⎬⎩⎭.【21题答案】【答案】(1)22194y x +=(2)证明见详解【选修4-4】(10分)【22题答案】【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【选修4-5】(10分)【23题答案】【答案】(1)[2,2]-;(2)6.。
2011年重庆高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(重庆卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.在等差数列{}n a 中, 23102,4,a a a ===则( ) A .12 B .14 C .16 D .18【测量目标】等差数列的性质.【考查方式】给出等差数列的几个已知基本量求某个未知量. 【参考答案】D 【试题解析】23321032,4,2,718,a a d a a a a d D ==∴=-=∴=+=故选2.设2,{|20},U M x x x ==->R ,则U M ð=( )A .[]0,2B . (0,2)C.(,0)(2)-∞+∞D .(][),02,-∞+∞【测量目标】一元二次不等式的解法和集合的补集运算.【考查方式】给出一个含有一元二次不等式的集合,先化简求解这个集合进行运算再求解. 【参考答案】A【试题解析】{}[]02,0,2,.U M x x x M A =<>∴=由题意知或故选ð 3.曲线223y x x =-+在点()1,2处的切线方程为( )A .31y x =-B .35y x =-+C .35y x =+D .2y x =【测量目标】函数求导与函数切线的性质.【考查方式】给出已知函数运用函数导数的性质求其在某个点的切线方程. 【参考答案】 A 【试题解析】236,3,23(1),31,Ay x x y x y x '=-+∴-=-=-切线的斜率为则过(1,2)的切线方程为即故选4.从一堆苹果中任取10只,称得它们的质量如下(单位:克)125 120 122 105 130 114 116 95 120 134则样本数据落在[114.5,124.5)内的频率为( )A . 0.2B . 0.3C .0.4D .0.5 【测量目标】统计数据分析与处理、频率的计算.【考查方式】给出实际应用题,由已知条件运用统计学的相关知识求解答案. 【参考答案】C【试题解析】由数据知样本数据落在[)[)114.5,124.54,114.5,124.50.4.C ∴内的频数为样本数据落在内的频率为,故选5.已知向量(1,),(2,2),k ==+且与a b a b a 共线,那么a b 的值为( ) A .1 B .2 C .3 D .4【测量目标】向量共线的性质及条件,向量数量积的运算. 【考查方式】给出若干含有未知数的向量通过四则运算求解. 【参考答案】D 【试题解析】(3,2),32(2)20,1,=12+12=4.k k k D +=+∴⨯-+⨯==∴⨯⨯与,解得,故选a b a +b a a b6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是( ) A .a b c << B .c b a << C .b a c <<D .b c a <<【测量目标】对数函数图像的性质运用.【考查方式】给出若干对数通过对其图像的研究判断之间的大小. 【参考答案】B【试题解析】113211323312log log (0,)01,01,2312log 0,log 0,234log (0,)01,34log 0,B B.3y x y x a b y x c c ==+∞<<<<∴=>=>=+∞<<∴=<与在都是减函数,且又在上是增函数,且即最小,是有符合,故选7若函数()()122f x x x x =+>-在x a =处取最小值,则a =( )A .1 B.1+ C . 3D .4【测量目标】均值不等式的最值问题的掌握与运用.【考查方式】给出某个函数运用均值不等式化简,由已知函数的某个性质求未知值. 【参考答案】C【试题解析】112,()2224,22122x f x x x x x x x >∴=+=-++=---=-当且仅当…min 33,()4,x a f x C ===即时,即故选.8.若ABC △的内角, ,,A B C 满足6sin 4sin 3sin A B C ==,则cos B =( )A .4B .34C.16D .1116【测量目标】正余弦定理,余弦定理.【考查方式】给出已知三角形和三角形中的基本量通过正余弦定理求未知基本量. 【参考答案】D【试题解析】2222226sin 4sin 3sin ,sin :sin :sin 2:3:4::2:3:4,2,3,4,(0),(2)(4)(3)11cos , D.222416A B C A B C a b c a x b x c x x a c b x x x B ac x x =======>+-+-===⨯⨯由得由正弦定理知,设则故选9.设双曲线的左准线与两条渐近线交于,A B 两点,左焦点在以AB 为直径的圆内,则该双曲线的离心率e 的取值范围为( )A .B .C .(2D.)+∞【测量目标】对双曲线性质以及点与圆的位置关系的掌握与运用. 【考查方式】给出未知双曲线,以及点和圆位置关系求解未知量. 【参考答案】B 【试题解析】222222222,,(,),2,,,,,2,1,1.a b a abx y x c a c cab a abAB c b ab b a c a a c a e c c c e e B =-=±-±∴=-<<<-<<<><<双曲线的左准线为渐近线方程为联立解得根据题意得即即即即又故选10的四棱锥S ABCD -的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A .BC.32D【测量目标】空间几何体与其外接几何体的性质.【考查方式】给出四棱锥和其外接球,通过两者的公共量求未知量. 【参考答案】A【试题解析】由题意可知ABCD 是小圆,,,点S A B C D 、、、、均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S2=.故选A. 二、填空题,本大题共5小题,每小题5分,共25分,把答案填写在答题卡相应位置上. 11.6(12)x +的展开式中4x 的系数是 - .【测量目标】二项展开式的通项公式以及组合数公式的运用.【考查方式】直接给出二项展开式的形式求解未知项. 【参考答案】240【试题解析】4x 是6(12)x +展开式的第5项,其系数为4462240C =.12.若3cos 5a =-,且3π(π,)2a ∈,则t a a =_________.【测量目标】同角三角函数的基本关系.【考查方式】直接给出未知角的正余弦值通过同角的三角函数关系求解正切值. 【参考答案】43【试题解析】.33π4cos ,(π,),sin ,525sin 4tan .cos 3a a a a a a =-∈∴=-∴==且13.过原点的直线与圆222440x y x y +--+=相交所得弦的长为2,则该直线的方程为 . 【测量目标】圆与直线的位置关系及弦长性质.【考查方式】直接给出圆与直线的位置关系和已知基本量求解. 【参考答案】20x y -=【试题解析】圆化为标准方程为22(1)(2)1x y -+-=,知圆心为(1,2)半径为122y x ∴∴=又相交弦长为,直线过圆心,直线方程为.14.从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为 . 【测量目标】组合计算和等可能事件的概率计算.【考查方式】在实际问题中运用概率的相关知识与性质求解答案. 【参考答案】730【试题解析】10位同学任选3人共有310C 种选法,其中含甲不含乙共有28C 种选法,故所选3位中有甲但没有乙的概率为28310C 7C 30=15.若实数,,222,2222,a b a ba b c a b c a b c c ++++=++=满足则的最大值是 .【测量目标】基本不等式的应用,指数与对数的性质.【考查方式】给出若干个指数或对数形式的特殊值运用基本不等式化简比较之间的大小. 【参考答案】322log -【试题解析】433223222224,2222,2222,243224,0,212142,log 2log ,32log .a b a b a b a b c a b c a b c a b c c c a bcc cc c +++++++=+∴++=∴+=⋅-⨯∴=--∴∴=-∴-又即的最大值为厖厖剟三、解答题,本大题共6小题,共25分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设{}n a 是公比为正数的等比数列, 1322,4a a a ==+. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n s . 【测量目标】数列的性质以及通项公式的运用.【考查方式】给出未知等差或等比数列由已知基本量求解数列的通项公式.【试题解析】 解:(I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),因此 2.q =(步骤1)所以{}n a 的通项为1*222(N ).n n n a n -=⋅=∈(步骤2)(II )由分析可得{}n a 的前n 项和12(12)12n n S -=-,{}n b 的前n 项和2(1)122n n n S n -=⨯+⨯,(步骤3)所以{}n n a b +的前n 项和122(12)(1)1 2.122n n n n n n S S S n --=+=+⨯+⨯-1222.n n +=+- (步骤4)17.(本小题满分13分,(I )小问6分,(II )小问7分)某市公租房的房源位于A 、B 、C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (I )没有人申请A 片区房源的概率;(II )每个片区的房源都有人申请的概率.解:这是等可能性事件的概率计算问题. 【测量目标】排列组合与计数原理的实际运用.【考查方式】给出实际问题运用排列组合和计数原理的相关性质求解实际问题中的问题.【试题解析】解:(I )解法一:所有可能的申请方式有43种,而“没有人申请A 片区房源”的申请方式有42种.(步骤1)记“没有人申请A 片区房源”为事件A ,则44216().381P A ==(步骤2)解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.记“申请A 片区房源”为事件A ,则1().3P A =(步骤1)由独立重复试验中事件A 恰发生k 次的概率计算公式知,没有人申请A片区房源的概率为004441216(0)C ()().3381P ==(步骤2) (II )所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有1212334243C C C (C C )或种. (步骤3)记“每个片区的房源都有人申请”为事件B ,从而有1212334243444C C C C A 3644()(()).33939P B P B =====或(步骤4) 18.(本小题满分13分,(I )小问7分,(II )小问6分)设函数()sin cos )cos ().f x x x x x x =π+∈R (1)求()f x 的最小正周期;(II )若函数()y f x =的图象按π(,42b =平移后得到函数()y g x =的图象,求()y g x =在0,4π⎛⎤⎥⎝⎦上的最大值. 【测量目标】诱导公式和两角和与差的公式性质与运用.【考查方式】给出未知函数运用诱导公式和两角和与差的公式进行化简求值.【试题解析】解:(I )21()sin 22f x x x =+1sin 2cos 2)21sin 222sin(2)3x x x x x =++=++π=++(步骤1) 故()f x 的最小正周期为2.2T π==π.(步骤2)(II)依题意()()42g x f x π=-+sin[2()]43sin(2)6x x ππ=-+π=-+(步骤3) 当[0,],2[,],()4663x x g x ππππ∈-∈-时为增函数, 所以()[0,]4g x π在上的最大值为()42g π=(步骤4) 19.(本小题满分12分,(Ⅰ)小题5分,(Ⅱ)小题7分)设 3.2()21f x x ax bx =+++的导数为()f x ',若函数()y f x '=的图像关于直线12x =-对称,且(1)0f '=. (Ⅰ)求实数,a b 的值 (Ⅱ)求函数()f x 的极值【测量目标】函数导数与函数最值的性质及其运用.【考查方式】给出含有未知数的函数通过对其求导化简,结合已知基本量求未知数.【试题解析】解:(I )因322()21,()62.f x x a x b xf x x a x b '=+++=++故(步骤1) 从而22()6(),66a a f x xb '=++-(步骤2) 即()y f x '=关于直线6a x =-对称,从而由题设条件知1, 3.62a a -=-=解得(步骤3) 又由于(1)0,620,12.f ab b '=++==-即解得(步骤4)(II )由(I )知32()23121,f x x x x =+-+2()6612f x x x '=+-6(1)(2).x x =-+令12()0,6(1)(2)0.2, 1.f x x x x x '=-+==-=即解得(步骤5) 当(,2),()0,()(,2)x f x f x '∈-∞->-∞-时故在上为增函数; 当(2,1),()0,()(2,1)x f x f x '∈-<-时故在上为减函数;当(1,),()0,()(1,)x f x f x '∈+∞>+∞时故在上为增函数;(步骤6)从而函数1()2f x x =-在处取得极大值2(2)21,1f x -==在处取得极小值(1) 6.f =-(步骤7) 20.(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)如图,在四面体ABCD 中,ABC ACD ⊥平面平面,,2,1AB BC AC AD BC CD ⊥====(Ⅰ)求四面体ABCD 的体积;(Ⅱ)求二面角C AB D --的平面角的正切值.【测量目标】解析几何与空间几何体性质的了解运用.【考查方式】给出含有未知基本量的已知空间几何体运用解析几何的知识求解问题. 【试题解析】解法一:(I )如图1,过D 作DF AC ⊥垂足为F ,故由ABC ACD ⊥平面平面,,DF ABC DF ⊥知平面即是四面体ABCD 的面ABC 上的高,设G 为边CD 的中点(步骤1),则由 AC AD =,知AG CD ⊥,从而1115224AG AG CD AC DF CD AG DF AC ======由得由13Rt ,2ABC ABC AB S AB BC ====△△中(步骤2) 故四面体ABCD 的体积153ABC V S DF ==△(步骤3) (II )如图1,过F 作FE AB ⊥,垂足为E ,连接DE .由(I )知DF ABC ⊥平面.由三垂线定理知DE AB ⊥,故DEF ∠为二面角C ABD --的平面角. (步骤4)在7Rt ,,4AFD AF ===△中 在Rt ABC △中,//EF BC ,从而::EF BC AF AC =,所以7.8AF BC EF AC ==(步骤5) 所以在Rt ABC △中,tan 7DF DEF EF ==(步骤6) 解法二:(I )如答(20)图2,设O 是AC 的中点,过O 作OH AC ⊥,交AB H 于,过O 作OM AC ⊥,交AD 于M ,由ABC ACD ⊥平面平面,知 OH OM ⊥.(步骤1)因此以O为原点,以射线,,OH Oc OM 分别为x 轴,y 轴,z 轴的正半轴,可建立空间坐标系O xyz -.已知2,AC =故点,A C 的坐标分别为(0,1,0),(0,1,0).A C -(步骤2) 设点B 的坐标为11(,,0),,||1B x yAB BC BC ⊥=由,有2211221111111,(1)1,().11,22x y x y x x y y ⎧+=⎪⎨+-=⎪⎩⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩解得舍去即点B 的坐标为1(,0).22B (步骤3) 又设点D 的坐标为22(0,,),||1,||2,D y z CD AD ==由有222222222222(1)1,(1)4,33,,44).y z y z y y z z ⎧-+=⎪⎨++=⎪⎩⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩解得舍去(步骤4) 即点D的坐标为3(0,4D 从而ACD △边AC上的高为2||4h z ==(步骤5) 又2231||()(1)3,|| 1.AB BC =++==(步骤6) 故四面体ABCD 的体积11||||328V AB BC h =⨯=.(步骤7) (II )由(I )知337(,,0),(0,24AB AD == 设非零向量(,,)l m n =n 是平面ABD 的法向量,则由AB ⊥n 有30.2m += (1)(步骤8)由AD ⊥n ,有70.4m += (2)(步骤9)取1m =-,由(1),(2),可得l n ===-即n 显然向量(0,0,1)=k 是平面ABC 的法向量,从而cos ,tan ,7n k n k <>==<>==故即二面角C AB D --(步骤10)21.(本小题满分12分.(Ⅰ)小问4分,(Ⅱ)小问8分)如图,椭圆的中心为原点O,离心率2e =,一条准线的方程是x = (Ⅰ)求该椭圆的标准方程;(Ⅱ)设动点P 满足:2OP OM ON =+,其中M N 、是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在定点F ,使得PF 与点P 到直线:l x =值;若存在,求F 的坐标,若不存在,说明理由.【测量目标】直线与椭圆的位置关系及椭圆相关性质的运用 .【考查方式】给出未知椭圆与已知直线通过两者之间的位置关系求解未知基本量. 【试题解析】解:(I)由2c a e a c===(步骤1)解得2222,2a c b a c ===-=,故椭圆的标准方程为221.42x y +=(步骤2) (II )设1122(,),(,),(,)P x y M x y N x y ,则由2OP OM ON =+得112212121212(,)(,)2(,)(2,2),2,2.x y x y x y x x y y x x x y y y =+=++=+=+即 因为点,M N 在椭圆2224x y +=上,(步骤3)所以2222112224,24x y x y +=+=,故222222*********(44)2(44)x y x x x x y y y y +=+++++2222112212121212(2)4(2)4(2)204(2).x y x y x x y y x x y y =+++++=++(步骤4)设,OM ON k k 分别为直线,OM ON 的斜率,由题设条件知12121,2OM ON y y k k x x ==-因此121220,x x y y +=(步骤5) 所以22220.x y +=所以P 点是椭圆221+=上的点,该椭圆的右焦点为F ,离心率:e l x ==直线是该椭圆的右准线,故根据椭圆的第二定义,存在定点F ,使得PF 与P 点到直线l 的距离之比为定值.(步骤6)。
2011年安徽高考数学(文、理)试卷与答案
2011年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸...上答题无效.....。
4. 考试结束后,务必将试题卷和答题卡一并上交。
参考公式:如果事件A 与B 互斥, 椎体体积13V Sh =,其中S 为椎体的底面积, 那么()()()P A B P A P B +=+ h 为椎体的高. 如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,复数12aii+-为纯虚数,则实数a 为 (A ) 2 (B ) -2 (C ) -12 (D ) 12(2) 双曲线2228x y -=的实轴长是(A )2 (B) (3)设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-, (1)f =(A )-3 (B) -1 (C)1 (D)3(4)设变量x ,y 满足||||1x y +≤,则2x y +的最大值和最小值分别为 (A)1,-1 (B)2,-2 (C)1,-2 (D)2,-1 (5) 在极坐标系中,点 (2,)3π到圆2cos ρθ= 的圆心的距离为(A )((6)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (B)32+48+(7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数都是偶数 (D )存在一个不能被2整除的数都不是偶数(8)设集合{1,2,3,4,5,6},{4,5,6,7}A B ==,则满足S A ⊆且S B ≠∅ 的集合S 为 (A )57 (B )56 (C )49 (D )8(9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ), ()36k k k z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ), ()2k k k z πππ⎧⎫+∈⎨⎬⎩⎭ (C )2, ()63k k k z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ), ()2k k k z πππ⎧⎫-∈⎨⎬⎩⎭(10)函数()(1)m n f x nx x =- 在区间上的图像如图所示,则m,n 的值可能是(A )m=1, n=1 (B )m=1, n=2 (C )m=2, n=1 (D )m=3, n=1第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)如图所示,程序框图(算法流程图)的输出结果是 .(12)设2122101221(1)x a a x a x a x -=++++ ,则1011a a +=_________ .(13)已知向量a ,b 满足(2)()6+-=-a b a b ,1|a |=,2|b |=,则a 与b 的夹角为________.(14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________(15)在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是_____________(写出所有正确命题的编号). ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果k 与b 都是无理数,则直线y kx b =+不经过任何整点 ③直线l 经过无穷多个整点,当且仅当l 经过两个不同的整点④直线y kx b =+经过无穷多个整点的充分必要条件是:k 与b 都是有理数 ⑤存在恰经过一个整点的直线三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分12分)设2()1xe f x ax=+,其中a 为正实数 (Ⅰ)当43a =a 43=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围。
2011福建数学高考试题及答案
2011年普通高等学校夏季招生全国统一考试数学(福建卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.理科:第Ⅱ卷第21题为选考题,其他题为必考题.满分150分.参考公式:样本数据x 1,x 2,…,x n 的标准差])()()[(122221x x x x x x nS n -++-+-=其中x 为样本平均数 柱体体积公式 V =Sh其中S 为底面面积,h 为高 锥体体积公式 13V Sh =其中S 为底面面积,h 为高球的表面积、体积公式 2344,3S R V R ππ==其中R 为球的半径第Ⅰ卷一、选择题:(理科)本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.(文科)本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈SC .i 3∈SD .2i∈S2.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分又不必要条件3.若tan α=3,则2sin 2cos αα的值等于( ) A .2 B .3 C .4 D .64.如图,矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14B .13C .12D .235.1(e 2)xx dx +⎰等于( )A .1B .e -1C .eD .e +16.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .10 7.设圆锥曲线Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A .1322或 B .23或2C .12或2 D .2332或8.已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,则OA OM ⋅的取值范围是( )A .[-1,0]B .[0,1]C .[0,2]D .[-1,2]9.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( )A .4和6B .3和1C .2和4D .1和210.已知函数f (x )=e x+x .对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,给出以下判断:①△ABC 一定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不可能是等腰三角形. 其中,正确的判断是( ) A .①③ B .①④ C .②③ D .②④第Ⅱ卷二、填空题:(理科)本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置.11.运行如图所示的程序,输出的结果是________.12.三棱锥P —ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P —ABC 的体积等于________.13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.14.如图,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.15.设V 是全体平面向量构成的集合.若映射f :V →R 满足: 对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ),则称映射f 具有性质P .现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ; ②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号)三、解答题:(理科)本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.16.已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在6x π=处取得最大值,且最大值为a 3,求函数f (x )的解析式.17.已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;(2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.18.某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式210(6)3a y x x =+--.其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.19.某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件.假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:X 1 5 6 7 8 P 0.4 a b 0.1且X 1的数学期望EX 1=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”= 产品的零售价期望产品的等级系数的数学;(2)“性价比”大的产品更具可购买性.20.如图,四棱锥P —ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°.(1)求证:平面P AB ⊥平面PAD ;(2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由.21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)选修4—2:矩阵与变换 设矩阵00a Mb ⎛⎫=⎪⎝⎭(其中a >0,b >0). ①若a =2,b =3,求矩阵M 的逆矩阵M -1;②若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:1y 4x22=+,求a ,b 的值.(2)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧==ααsin cos 3y x(α为参数).①已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,2π),判断点P 与直线l 的位置关系;②设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. (3)选修4—5:不等式选讲设不等式|2x -1|<1的解集为M . ①求集合M ;②若a ,b ∈M ,试比较ab +1与a +b 的大小.参考答案1.B 2.A 3.D 4.C 5.C 6.B 7. A 8.C 9.D 10.B 11.答案:3 12.答案:3 13.答案:3514.答案:2 15.答案:①③16.解:(1)由q =3,S 3=133得311313a (-)-=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3.因为当x =6π时,f (x )取得最大值,所以sin(2×6π+φ)=1.又0<φ<π,故φ=6π.所以函数f (x )的解析式为f (x )=3sin(2x +6π).17.解法一:(1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以020m --×1=-1.解得m =2,即点P 的坐标为(0,2). 从而圆的半径r =|MP |=22200222(-)+(-)=. 故所求圆的方程为(x -2)2+y 2=8.(2)因为直线l 的方程为y =x +m , 所以直线l ′的方程为y =-x -m . 由24y x m x y=--⎧⎨=⎩,得x 2+4x +4m =0,Δ=42-4×4m =16(1-m ).①当m =1,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切. 综上,当m =1时,直线l ′与抛物线C 相切;当m ≠1时,直线l ′与抛物线C 不相切.解法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则224|20|2m r m r ⎧+=⎪-+⎨=⎪⎩解得222m r =⎧⎪⎨=⎪⎩所以所求圆的方程为(x -2)2+y 2=8. (2)同解法一.18.解:(1)因为x =5时,y =11,所以2a +10=11,a =2.(2)由(1)可知,该商品每日的销售量210(236)x y x +-=-,所以商场每日销售该商品所获得的利润 f (x )=(x -3)[23x -+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)]=30(x -4)(x -6). 于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:x (3,4) 4 (4,6) f ′(x ) + 0 - f (x ) 单调递增 极大值42 单调递减由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 19.解:(1)因为EX 1=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5.由67 3.20.5a b a b +=⎧⎨+=⎩,解得0.30.2a b =⎧⎨=⎩.(2)由已知得,样本的频率分布表如下:X 2 3 4 5 6 7 8 f 0.3 0.2 0.2 0.1 0.1 0.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P 0.3 0.2 0.2 0.1 0.1 0.1所以EX 2=3P (X 2=3)+4P (X 2=4)+5P (X 2=5)+6P (X 2=6)+7P (X 2=7)+8P (X 2=8)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1 =4.8.即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.20.解法一:(1)因为P A ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面P AD .又AB ⊂平面P AB ,所以平面PAB ⊥平面P AD .(2)以A 为坐标原点,建立空间直角坐标系A —xyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).①设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P BP B⋅⋅n n ,即22222241242t tt t t t-=++(-)⋅.解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.设G (0,m ,0)(其中0≤m ≤4-t ), 则G C =(1,3-t -m ,0),CD =(0,4-t -m ,0),GP=(0,-m ,t ).由G C G D =得12+(3-t -m )2=(4-t -m )2,即t =3-m ;(ⅰ)由C D G P =|得(4-t -m )2=m 2+t 2.(ⅱ)由(ⅰ)(ⅱ)消去t ,化简得 m 2-3m +4=0.(ⅲ)由于方程(ⅲ)没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.解法二:(1)同解法一.(2)①以A 为坐标原点,建立空间直角坐标系Axyz (如图). 在平面ABCD 内,作CE ∥AB 交AD 于点E ,则CE ⊥AD . 在Rt △CDE 中, DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t ,0,0),P (0,0,t ). 由AB +AD =4,得AD =4-t ,所以E (0,3-t ,0),C (1,3-t ,0),D (0,4-t ,0),CD =(-1,1,0),PD=(0,4-t ,-t ).设平面PCD 的法向量为n =(x ,y ,z ),由n ⊥CD ,n ⊥PD ,得040x y t y tz -+=⎧⎨(-)-=⎩,取x =t ,得平面PCD 的一个法向量n =(t ,t ,4-t ).又PB=(t ,0,-t ),故由直线PB 与平面PCD 所成的角为30°得cos60°=P B P B ⋅⋅ n n ,即22222241242t t t t t t-=++(-)⋅, 解得t =45或t =4(舍去,因为AD =4-t >0).所以AB =45.②假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°. 从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos 45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABC 中,GB =22AB AG +=223λλ+(-)=239222λ(-)+>1,这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B ,C ,D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 21.(1)选修4-2:矩阵与变换解:①设矩阵M 的逆矩阵M -1=1122x y x y ⎛⎫ ⎪⎝⎭,则MM -1=1001⎛⎫⎪⎝⎭. 又M =2003⎛⎫⎪⎝⎭, 所以112220100301x y x y ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13.故所求的逆矩阵M -1=102103⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭.②设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′).则00a x x b y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭,即ax x by y'=⎧⎨'=⎩. 又点P ′(x ′,y ′)在曲线C ′上,所以2214x y ''+=.则222214a xb y +=为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故2241a b ⎧=⎪⎨=⎪⎩又a >0,b >0,所以21a b =⎧⎨=⎩(2)选修4—4:坐标系与参数方程解:①把极坐标系的点P (4,2π)化为直角坐标,得P (0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上. ②因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α), 从而点Q 到直线l 的距离是d =|3cos sin 4|2αα-+=2cos(462πα+)+=2cos(α+6π)+22,由此得,当cos(α+6)=-1时,d 取得最小值,且最小值为2.(3)选修4-5:不等式选讲解:①由|2x -1|<1得-1<2x -1<1, 解得0<x <1.所以M ={x |0<x <1}.②由(1)和a ,b ∈M 可知0<a <1,0<b <1. 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +B .。
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2012全国高考数学试卷及答案
2012年普通高等学校招生全国统一考试(全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试..题卷上作答无效.......。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合{1,2,3,4}U =,{1,2,3}M =,{2,3,4}N = ,则()U C M N = ( ) (A ){1,2} (B ){2,3} (C ){2,4} (D ){1,4} (2)函数0)y x =≥的反函数是( )(A )2()4x y x R == (B)2(0)4x y x =≥ (C)y=4x 2(x=R) (D) y=4x 2(x ≥=R) (3) 设向量a.b 满足11,,a+22a b a b b ===-= 则( )(A(B(C(D(4)若变量,x y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为( )(A )17 (B )14 (C )5 (D )3 (5)下面四个条件中,使a b >成立的充分而不必要条件是( ) (A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >(6)设n S 是等差数列{}n a 的前n 项和,若11a =,公差22, 24k k d S S +=-=,则k =( ) (A )8 (B )7 (C )6 (D )5(7)设函数()cosx f x ωω=()(>0),将()y f x = 图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )(A )13(B )3 (C )6 (D )9 (8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点, B BD l β∈⊥,D 为垂足,若2,1AB AC BD ===,则CD =( )(A )2 (B (C (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) (A )12种 (B )24种 (C )30种 (D )36种(10)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则52()f -= ( ) (A )12-(B ) 41 (C )41 (D )12(11)设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =( ) (A )4 (B )42 (C )8 (D )82(12)已知平面α截一球面得圆M ,过圆心M 且与α成︒60二面角的平面β截该球面得圆N ,若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )(A )7π (B )9π (C )11π (D )13π2011年普通高等学校招生全国统一考试文科数学第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 2011年普通高等学校招生全国统一考试
文科数学(必修+选修II) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。 第Ⅰ卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。..........
3.第Ⅰ卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 一、选择题
1.设集合U=1,2,3,4,1,2,3,M2,3,4,N则=(MN)ð
A.12, B.23, C.2,4 D.1,4
2.函数2(0)yxx≥的反函数为
A.2()4xyxR B.2(0)4xyx≥ C.24yx()xR D.24(0)yxx≥ 3.权向量a,b满足1||||1,2abab,则2ab A.2 B.3 C.5 D.7
4.若变量x、y满足约束条件6321xyxyx,则23zxy的最小值为 A.17 B.14 C.5 D.3 5.下面四个条件中,使ab成立的充分而不必要的条件是 A.1ab B.1ab
C.22ab D.33ab
6.设nS为等差数列{}na的前n项和,若11a,公差为22,24kkdSS,则k= A.8 B.7 C.6 D.5 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 7.设函数()cos(0)fxx>,将()yfx的图像向右平移3个单位长度后,所得的图像与原图像重合,则的最小值等于 A.13 B.3 C.6 D.9
8.已知二面角l,点,,AAClC为垂足,点,BBDl,D为垂足,若AB=2,AC=BD=1,则CD= A.2 B.3 C.2 D.1 9.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A.12种 B.24种 C.30种 D.36种
10.设()fx是周期为2的奇函数,当0≤x≤1时,()fx=2(1)xx,则5()2f=
A.-12 B.1 4 C.14 D.12 11.设两圆1C、2C都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC= A.4 B.42 C.8 D.82 12.已知平面截一球面得圆M,过圆心M且与成060,二面角的平面截该球面得圆N,若该球的半径为4,圆M的面积为4,则圆N的面积为 A.7 B.9 C.11 D.13
第Ⅱ卷 注意事项: 1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。请认真核准条形码卜的准考证号、姓名和科目。 2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。 3.第Ⅱ卷共l0小题,共90分。 二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作.....
答无效...)
13.(1-x)10的二项展开式中,x的系数与x9的系数之差为: . 14.已知a∈(3,2),tan2,cos则= 15.已知正方体ABCD—A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC所成角的余弦值为 。 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 16.已知F1、F2分别为双曲线C: 29x- 227y=1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = . 三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤 17.(本小题满分l0分)(注意:在试题卷上作答无效.........)
设等比数列na的前n项和为nS,已知26,a13630,aa求na和nS
18.(本小题满分2分)(注意:在试题卷上作答无效.........) △ABC的内角A、B、C的对边分别为a、b、c.己知sincsin2sinsin,aACaCbB (Ⅰ)求B; (Ⅱ)若075,2,Abac求与
19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。 (I)求该地1位车主至少购买甲、乙两种保险中的1种概率; (II)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。
20.(本小题满分l2分)(注意:在试题卷上作答无效.........) www.zgxzw.com 中国校长网
中国校长网资源频道 http://zy.zgxzw.com 如图,四棱锥SABCD中, ABCD,BCCD,侧面SAB为等边三角形,
2,1ABBCCDSD. (I)证明:SD平面SAB; (II)求AB与平面SBC所成的角的大小。
21.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知函数32()3(36)124fxxaxaxaaR (I)证明:曲线()0yfxx在处的切线过点(2,2); (II)若0()fxxx在处取得极小值,0(1,3)x,求a的取值范围。
22.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知O为坐标原点,F为椭圆22:12yCx在y轴正半轴上的焦点,过F且斜率为-2
的直线l与C交与A、B两点,点P满足0.OAOBOP (Ⅰ)证明:点P在C上; (II)设点P关于O的对称点为Q,证明:A、P、B、Q四点在同一圆上。 www.zgxzw.com 中国校长网
中国校长网资源频道 http://zy.zgxzw.com 参考答案 评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。 2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给力,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分。 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 4.只给整数分数,选择题不给中间分。 一、选择题 1—6 DBBCAD 7—12 CCBACD 二、填空题
13.0 14.55 15.23 16.6 三、解答题 17.解:设{}na的公比为q,由题设得
1211
6,630.aqaaq
…………3分
解得113,2,2,3.aaqq或 …………6分 当113,2,32,3(21);nnnnaqaS时 当112,3,23,31.nnnnaqaS时 …………10分 18.解: (I)由正弦定理得2222.acacb …………3分
由余弦定理得2222cos.bacacB
故2cos,45.2BB因此 …………6分 (II)sinsin(3045)A sin30cos45cos30sin4526.4
…………8分 www.zgxzw.com 中国校长网 中国校长网资源频道 http://zy.zgxzw.com 故sin2613,sin2AabB sinsin6026.sinsin45CcbB
…………12分
19.解:记A表示事件:该地的1位车主购买甲种保险; B表示事件:该地的1位车主购买乙种保险但不购买甲种保险; C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种; D表示事件:该地的1位车主甲、乙两种保险都不购买; E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。
(I)()0.5,()0.3,,PAPBCAB …………3分
()()()()0PCPABPAPB …………6分 (II),()1()10.80.2,DCPDPC …………9分 123()0.20.80.384.PEC …………12分
20.解法一: (I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,
连结SE,则,3.SEABSE
又SD=1,故222EDSESD, 所以DSE为直角。 …………3分 由,,ABDEABSEDESEE, 得AB平面SDE,所以ABSD。 SD与两条相交直线AB、SE都垂直。 所以SD平面SAB。 …………6分 (II)由AB平面SDE知, 平面ABCD平面SED。
作,SFDE垂足为F,则SF平面ABCD,
3.2SDSESFDE
作FGBC,垂足为G,则FG=DC=1。 连结SG,则SGBC,
又,BCFGSGFGG, 故BC平面SFG,平面SBC平面SFG。 …………9分 作FHSG,H为垂足,则FH平面SBC。