一轮复习直线和圆的位置关系
第49讲 直线与圆的位置关系(解析版)2021届新课改地区高三数学一轮专题复习

Δ<0 d>r
Δ=0 d=r
Δ>0 d<r
(2)圆的切线方程的常用结论
①过圆 x2+y2=r2 上一点 P(x0,y0)的圆的切线方程为 x0x+y0y=r2;
②过圆(x-a)2+(y-b)2=r2 上一点 P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;
③过圆 x2+y2=r2 外一点 M(x0,y0)作圆的两条切线,则两切点所在直线方程为 x0x+y0y=r2.
12+(-1)2 选 C.
4、过点(2,3)与圆(x-1)2+y2=1 相切的直线的方程为________________.
【答案】 x=2 或 4x-3y+1=0
【解析】 ①若切线的斜率存在时,设圆的切线方程为 y=k(x-2)+3,由圆心(1,0)到切线的距离为半径 1, 得 k=4,所以切线方程为 4x-3y+1=0;②若切线的斜率不存在,则切线方程为 x=2,符合题意,所以直
【解析】(2) 由 ax-y+2-a=0 得直线 l 恒过点 M(1,2).又因为点 M(1,2)在圆 C 的内部,当 MC 与 l
垂直时,弦长最短,所以 kMC·kl=-1,所以2-1×a=-1,解得 a=2 . 1-3
(3)由题意,得圆心 C(3,1),半径 r=3 且∠ACB=90°,则圆心 C 到直线 l:ax-y+2-a=0 的距离为
3 线方程为 4x-3y+1=0 或 x=2.
5、直线 l:3x-y-6=0 与圆 x2+y2-2x-4y=0 相交于 A,B 两点,则 AB=________.
【答案】 10
【解析】 由 x2+y2-2x-4y=0,得(x-1)2+(y-2)2=5,所以该圆的圆心坐标为(1,2),半径 r= 5,又圆
2014届高三一轮复习《课堂新坐标》理科数学(人教A版)第八章第四节直线、圆的位置关系

高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
k), ∴直线l的方程为y=kx+1. |2k-3+1| 4- 7 4+ 7 由 <1,得 <k< . 2 3 3 k +1
课 后 作 业
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
【解析】
∵直线y=ax+1恒过定点(0,1),又点(0,
课 后 作 业
1)在圆(x-1)2+y2=4的内部,故直线与圆相交. 【答案】 B
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
2.(2012·山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-
(2)设M(x1,y1)、N(x2,y2), 将y=kx+1代入方程(x-2)2+(y-3)2=1, 得(1+k2)x2-4(1+k)x+7=0, 4(1+k) 7 ∴x1+x2= ,x1x2= , 1+k2 1+k2 → → ∴OM·ON=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1.
=2R=2. 【答案】 D
菜
单
新课标 ·理科数学(广东专用)
自 主 落 实 · 固 基 础
4.(2013·肇庆质检)若过点A(4,0)的直线l与曲线(x-
2)2+y2=1有公共点,则直线l的斜率的最小值为________.
【解析】 设直线l的方程为y=k(x-4), 即kx-y-4k=0, 当直线l与圆相切时,k有最大值或最小值. |2k-4k| 1 2 由 2 =1得k = , 3 k +1 3 ∴k=± . 3
2013届高三数学(文)一轮复习方案课件第46讲直线与圆的位置关系

[解答] (1)∵直线 l 过点 A(0,1)且方向向量为 a=(1,k),∴直 线 l 的方程为 y=kx+1(注意:这里已知方向向量即已知直线的斜 率). 将其代入⊙ C: (x- 2)2+(y- 3)2= 1,得(1+ k2)x2- 4(1+k)x +7=0.① 由题意得 Δ=[-4(1+k)]2-4×(1+k2)×7>0, 4- 7 4+ 7 解得 <k< . 3 3
第46讲 │ 知识梳理
6.圆系 过两个已知圆 x2+y2+D1x+E1y+F1=0 和 x2+y2+D2x+E2y +F2=0 的交点的圆系方程为 x2 + y2 + D1x + E1y + F1 + λ(x2 + y2 + D2x + E2y + F2) = 0(λ≠- 1). ① 方程①是一个圆系的方程, 这些圆的圆心都在两圆的连心线上, 圆系方程代表的圆不包含圆 x2+y2+D2x+E2y+F2=0. λ=-1 时,①式变为一直线: (D1-D2)x+(E1-E2)y+(F1-F2)=0. ② 若两圆相交,则方程②是它们的公共弦所在直线的方程;若两圆相 切,则方程②就是它们的公切线方程.
第46讲 │ 要点探究
变式题 若圆(x-a)2+(y-b)2=b2+1 始终平分圆(x+1)2+(y+ 1)2=4 的周长,则实数 a,b 应满足的关系是( ) A.a2-2a-2b-3=0 B.a2+2a+2b+5=0 C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0
2015届高三数学(文)第一轮总复习课件 第55讲 直线与圆、圆与圆的位置关系

学海导航
文数
(3)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线, 则( ) A.l与C相交 C.l与C相离 B.l与C相切 D.以上三个选项均有可能
18
学海导航
文数
解析:(3)圆的方程可化为(x-2)2+y2=4,易知圆心 为(2,0),半径为2,圆心到点P的距离为1,所以点P在圆 内,所以直线与圆相交,故选A.
21
学海导航
文数
(2)“a=3”是“直线y=x+4与圆(x-a)2+(x-3)2=8相 切”的( ) B.必要不充分条件 D.既不充分也不必要条件
A.充分不必要条件 C.充要条件
22
学海导航
文数
|a-3+4| 解析:(2)若直线与圆相切,则 =2 2 ,a=3或 2 a=-5,所以“a=3”是“直线y=x+4与圆(x-a)2+(x- 3)2=8相切”的充分不必要条件,故选A.
学海导航
文数
第55讲
直线与圆、圆与圆的位置关系
1
学海导航
文数
2
学海导航
文数
1.直线4x+3y=40和圆x2+y2=100的位置关系是( A ) A.相交 C.相切 B.相离 D.无法确定
3
学海导航
文数
40 解析:因为 d= =8<10=r,所以直线与圆相交. 5
4
学海导航
文数
2.以点(2,-1)为圆心,且与直线 3x-4y+5=0 相切 的圆的方程为( C ) A.(x-2)2+(y+1)2=3 B.(x+2)2+(y-1)2=3 C.(x-2)2+(y+1)2=9 D.(x+2)2+(y-1)2=9
15
学海导航
文数
(2)已知过点P(2,2)的直线与圆(x-1)2+y2=5相切,且 与直线ax-y+1=0垂直, 则a=( 1 A.-2 C.2 ) B.1 1 D. 2
2012届高考数学(文)一轮复习课件:8-4第四节 直线与圆、圆与圆的位置关系(北师大版)

理几何问题的思想.
现解答题,难度中等.
第八章
平面解析几何
北 师 大 版 数 学 文
第八章
平面解析几何
北 师 大 版 数 学 文
1.直线与圆的位置关系
相离、相切、相交. (1)直线与圆的位置关系有三种:
判断直线与圆的位置关系常见的有两种方法:
①代数法:利用判别式Δ
第八章
平面解析几何
北 师 大 版 数 学 文
程.
[思路分析] 本题求解的关键是由“圆C1 与圆C2 交于A,
B两点且这两点平分圆C2的周长”得到|C1C2|2+r22=r12.
第八章
平面解析几何
北 师 大 版 数 学 文
[听课记录]
(1)由已知,圆 C1 的圆心为(an,-an+1),半
径为 r1= an2+an+12+1,圆 C2 的圆心为(-1,-1),半径为 r2=2. 又圆 C1 与圆 C2 交于 A,B 两点且这两点平分圆 C2 的周 长,所以|C1C2|2+r22=r12,所以(an+1)2+(-an+1+1)2+4= an +an+12+1,所以
|-1+2-a| 由 = 2,得|a-1|=2,即 a=-1,或 a=3. 2 ∴直线方程为 x+y+1=0,或 x+y-3=0. 综上,圆的切线方程为 y=(2+ 6)x,或 y=(2- 6)x, 或 x+y+1=0,或 x+y-3=0.
第八章
平面解析几何
北 师 大 版 数 学 文
(2)由|PO|=|PM|,得x12+y12=(x1+1)2+(y1-2)2-2⇒2x1 -4y1+3=0.
第八章
平面解析几何
北 师 大 版 数 学 文
第八章
平面解析几何
北 师 大 版 数 学 文
直线与圆讲义-2025届高三数学一轮复习

直线与圆知识点及典型例题1.直线的倾斜程度用倾斜角表示,倾斜角的范围是:倾斜角与斜率的关系是:斜率如何随倾斜角的变化而变化:注:①每一条直线都有倾斜角,但不一定有斜率.②当α时,直线l垂直于x轴,它的斜率k不存在.90=③过两点P1(x1,y1)、P2(x2,y2)(x1≠x2)的直线斜率公式k=2.直线的方程:名称形式适用条件3.平面内两直线的位置关系:平行相交相交中的垂直重合斜截式一般式4.距离公式:点到点:点到线:两条平行线间:5.圆的定义:6.圆的方程:(标准式)圆心为半径为(一般式)圆心为半径为7.点与圆的位置关系及成立条件:8.直线与圆的位置关系及成立条件:位置关系图形表示交点个数()d,r的关系圆上的点到直线距离的最大值与最小值涉及到弦长问题要想垂径定理构造直角三角形在圆上某点(x 0,y 0)处的切线方程:9.求圆与圆的位置关系:10.两个圆的方程相减得到的是: 11.曲线轨迹方程的方法有: 12.直线与圆锥曲线相交的弦长公式:类型一:直线的问题1.与直线ℓ:2x +3y +5=0平行且过点A(1,−4)的直线ℓ′的方程是__________。
2.已知二直线l 1:mx +8y +n =0和l 2:2x +my −1=0,若l 1⊥l 2,l 1在y 轴上的截距为-1,则m =_____,n =____.3. 经过两直线11x -3y -9=0与12x +y -19=0的交点,且过点(3,-2)的直线方程为_______. 位置关系 图形表示公切线条数 d,r 1,r 2的关系4.已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:⑴BC边上的高所在直线方程;⑵AB边中垂线方程;⑶∠A平分线所在直线方程.类型二:对称问题5.求点A(0,1)关于点B(1,3)的对称点6. 求点A(0,1)关于直线l1:x−y−1=0的对称点7.求直线l1:x−y−1=0 关于点A(0,1)的对称线。
【中考一轮复习】与圆有关的位置关系课件
考点聚焦---点与圆的位置关系
【问题】视察图中点A,点B,点C与⊙O的位置关系?
点A在圆外 点B在圆上 点C在圆内
d>r A
d=r
d<r(或0≤d<r)
C
·O r
B
注意:已知点的位置可以确定该点到圆心距离与半径的关系,反 过来,已知点到圆心距离与半径的关系也可以确定该点与圆的位 置关系.
当堂训练
当堂训练
1.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接
BC,若∠P=36º,则∠B等于( A ) A.27º B.32º C.36º D.54º
当堂训练
2.如图,AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,
过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则
1.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径
是( C )
A.1.5cm B.7.5cm C.1.5cm或7.5cm D.3cm或15cm
2.在Rt△ABC中,∠C=90º,BC=3,AC=4,点P
在以C为圆心,5为半径的圆上,连接 PA,PB.若PB=4,则PA的长为_3_或___7_3_
P2
B
P1
C
A
目录
点与圆的位置关系
直线与圆的位置关系
圆的切线的性质及判定
切线长定理
三角形的内切圆、外接圆
典型例题
【例2】Rt△ABC中,∠C=90º,AC=3cm,BC=4cm,以C为圆心,r为半
径作圆,若⊙aC与直线AB相切,则r的值为( B )
A.2cm B.2.4cm
C.3cm
D.4cm
考点聚焦---直线与圆的位置关系
高三数学(文)一轮复习课件8-4 直线与圆、圆与圆的位置关系ppt版本
微知识❸ 两圆公切线的条数
位置关系 内含 内切 相交
公切线条数 0
12
外切 3
外离 4
二、小题查验 1.思维辨析(在括号内打“√”或“×”) (1)如果直线与圆组成的方程组有解,则直线与圆相交或相切。(√) 解析:正确。直线与圆组成的方程组有一组解时,直线与圆相切, 有两组解时,直线与圆相交。
解析:(1)如图,若|MN|=2 3 ,则由圆与直线的位置关系可知圆心到直线 的距离满足d2=22-( 3)2=1。
∵直线方程为y=kx+3, ∴d=|k·2-1+3+k2 3|=1,
解得k=±
3 3
若|MN|≥2 3,则- 33≤k≤ 33。
(2)把圆的方程化为标准方程是x+12k2+(y+1)2=16-34k2,
【微练3】(1)两个圆:C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1
=0的公切线有且仅有( B )
A.1条 B.2条 C.3条 D.4条 (2)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y= kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k
方法
位置关系
几何法:圆心距d与r1,r2的关系
代数法:两圆方程联立 组成方程组的解的情况
外离 外切 相交 内切 内含
d>r1+r2
d=r1+r2 |r1-r2|<d<r1+r2 d=_|r_1_-__r2_| (r1≠r2) 0_≤____ d__<__ |r1-r2|(r1≠r2)
_无__解 _一__组___实数解 __两__组__不__同__的__实数解
(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切。 (×)
2014年中考数学一轮复习讲义:直线与圆的位置关系
2014年中考数学一轮复习讲义:直线与圆的位置关系【考纲要求】1.探索并了解点和圆、直线和圆的位置关系.2.知道三角形的内心和外心.3.了解切线的概念,并掌握切线的判定和性质.【命题趋势】直线与圆位置关系的判定是中考考查的热点,通常出现在选择题中.中考考查的重点是切线的性质和判定,题型多样,常与三角形、四边形、相似、函数等知识结合在一起综合考查.【知识梳理】一、判定一个点P是否在⊙O上:设⊙O的半径为,OP=,则有点P在⊙O 外;点P在⊙O 上;点P在⊙O 内.二、直线和圆的位置关系:设⊙O 半径为R,点O到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.三、切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:圆的切线垂直于过切点的半径.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.题型分类、深度剖析:考点一、点与圆的位置关系【例1】矩形ABCD中,AB=8,BC=35,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )A .点B ,C 均在圆P 外B .点B 在圆P 外、点C 在圆P 内 C .点B 在圆P 内、点C 在圆P 外D .点B ,C 均在圆P 内解析:画出矩形后求解出DP 的长度即圆的半径,然后求出BP ,CP 的长度与DP 的长度作比较就可以发现答案.在Rt△ADP 中,DP =AD 2+AP 2=7,在Rt△BCP 中,BP =6,PC =BC 2+BP 2=9.∵PC >DP ,BP <DP ,∴点B 在圆P 内,点C 在圆P 外. 答案:C方法总结 解答这类题目的关键是运用数形结合的思想,将点与圆的图形位置关系转化为确定点到圆心的距离与半径之间的数量关系.触类旁通1 若⊙O 的半径为5 cm ,点A 到圆心O 的距离为4 cm ,那么点A 与⊙O 的位置关系是( )A .点A 在圆外B .点A 在圆上C .点A 在圆内D .不能确定 考点二、切线的性质与判定【例2】如图所示,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23.(1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值. 分析:(1)连接OB ,OP ,由DB DP =DC DO =23,且∠D =∠D ,根据三角形相似的判定定理得到△BDC ∽△PDO ,可得到BC ∥OP ,易证得△BOP ≌△AOP ,则∠PBO =∠PAO =90°;(2)设PB =a ,则BD =2a ,根据切线长定理得到PA =PB =a ,根据勾股定理得到AD =22a ,又BC ∥OP ,得到DC =2CO ,得到DC =CA =12×22a =2a ,则OA =22a ,利用勾股定理求出OP ,然后根据余弦函数的定义即可求出cos ∠BCA =cos ∠POA 的值.解:(1)证明:连接OB ,OP ,∵DB DP =DC DO =23,且∠D =∠D , ∴△BDC ∽△PDO , ∴∠DBC =∠DPO , ∴BC ∥OP ,∴∠BCO =∠POA ,∠CBO =∠BOP . ∵OB =OC , ∴∠OCB =∠CBO , ∴∠BOP =∠POA . 又∵OB =OA ,OP =OP ,∴△BOP ≌△AOP ,∴∠PBO =∠PAO .又∵PA ⊥AC ,∴∠PAO =90°,∴∠PBO =90°, ∴直线PB 是⊙O 的切线. (2)由(1)知∠BCO =∠POA , 设PB =a ,则BD =2a , 又∵PA =PB =a , ∴AD =DP 2-PA 2=22a . 又∵BC ∥OP ,∴DC =2CO , ∴DC =CA =12AD =12×22a =2a ,∴OA =22a , ∴OP =OA 2+PA 2=⎝ ⎛⎭⎪⎫22a 2+a 2=62a ,∴cos ∠BCA =cos ∠POA =OA OP =33. 方法总结 1.切线的常用判定方法有两种:一是用圆心到直线的距离等于圆的半径来说明直线是圆的切线;二是用经过半径的外端且垂直于这条半径来说明直线是圆的切线.当被说明的直线与圆的公共点没有给出时,用方法一;当圆与直线的公共点已经给出时,常用方法二说明.2.利用切线的性质时,常连接切点和圆心,构造直角.触类旁通2 如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C ,∠DAB =∠B =30°.(1)直线BD 是否与⊙O 相切?为什么? (2)连接CD ,若CD =5,求AB 的长. 考点三、三角形的内切圆【例3】如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.则△ABC 的内切圆半径r =__________.解析:在Rt △ABC 中,AB =AC 2+BC 2=62+82=10. ∵S △ACB =12AC ·BC =12×6×8=24,∴r =2S a +b +c =486+8+10=2.答案:2方法总结 三角形的内切圆半径r =2Sa +b +c,其中S 是三角形面积,a ,b ,c 是三角形三边长.触类旁通3 如图所示,⊙O 是△ABC 的内切圆,切点分别是D ,E ,F ,已知∠A =100°,∠C =30°,则∠DFE 的度数是( )A .55°B .60°C .65°D .70°。
直线与圆的位置关系教学设计(复习课)
直线和圆的位置关系教学设计(高三第一轮复习)防城港市实验高级中学陈有发一、教材内容解析本节课内容是人教版A版全日制普通高中教科书(必修2)第四章《4.2直线与圆的位置关系》,本节课内容为高三第一轮复习。
本节课是平面解析几何的基础知识,它既是复习了前面学过的直线与圆的方程,又为今后学习直线与圆锥曲线的位置关系奠定基础,也是高考重点考查的内容之一;它虽然是解析几何中较为简单的内容,但有着广泛的应用,也具有较强的综合性,有利于培养学生分析问题和解决问题的能力;2018年高考大纲要求:(1)能根据给定的直线、圆的方程判断直线与圆的位置关系;(2)能用直线与圆的方法解决一些简单的问题;(3)初步了解用代数方法处理几何问题的思想。
二、教学目标:知识目标:了解代数法和几何法解决直线与圆位置关系的差异,明确几何法在直线与圆的位置的判定中的地位,并能应用几何法解决相关问题.能力目标:让学生在解决问题的过程中体会到数形结合、分类讨论、函数与方程数学思想,注重培养学生的分析能力、计算、总结归纳等能力.情感态度价值观目标:培养学生善于思考的良好品质,激发学生学习数学的积极性. 重点:几何法在直线与圆的位置关系的判定中的应用.难点:通过对圆上的点到直线的距离变化的分析诠释数形结合的魅力.三、教学设计: (一)知识回顾导入语:大家知道数学来源于生活,又服务于生活。
下面有一道生活问题,你能用学过哪方面的知识求解?一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为3km 的圆形区域.已知小岛中心位于轮船正西4km 处,港口位于小岛中心正北4km 处.如果轮船沿直线返港,那么它是否会有触礁的危险?问题1.将此生活问题转化为数学问题? 分析:如图1所示生活问题转为数学问题:在平面直角坐标系中,以小岛为原点,判断直线40x y +-=与22O 9x y +=圆:的位置关系为引出课题:直线与圆的位置关问题2:回顾直线与圆的位置关系有哪些情形?是如何判定的?(二)自主构建例1.分别从几何角度和代数角度:判断直线40x y +-=与22O 9x y +=圆:的位置关系方法一 问题3.几何法判定直线与圆的位置关系解题步骤是什么?确定直线方程、圆心、半径R求圆心到直线的距离d比较d 与半径R 的大小方法二 问题4.代数法判定直线与圆的位置关系解题步骤是什么?直线方程确定直线与圆的方程联立22409x y x y ì+-=ïí+=ïî,消去y ,得22870x x -+= 联立方程组,消元, 得一元二次方程判别式D 与0的大小问题5.对比几何法与代数法,你更加喜欢哪一个?为什么? 分析:几何法更加简洁、计算量少;代数法运用比较广泛 (三)应用探索请用你喜欢的方法解决以下问题:例2.已知过点(4,4)P 作22C 40x x y -+=圆:切线l ,则切线l 有几条?并且求切斜l 方程.分析:如图2所示,容易漏掉切线斜率不存在的情况.解:1)当斜率不存在时,则切线方程为4x =2)当斜率存在时,设直接的斜率为k , 则直线方程为(4)4y k x =-+, 圆心(2,0)C ,半径2R =,\圆心C 到直接440kx y k --+=的距离2d =,解得34k =,\切线方程为314y x =+.问题6.如果利用代数法解决例1,你能否说说解题思路?分析:虽然用“代数法”解决例1,计算比较繁琐,但是解题思路还是要了解。